Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.669
Filtrar
1.
J Mol Neurosci ; 74(4): 99, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39441469

RESUMO

Hereditary sensory and autonomic neuropathy (HSAN) is a rare genetic disorder that primarily affects the peripheral nervous system, leading to a progressive loss of the ability to perceive pain, temperature, and touch. This condition can result in severe complications, including injuries and infections due to the inability to feel pain. HSAN is classified into nine types, with types I and VII exhibiting autosomal dominant inheritance, while the others follow an autosomal recessive pattern. In this study, we examined three affected brothers of Turkish Azeri descent, aged 20, 23, and 25 years. They presented symptoms such as a lack of temperature and pain sensation, frequent wounds and infections, self-harm, and hyperkeratosis. To identify the genetic cause of their condition, whole-exome sequencing (WES) was performed, followed by Sanger sequencing to confirm the findings. The results revealed a homozygous likely pathogenic nonsense mutation, c.2971C > T (p.Arg991Ter), in exon 9 of the WNK1 gene. This mutation results in the truncation of three isoforms of the WNK1 protein, which are essential for pain perception. This discovery enhances our understanding of HSAN and highlights the importance of genetic testing for accurate diagnosis and future screening.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Irmãos , Proteína Quinase 1 Deficiente de Lisina WNK , Humanos , Masculino , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Adulto , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Códon sem Sentido , Linhagem , Adulto Jovem
2.
BMJ Case Rep ; 17(10)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39357918

RESUMO

We present a case of a male term neonate with lethargy, hypotonia, hypoventilation and severe encephalopathy. The infant had a history of two siblings who died in the neonatal period from unclear causes. The infant exhibited skin and hair abnormalities, including desquamation of the extremities, angular stomatitis, cheilitis, neonatal acne and thin, sparse hair. Additionally, the infant had a tall stature; long, slender fingers and toes; and facial dysmorphism characterised by a long, narrow face with increased interpalpebral distance. The condition deteriorated rapidly, and unfortunately, death occurred before a definitive diagnosis could be established. Tandem mass spectrometry suggested low methionine and clinical exome sequencing identified a nonsense mutation in the MTHFR gene.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , Humanos , Masculino , Recém-Nascido , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Evolução Fatal , Alopecia/genética , Alopecia/diagnóstico , Encefalopatias/genética , Encefalopatias/diagnóstico , Códon sem Sentido , Mutação
3.
BMJ Case Rep ; 17(10)2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39455078

RESUMO

A female toddler presented with short stature and hypermobility of limbs. She had sustained five long bone fractures following minor trauma since early infancy. Skeletal survey was consistent with osteogenesis imperfecta. This was genetically proven on clinical exome analysis, which revealed a pathogenic homozygous autosomal recessive P3H1 nonsense mutation. She has been started on cyclical pamidronate infusion therapy. We have demonstrated an extremely rare case of non-lethal osteogenesis imperfecta VIII due to P3H1 mutation.


Assuntos
Homozigoto , Osteogênese Imperfeita , Pamidronato , Humanos , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/tratamento farmacológico , Feminino , Pamidronato/uso terapêutico , Ciclofilinas/genética , Conservadores da Densidade Óssea/uso terapêutico , Códon sem Sentido , Mutação , Pré-Escolar , Glicoproteínas de Membrana , Proteoglicanas , Prolil Hidroxilases
4.
Database (Oxford) ; 20242024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39395187

RESUMO

Nonsense variations, characterized by premature termination codons, play a major role in human genetic diseases as well as in cancer susceptibility. Despite their high prevalence, effective therapeutic strategies targeting premature termination codons remain a challenge. To understand and explore the intricate mechanisms involved, we developed StopKB, a comprehensive knowledgebase aggregating data from multiple sources on nonsense variations, associated genes, diseases, and phenotypes. StopKB identifies 637 317 unique nonsense variations, distributed across 18 022 human genes and linked to 3206 diseases and 7765 phenotypes. Notably, ∼32% of these variations are classified as nonsense-mediated mRNA decay-insensitive, potentially representing suitable targets for nonsense suppression therapies. We also provide an interactive web interface to facilitate efficient and intuitive data exploration, enabling researchers and clinicians to navigate the complex landscape of nonsense variations. StopKB represents a valuable resource for advancing research in precision medicine and more specifically, the development of targeted therapeutic interventions for genetic diseases associated with nonsense variations. Database URL: https://lbgi.fr/stopkb/.


