Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.523
Filtrar
1.
Radiographics ; 44(11): e230239, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39446612

RESUMO

Malformations of cortical development (MCD) are structural anomalies that disrupt the normal process of cortical development. Patients with these anomalies frequently present with seizures, developmental delay, neurologic deficits, and cognitive impairment, resulting in a wide spectrum of neurologic outcomes. The severity and type of malformation, in addition to the genetic pathways of brain development involved, contribute to the observed variability. While neuroimaging plays a central role in identifying congenital anomalies in vivo, the precise definition and classification of cortical developmental defects have undergone significant transformations in recent years due to advances in molecular and genetic knowledge. The authors provide a concise overview of embryologic brain development, recently standardized nomenclature, and the categorization system for abnormalities in cortical development, offering valuable insights into the interpretation of their neuroradiologic patterns. ©RSNA, 2024 Supplemental material is available for this article. The slide presentation from the RSNA Annual Meeting is available for this article.


Assuntos
Malformações do Desenvolvimento Cortical , Neuroimagem , Humanos , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Neuroimagem/métodos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/anormalidades , Córtex Cerebral/embriologia , Imageamento por Ressonância Magnética/métodos
2.
Cell Rep ; 43(10): 114814, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39378153

RESUMO

Fate determination of neural stem cells (NSCs) is crucial for cortex development and is closely linked to neurodevelopmental disorders when gene expression networks are disrupted. The transcriptional corepressor chromodomain Y-like (CDYL) is widely expressed across diverse cell populations within the human embryonic cortex. However, its precise role in cortical development remains unclear. Here, we show that CDYL is critical for human cortical neurogenesis and that its deficiency leads to a substantial increase in gamma-aminobutyric acid (GABA)-ergic neurons in cortical organoids. Subsequently, neuronatin (NNAT) is identified as a significant target of CDYL, and its abnormal expression obviously influences the fate commitment of cortical NSCs. Cross-species comparisons of CDYL targets unravel a distinct developmental trajectory between human cortical organoids and the mouse cortex at an analogous stage. Collectively, our data provide insight into the evolutionary roles of CDYL in human cortex development, emphasizing its critical function in maintaining the fate of human cortical NSCs.


Assuntos
Proteínas do Tecido Nervoso , Células-Tronco Neurais , Neurogênese , Organoides , Prosencéfalo , Humanos , Organoides/metabolismo , Animais , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Prosencéfalo/metabolismo , Prosencéfalo/citologia , Prosencéfalo/embriologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Neurônios GABAérgicos/metabolismo , Diferenciação Celular
3.
Commun Biol ; 7(1): 1366, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39433948

RESUMO

microRNAs are crucial regulators of brain development, however, miRNA regulatory networks are not sufficiently well characterized. By performing small RNA-seq of the mouse embryonic cortex at E14, E17, and P0 as well as in neural progenitor cells and neurons, here we detected clusters of miRNAs that were co-regulated at distinct developmental stages. miRNAs such as miR-92a/b acted as hubs during early, and miR-124 and miR-137 during late neurogenesis. Notably, validated targets of P0 hub miRNAs were enriched for downregulated genes related to stem cell proliferation, negative regulation of neuronal differentiation and RNA splicing, among others, suggesting that miRNAs are particularly important for modulating transcriptional programs of crucial factors that guide the switch to neuronal differentiation. As most genes contain binding sites for more than one miRNA, we furthermore constructed a co-targeting network where numerous miRNAs shared more targets than expected by chance. Using luciferase reporter assays, we demonstrated that simultaneous binding of miRNA pairs to neurodevelopmentally relevant genes exerted an enhanced transcriptional silencing effect compared to single miRNAs. Taken together, we provide a comprehensive resource of miRNA longitudinal expression changes during murine corticogenesis. Furthermore, we highlight several potential mechanisms through which miRNA regulatory networks can shape embryonic brain development.