Assuntos
Códon sem Sentido , Bases de Dados Genéticas , Bases de Conhecimento , Humanos , Códon sem Sentido/genética , Degradação do RNAm Mediada por Códon sem Sentido , Fenótipo
5.
Sci Rep ; 14(1): 25368, 2024 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-39455674

RESUMO

The determinate growth habit of plants reduces the number of internodes and shortens the main stem by terminating the shoot apical meristem through a transition to inflorescence. Understanding the genetic basis of this habit can help optimize crop yield and cultivation technology for vegetable breeding. This study aimed to identify the determinate-2 (de-2) gene responsible for the determinate growth habit in the W-sk cucumber line. Termination of the main stem in the W-sk line occurred between 14 and 23 internodes, depending on cultivation conditions. Resequencing of the W-sk genome identified a novel SNP in the cucumber TERMINAL FLOWER1 (CsTFL1) gene, explaining the de-2 phenotype. This was verified with a CAPS-T marker cosegregation with determinate growth in the F2:3 population, and this polymorphism is unique among genotyped indeterminate cucumber cultivars or breeding lines. Crossing the W-sk line with the G421 line with the determinate (de) gene confirmed the allelism of both genes. An SNP in CsTFL1 in the W-sk line introduced a premature stop codon, resulting in the putative deletion of 13 amino acids, possibly causing determinate growth habit. Overall, this study provides insights into the genetic basis of cucumber plant growth architecture and advances in cucumber breeding.


Assuntos
Códon sem Sentido , Cucumis sativus , Fenótipo , Polimorfismo de Nucleotídeo Único , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Códon sem Sentido/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal/métodos
6.
Sci Rep ; 14(1): 25669, 2024 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-39463394

RESUMO

The phenotypes of RP1-related inherited retinal dystrophies (RP1-IRD), causing autosomal dominant (AD) and autosomal recessive (AR) diseases, vary depending on specific RP1 variants. A common nonsense mutation near the C-terminus, c.5797 C > T (p.Arg1933*), is associated with RP1-IRD, but the exact role of this mutation in genotype-phenotype correlation remains unclear. In this study, we retrospectively analyzed patients with RP1-IRD (N = 42) from a single center in Japan. AR RP1-IRD patients with the c.5797 C > T mutation (N = 14) mostly displayed macular dystrophy but rarely retinitis pigmentosa or cone-rod dystrophy. Conversely, AR RP1-IRD patients without the c.5797 C > T mutation, including those with other pathogenic RP1 variants, were mostly diagnosed with severe retinitis pigmentosa. Full-field electroretinograms were significantly better in patients homozygous or compound heterozygous for the c.5797 C > T mutation than in those without this mutation, corresponding to their milder phenotypes. Clinical tests also revealed a slower onset of age and a better mean deviation value with the static visual field in AR RP1-IRD patients with the c.5797 C > T mutation compared to those without. Therefore, the presence of c.5797 C > T may partly account for the phenotypic variety of RP1-IRD and may yield milder phenotypes. These findings may be useful for predicting the prognosis of RP1-IRD patients.


Assuntos
Proteínas do Olho , Fenótipo , Distrofias Retinianas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Japão , Proteínas do Olho/genética , Distrofias Retinianas/genética , Estudos Retrospectivos , Eletrorretinografia , Estudos de Associação Genética , Idoso , Adolescente , Adulto Jovem , Retinose Pigmentar/genética , Mutação , Códon sem Sentido , Criança , Povo Asiático/genética , Distrofias de Cones e Bastonetes/genética , População do Leste Asiático , Proteínas Associadas aos Microtúbulos
7.
Int J Gynecol Pathol ; 43(6): 646-651, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39418588

RESUMO

SMARCB1/SMARCA4-deficient malignancies of the female genital tract are rare entities, characterized by similar histologic features, such as sheet-like growth patterns and rhabdoid cells. Previous studies have shown mutually exclusive loss of SMARCA4/BRG1 and SMARCB1/INI1. Herein, we describe a unique cervical mixed carcinoma in a 77-year-old patient. The tumor consisted of 3 components, gastric-type adenocarcinoma, squamous carcinoma, and undifferentiated carcinoma. While the undifferentiated carcinoma was negtive for CK7, CK5/6 and p63, it was positive for pan-CK. DNA-based next-generation sequencing revealed a nonsense mutation in SMARCA4, copy number loss in SMARCB1, and a nonsense mutation in ARID1A. Different molecular alterations of the switch/sucrose nonfermenting complex subunits in the present case may provide further insights into the functions of the switch/sucrose nonfermenting complex in the progression of tumors.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , Proteínas Nucleares , Proteína SMARCB1 , Fatores de Transcrição , Neoplasias do Colo do Útero , Humanos , Feminino , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Idoso , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Códon sem Sentido , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo
8.
Genes (Basel) ; 15(10)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39457432

RESUMO

Eukaryotic cells possess surveillance mechanisms that detect and degrade defective transcripts. Aberrant transcripts include mRNAs with a premature termination codon (PTC), targeted by the nonsense-mediated decay (NMD) pathway, and mRNAs lacking a termination codon, targeted by the nonstop decay (NSD) pathway. The eukaryotic exosome, a ribonucleolytic complex, plays a crucial role in mRNA processing and turnover through its catalytic subunits PM/Scl100 (Rrp6 in yeast), DIS3 (Rrp44 in yeast), and DIS3L1. Additionally, eukaryotic cells have other ribonucleases, such as SMG6 and XRN1, that participate in RNA surveillance. However, the specific pathways through which ribonucleases recognize and degrade mRNAs remain elusive. In this study, we characterized the involvement of human ribonucleases, both nuclear and cytoplasmic, in the mRNA surveillance mechanisms of NMD and NSD. We performed knockdowns of SMG6, PM/Scl100, XRN1, DIS3, and DIS3L1, analyzing the resulting changes in mRNA levels of selected natural NMD targets by RT-qPCR. Additionally, we examined the levels of different human ß-globin variants under the same conditions: wild-type, NMD-resistant, NMD-sensitive, and NSD-sensitive. Our results demonstrate that all the studied ribonucleases are involved in the decay of certain endogenous NMD targets. Furthermore, we observed that the ribonucleases SMG6 and DIS3 contribute to the degradation of all ß-globin variants, with an exception for ßNS in the former case. This is also the case for PM/Scl100, which affects all ß-globin variants except the NMD-sensitive variants. In contrast, DIS3L1 and XRN1 show specificity for ß-globin WT and NMD-resistant variants. These findings suggest that eukaryotic ribonucleases are target-specific rather than pathway-specific. In addition, our data suggest that ribonucleases play broader roles in mRNA surveillance and degradation mechanisms beyond just NMD and NSD.


Assuntos
Exorribonucleases , Complexo Multienzimático de Ribonucleases do Exossomo , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro , Humanos , Exorribonucleases/metabolismo , Exorribonucleases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Códon sem Sentido/genética , Células HeLa , Estabilidade de RNA/genética , Ribonucleases/genética , Ribonucleases/metabolismo , Endorribonucleases , Proteínas Associadas aos Microtúbulos , Proteínas de Ligação ao GTP
9.
Zool Res ; 45(5): 1073-1087, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39245651

RESUMO

Infertility represents a significant health concern, with sperm quantity and quality being crucial determinants of male fertility. Oligoasthenoteratozoospermia (OAT) is characterized by reduced sperm motility, lower sperm concentration, and morphological abnormalities in sperm heads and flagella. Although variants in several genes have been implicated in OAT, its genetic etiologies and pathogenetic mechanisms remain inadequately understood. In this study, we identified a homozygous nonsense mutation (c.916C>T, p.Arg306*) in the coiled-coil domain containing 146 ( CCDC146) gene in an infertile male patient with OAT. This mutation resulted in the production of a truncated CCDC146 protein (amino acids 1-305), retaining only two out of five coiled-coil domains. To validate the pathogenicity of the CCDC146 mutation, we generated a mouse model ( Ccdc146 mut/mut ) with a similar mutation to that of the patient. Consistently, the Ccdc146 mut/mut mice exhibited infertility, characterized by significantly reduced sperm counts, diminished motility, and multiple defects in sperm heads and flagella. Furthermore, the levels of axonemal proteins, including DNAH17, DNAH1, and SPAG6, were significantly reduced in the sperm of Ccdc146 mut/mut mice. Additionally, both human and mouse CCDC146 interacted with intraflagellar transport protein 20 (IFT20), but this interaction was lost in the mutated versions, leading to the degradation of IFT20. This study identified a novel deleterious homozygous nonsense mutation in CCDC146 that causes male infertility, potentially by disrupting axonemal protein transportation. These findings offer valuable insights for genetic counseling and understanding the mechanisms underlying CCDC146 mutant-associated infertility in human males.