Assuntos
Córtex Cerebral , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Córtex Cerebral/metabolismo , Córtex Cerebral/embriologia , Camundongos , Neurogênese/genética , Células-Tronco Neurais/metabolismo , Redes Reguladoras de Genes , Neurônios/metabolismo , Perfilação da Expressão Gênica
4.
Eur J Obstet Gynecol Reprod Biol ; 302: 254-261, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39340893

RESUMO

AIM: We aimed to establish normal reference ranges for insula, sylvian fissure (SF), parieto-occipital fissure (POF), and calcarine fissure (CF) measured by prenatal ultrasonography (USG) between 20-24 weeks of gestation in healthy fetuses. METHOD: A total of 186 fetuses in the second trimester were evaluated by transabdominal USG. All measurements were obtained by a single clinician. The study was divided into four subgroups (Group A: 20-20 weeks six days, Group B: 21-21 weeks six days, Group C: 22-22 weeks six days, Group D: 23-23 weeks six days). RESULTS: Eight fetuses (4.23 %) between 20 and 21 weeks of gestation could not be included in the study because the sulcus borders could not be clearly evaluated. Measurements were obtained in all fetuses over 21 weeks of gestation. Reference ranges were obtained for insula, SF, POF, and CF in all fetuses and subgroups. At 20 and 23 weeks and six days gestation, mean insula depth was 14.96 ± 1.62 mm (min 11.0 mm - max 18.9 mm), mean SF depth was 6.96 ± 1.35 mm (min 3.6 mm - max 10.0 mm), mean POF depth was 2.05 ± 0.66 mm (min 1.1 mm - max 5.6 mm) and mean CF depth was 2.42 ± 0.68 mm (min 1.5 mm - 6.1 mm). There was a correlation between the cerebellum and cisterna magna and all fissure depths. CONCLUSION: Our nomograms of healthy fetuses may be helpful in the early detection of cortical maturation abnormalities.


Assuntos
Segundo Trimestre da Gravidez , Ultrassonografia Pré-Natal , Humanos , Feminino , Gravidez , Valores de Referência , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/embriologia , Idade Gestacional , Adulto Jovem
5.
Proc Natl Acad Sci U S A ; 121(40): e2402368121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312666

RESUMO

There is evidence that transcription factor (TF) encoding genes, which temporally control development in multiple cell types, can have tens of enhancers that regulate their expression. The NR2F1 TF developmentally promotes caudal and ventral cortical regional fates. Here, we epigenomically compared the activity of Nr2f1's enhancers during mouse cortical development with their activity in a transgenic assay. We identified at least six that are likely to be important in prenatal cortical development, with three harboring de novo mutants identified in ASD individuals. We chose to study the function of two of the most robust enhancers by deleting them singly or together. We found that they have distinct and overlapping functions in driving Nr2f1's regional and laminar expression in the developing cortex. Thus, these two enhancers, probably in combination with the others that we defined epigenetically, precisely tune Nr2f1's regional, cell type, and temporal expression during corticogenesis.


Assuntos
Fator I de Transcrição COUP , Córtex Cerebral , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Fator I de Transcrição COUP/metabolismo , Fator I de Transcrição COUP/genética , Camundongos , Córtex Cerebral/metabolismo , Córtex Cerebral/embriologia , Camundongos Transgênicos , Humanos , Feminino
6.
Medicina (B Aires) ; 84 Suppl 3: 32-38, 2024 Sep.
Artigo em Espanhol | MEDLINE | ID: mdl-39331773

RESUMO

Malformations of cortical development (MCDs) are structural abnormalities that disrupt the normal process of cortical development in utero. MCDs include microcephaly with simplified gyral pattern/microlyssencephaly, hemimegalencephaly, focal cortical dysplasia, lissencephaly, heterotopia, polymicrogyria, and schizencephaly. The debut of MCD can be with pharmacoresistant epilepsy, developmental delay, neurologic deficits, or cognitive impairment. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and etiology. Although the definitive diagnosis of MCD depends on histopathology, neuroimages have an important role in this process. Furthermore, knowing the disturbance of the molecular pathway involved is important. Increased understanding of the molecular biology and recent advances in genetic testing have caused rapid growth in the knowledge of the genetic causes of MCDs, allowing for information on prognosis, recurrence risk, and prediction of treatment outcomes.