Assuntos
Astenozoospermia , Proteínas Associadas aos Microtúbulos , Animais , Humanos , Masculino , Camundongos , Astenozoospermia/genética , Códon sem Sentido , Homozigoto , Infertilidade Masculina/genética , Mutação , Oligospermia/genética , Motilidade dos Espermatozoides/genética , Espermatozoides , Proteínas Associadas aos Microtúbulos/genética
10.
Arch Pediatr ; 31(7): 470-472, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39261201

RESUMO

Congenital central hypoventilation syndrome (CCHS) is a rare genetic disorder of the autonomic nervous system resulting in decreased brain sensitivity to hypercapnia and hypoxia characterized by a genetic abnormality in the pair-like homeobox 2B (PHOX2B) gene. Most patients have a heterozygous expansion of the polyalanine repeat in exon 3 (PARM), while 10 % of patients have non-PARM (NPARM) mutations that can span the entire gene. The majority of pathogenic variants are de novo, but variants with incomplete penetrance can be identified in the heterozygous state. In the present report, CCHS was diagnosed in a symptomatic 3-month-old infant with neonatal respiratory distress. Genetic analysis revealed a new mutation in exon 1 of the PHOX2B gene - p.Ser28* (c.83C>G) - which was further identified in two family members, one minimally symptomatic and one asymptomatic. The identification of this new mutation supports the importance of sequencing the entire gene even when the classic PARM mutation is not found and highlights the phenotypic variability of CCHS.


Assuntos
Códon sem Sentido , Éxons , Proteínas de Homeodomínio , Hipoventilação , Apneia do Sono Tipo Central , Fatores de Transcrição , Humanos , Proteínas de Homeodomínio/genética , Hipoventilação/genética , Hipoventilação/congênito , Hipoventilação/diagnóstico , Fatores de Transcrição/genética , Apneia do Sono Tipo Central/genética , Apneia do Sono Tipo Central/diagnóstico , Lactente , Masculino , Feminino , Éxons/genética , Linhagem
11.
J Diabetes ; 16(9): e13607, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39264012

RESUMO

Highlights Maturity-onset diabetes of the young type 6 (MODY6) is a rare form of monogenic diabetes mellitus due to NEUROD1 gene mutation on chromosome 2q32. A 21-year-old woman exhibiting weight loss, polyuria, and hyperglycemia was initially misdiagnosed with type 1 diabetes mellitus. Considering the early-onset age, a three-generation family history of diabetes, and negative autoimmune antibodies, a MODY diagnosis was suspected. Genetic analysis revealed that she inherited a novel heterozygous nonsense NEUROD1 mutation c.747C>G (p.Tyr249*) from her father. Correct MODY6 diagnosis facilitates appropriate interventions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Códon sem Sentido , Diabetes Mellitus Tipo 2 , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , China , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , População do Leste Asiático/genética , Linhagem
12.
BMC Med Genomics ; 17(1): 223, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232784

RESUMO

Distal hereditary motor neuropathies (dHMN) are a group of heterogeneous diseases and previous studies have reported that the compound heterozygous recessive MME variants cause dHMN. Our study found a novel homozygous MME variant and a reported compound heterozygous MME variant in two Chinese families, respectively. Next-generation sequencing and nerve conduction studies were performed for two probands. The probands in two families presented with the muscle weakness and wasting of both lower limbs and carried a c.2122 A > T (p.K708*) and c.1342 C > T&c.2071_2072delinsTT (p.R448*&p.A691L) variant, respectively. Prominently axonal impairment of motor nerves and slight involvement of sensory nerves were observed in nerve conduction study. Our study reported a "novel" nonsense mutation and a missense variant of autosomal recessive late-onset dHMN and reviewed reported MME variants associated with dHMN phenotype.


Assuntos
Neuropatia Hereditária Motora e Sensorial , Neprilisina , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Idade de Início , Alelos , China , Códon sem Sentido , População do Leste Asiático/genética , Genes Recessivos , Neuropatia Hereditária Motora e Sensorial/genética , Linhagem , Neprilisina/genética
13.
BMC Med Genomics ; 17(1): 236, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334371

RESUMO

BACKGROUND: Defects in PPP1R12A can lead to genitourinary and/or brain malformation syndrome (GUBS). GUBS is primarily characterized by neurological or genitourinary system abnormalities, but a few reported cases are associated with neonatal seizures. Here, we report a case of a female newborn with neonatal seizures caused by a novel variant in PPP1R12A, aiming to enhance the clinical and variant data of genetic factors related to epilepsy in early life. METHODS: Whole-exome and Sanger sequencing were used for familial variant assessment, and bioinformatics was employed to annotate the variant. A structural model of the mutant protein was simulated using molecular dynamics (MD), and the free binding energy between PPP1R12A and PPP1CB was analyzed. A mutant plasmid was constructed, and mutant protein expression was analyzed using western blotting (WB), and the interaction between the mutant and PPP1CB proteins using co-immunoprecipitation (Co-IP) experiments. RESULTS: The patient experienced tonic-clonic seizures on the second day after birth. Genetic testing revealed a heterozygous variant in PPP1R12A, NM_002480.3:c.2533 C > T (p.Arg845Ter). Both parents had the wild-type gene. MD suggested that loss of the C-terminal structure in the mutant protein altered its structural stability and increased the binding energy with PPP1CB, indicating unstable protein-protein interactions. On WB, a low-molecular-weight band was observed, indicating that the protein was truncated. Co-IP indicated that the mutant protein no longer interacted with PPP1CB, indicating an effect on the structural stability of the myosin phase complex. CONCLUSION: The PPP1R12A c.2533 C > T variant may explain the neonatal seizures in the present case. The findings of this study expand the spectrum of PPP1R12A variants and highlight the potential significance of truncated proteins in the pathogenesis of GUBS.


Assuntos
Códon sem Sentido , Epilepsia , Fosfatase de Miosina-de-Cadeia-Leve , Feminino , Humanos , Recém-Nascido , Masculino , População do Leste Asiático/genética , Epilepsia/genética , Linhagem , Proteína Fosfatase 1/genética , Fosfatase de Miosina-de-Cadeia-Leve/genética
14.
Sci Rep ; 14(1): 21215, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261511

RESUMO

Advances in next-generation sequencing technologies have led to elucidation of sensorineural hearing loss genetics and associated clinical impacts. However, studies on the functional pathogenicity of variants of uncertain significance (VUS), despite their close association with clinical phenotypes, are lacking. Here we identified compound heterozygous variants in ESRRB transcription factor gene linked to DFNB35, specifically a novel splicing variant (NM_004452.4(ESRRB): c.397 + 2T>G) in trans with a missense variant (NM_004452.4(ESRRB): c.1144C>T p.(Arg382Cys)) whose pathogenicity remains unclear. The splicing variant (c.397 + 2T>G) caused exon 4 skipping, leading to premature stop codon formation and nonsense-mediated decay. The p.(Arg382Cys) variant was classified as a VUS due to its particularly higher allele frequency among East Asian population despite disease-causing in-silico predictions. However, functional assays showed that p.(Arg382Cys) variant disrupted key intramolecular interactions, leading to protein instability. This variant also reduced transcriptional activity and altered expression of downstream target genes essential for inner ear function, suggesting genetic contribution to disease phenotype. This study expanded the phenotypic and genotypic spectrum of ESRRB in DFNB35 and revealed molecular mechanisms underlying ESRRB-associated DFNB35. These findings suggest that variants with high allele frequencies can also possess functional pathogenicity, providing a breakthrough for cases where VUS, previously unexplored, could be reinterpreted by elucidating their functional roles and disease-causing characteristics.


Assuntos
Perda Auditiva Neurossensorial , Receptores de Estrogênio , Feminino , Humanos , Masculino , Códon sem Sentido/genética , Frequência do Gene , Predisposição Genética para Doença , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação de Sentido Incorreto , Linhagem , Splicing de RNA/genética , Receptores de Estrogênio/genética
15.
Stem Cell Reports ; 19(10): 1489-1504, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39270650

RESUMO

Translating genetic findings for neurodevelopmental and psychiatric disorders (NPDs) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop codons (iSTOP) that lead to mRNA nonsense-mediated decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 genes. Using RNA sequencing (RNA-seq), we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Despite high editing efficiency, three schizophrenia risk genes (SETD1A, TRIO, and CUL1) only had heterozygous LoF alleles, suggesting their essential roles for cell growth. We found that CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.


Assuntos
Alelos , Células-Tronco Pluripotentes Induzidas , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Transtornos do Neurodesenvolvimento/genética , Transtornos Mentais/genética , Edição de Genes , Degradação do RNAm Mediada por Códon sem Sentido , Mutagênese , Códon sem Sentido , Predisposição Genética para Doença , Sistemas CRISPR-Cas , Proteínas Culina/genética
16.
Artigo em Russo | MEDLINE | ID: mdl-39269294

RESUMO

OBJECTIVE: To analyze clinical and genetic characteristics of patients with the verified rare forms of autosomal recessive spinocerebellar ataxias, ATX-ANO10 and ATX-SYNE1. MATERIAL AND METHODS: Six unrelated patients with established diagnoses were examined: 4 patients with ATX-ANO10 and 2 patients with ATX-SYNE1. Brain MRI and nerve conduction study were performed. To screen for cognitive impairment, the scale for the Assessment and Rating of Ataxia (SARA), and the Montreal Cognitive Assessment Scale (MoCA) were used. Mutation screening included panel sequencing on the Illumina MiSeq platform. RESULTS: Six variants were found in the ANO10 gene: the previously described pathogenic nonsense mutations c.G1025A (p.W342X) and c.C1244G (p.S415X), as well as novel probably pathogenic variants c.1477-2A>G and c.G101T (p.W34L) and missense mutations c.A110C (p.N37T) and c.T104C (p.L35P) of undetermined significance. A novel nonsense mutation c.C8911T (p.Q2971X) and a previously described pathogenic variant c.C4939T (p.Q1647X) were found in the SYNE1 gene. The clinical presentation of the ATX-ANO10 and ATX-SYNE1 was typical presenting with slowly progressive cerebellar ataxia with pyramidal signs, with young onset and cerebellar atrophy according to brain MRI study. CONCLUSION: We provided first-ever data on clinical features and mutation spectrum In Russian patients with ATX-ANO10 and ATX-SYNE1. The phenotype of these ataxias is nonspecific, so the method of choice for molecular diagnostics is massive parallel sequencing.


Assuntos
Anoctaminas , Proteínas do Citoesqueleto , Proteínas do Tecido Nervoso , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico por imagem , Masculino , Feminino , Proteínas do Tecido Nervoso/genética , Adulto , Proteínas do Citoesqueleto/genética , Anoctaminas/genética , Mutação , Proteínas Nucleares/genética , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Códon sem Sentido , Mutação de Sentido Incorreto , Adolescente , Adulto Jovem
17.
Sci Rep ; 14(1): 18969, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152155

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease caused by loss of function mutations in the gene coding for collagen VII (C7) due to deficient or absent C7 expression. This disrupts structural and functional skin architecture, leading to blistering, chronic wounds, inflammation, important systemic symptoms affecting the mouth, gastrointestinal tract, cornea, and kidney function, and an increased skin cancer risk. RDEB patients have an extremely poor quality of life and often die at an early age. A frequent class of mutations in RDEB is premature termination codons (PTC), which appear in homozygosity or compound heterozygosity with other mutations. RDEB has no cure and current therapies are mostly palliative. Using patient-derived keratinocytes and a library of 8273 small molecules and 20,160 microbial extracts evaluated in a phenotypic screening interrogating C7 levels, we identified three active chemical series. Two of these series had PTC readthrough activity, and one upregulated C7 mRNA, showing synergistic activity when combined with the reference readthrough molecule gentamicin. These compounds represent novel potential small molecule-based systemic strategies that could complement topical-based treatments for RDEB.


Assuntos
Colágeno Tipo VII , Epidermólise Bolhosa Distrófica , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/tratamento farmacológico , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Humanos , Regulação para Cima/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Códon sem Sentido , Gentamicinas/farmacologia
18.
PLoS Genet ; 20(8): e1011363, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39150991

RESUMO

Many of the most highly conserved elements in the human genome are "poison exons," alternatively spliced exons that contain premature termination codons and permit post-transcriptional regulation of mRNA abundance through induction of nonsense-mediated mRNA decay (NMD). Poison exons are widely assumed to be highly conserved due to their presumed importance for organismal fitness, but this functional importance has never been tested in the context of a whole organism. Here, we report that a poison exon in Smndc1 is conserved across mammals and plants and plays a molecular autoregulatory function in both kingdoms. We generated mouse and A. thaliana models lacking this poison exon to find its loss leads to deregulation of SMNDC1 protein levels, pervasive alterations in mRNA processing, and organismal size restriction. Together, these models demonstrate the importance of poison exons for both molecular and organismal phenotypes that likely explain their extraordinary conservation.


Assuntos
Processamento Alternativo , Arabidopsis , Éxons , Degradação do RNAm Mediada por Códon sem Sentido , Animais , Humanos , Camundongos , Processamento Alternativo/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Códon sem Sentido/genética , Sequência Conservada , Éxons/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Medicine (Baltimore) ; 103(31): e39216, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093746

RESUMO

BACKGROUND: This study aims to report the clinical characteristics of a child with autosomal recessive polycystic kidney disease (ARPKD) within a Chinese Zhuang ethnic family. METHODS: We used whole exome sequencing (WES) in the family to examine the genetic cause of the disease. Candidate pathogenic variants were validated by Sanger sequencing. RESULTS: We identified previously unreported mutations in the PKHD1 gene of the proband with ARPKD through WES: a splice site mutation c.6809-2A > T, a nonsense mutation c.4192C > T(p.Gln1398Ter), and a missense mutation c.2181T > G(p.Asn727Lys). Her mother is a heterozygous carrier of c.2181T > G(p.Asn727Lys) mutation. Her father is a carrier of c.6809-2A > T mutation and c.4192C > T(p.Gln1398Ter) mutation. CONCLUSIONS: The identification of novel mutations in the PKHD1 gene through WES not only expands the spectrum of known variants but also potentially enhances genetic counseling and prenatal diagnostic approaches for families affected by ARPKD.


Assuntos
Códon sem Sentido , Linhagem , Rim Policístico Autossômico Recessivo , Receptores de Superfície Celular , Humanos , Rim Policístico Autossômico Recessivo/genética , Receptores de Superfície Celular/genética , Feminino , China , Masculino , Sequenciamento do Exoma , Sítios de Splice de RNA/genética , Mutação de Sentido Incorreto , Adulto , População do Leste Asiático
20.
RNA ; 30(10): 1277-1291, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39095083

RESUMO

The nonsense-mediated RNA decay (NMD) pathway is a crucial mechanism of mRNA quality control. Current annotations of NMD substrate RNAs are rarely data-driven, but use generally established rules. We present a data set with four cell lines and combinations for SMG5, SMG6, and SMG7 knockdowns or SMG7 knockout. Based on this data set, we implemented a workflow that combines Nanopore and Illumina sequencing to assemble a transcriptome, which is enriched for NMD target transcripts. Moreover, we use coding sequence information (CDS) from Ensembl, Gencode consensus Ribo-seq ORFs, and OpenProt to enhance the CDS annotation of novel transcript isoforms. In summary, 302,889 transcripts were obtained from the transcriptome assembly process, out of which 24% are absent from Ensembl database annotations, 48,213 contain a premature stop codon, and 6433 are significantly upregulated in three or more comparisons of NMD active versus deficient cell lines. We present an in-depth view of these results through the NMDtxDB database, which is available at https://shiny.dieterichlab.org/app/NMDtxDB, and supports the study of NMD-sensitive transcripts. We open sourced our implementation of the respective web-application and analysis workflow at https://github.com/dieterich-lab/NMDtxDB and https://github.com/dieterich-lab/nmd-wf.


Assuntos
Anotação de Sequência Molecular , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Bases de Dados Genéticas , Fases de Leitura Aberta/genética , Códon sem Sentido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...