Las malformaciones del desarrollo cortical (MDC) son alteraciones estructurales que interrumpen el proceso normal de desarrollo cortical in utero. Se incluyen la microcefalia, con patrón giral simplificado/microlisencefalia, hemimegalencefalia, displasia cortical focal, lisencefalia, heterotopía, polimicrogiria y esquizencefalia. Se presentan con epilepsia farmacorresistente, retraso del desarrollo, déficit neurológico o compromiso cognitivo. El diagnóstico es complejo debido a la amplia variedad en su presentación y etiología. Aunque el diagnóstico definitivo es por anatomía patológica, las neuroimágenes cumplen un rol fundamental. Además, es sumamente importante conocer la alteración en el mecanismo molecular involucrado en la fisiopatogenia de la malformación. El creciente desarrollo de la biología molecular y de los estudios genéticos han mejorado el conocimiento de las causas genéticas de las MDC. Esto permitirá mejorar el pronóstico, consejo genético y probablemente las opciones terapéuticas.


Assuntos
Malformações do Desenvolvimento Cortical , Humanos , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Imageamento por Ressonância Magnética , Córtex Cerebral/anormalidades , Córtex Cerebral/embriologia
7.
Elife ; 132024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259197

RESUMO

The emergence of myelinating oligodendrocytes represents a pivotal developmental milestone in vertebrates, given their capacity to ensheath axons and facilitate the swift conduction of action potentials. It is widely accepted that cortical oligodendrocyte progenitor cells (OPCs) arise from medial ganglionic eminence (MGE), lateral/caudal ganglionic eminence (LGE/CGE), and cortical radial glial cells (RGCs). Here, we used two different fate mapping strategies to challenge the established notion that the LGE generates cortical OPCs. Furthermore, we used a Cre/loxP-dependent exclusion strategy to reveal that the LGE/CGE does not give rise to cortical OPCs. Additionally, we showed that specifically eliminating MGE-derived OPCs leads to a significant reduction of cortical OPCs. Together, our findings indicate that the LGE does not generate cortical OPCs, contrary to previous beliefs. These findings provide a new view of the developmental origins of cortical OPCs and a valuable foundation for future research on both normal development and oligodendrocyte-related disease.


Assuntos
Córtex Cerebral , Oligodendroglia , Animais , Oligodendroglia/fisiologia , Oligodendroglia/citologia , Camundongos , Córtex Cerebral/embriologia , Córtex Cerebral/fisiologia , Córtex Cerebral/citologia , Células Precursoras de Oligodendrócitos/fisiologia , Células Precursoras de Oligodendrócitos/citologia , Diferenciação Celular , Eminência Ganglionar
8.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39250533

RESUMO

The cell-intrinsic mechanisms underlying the decision of a stem/progenitor cell to either proliferate or differentiate remain incompletely understood. Here, we identify the transmembrane protein Lrig1 as a physiological homeostatic regulator of FGF2-driven proliferation and self-renewal of neural progenitors at early-to-mid embryonic stages of cortical development. We show that Lrig1 is expressed in cortical progenitors (CPs), and its ablation caused expansion and increased proliferation of radial/apical progenitors and of neurogenic transit-amplifying Tbr2+ intermediate progenitors. Notably, our findings identify a previously unreported EGF-independent mechanism through which Lrig1 negatively regulates neural progenitor proliferation by modulating the FGF2-induced IL6/Jak2/Stat3 pathway, a molecular cascade that plays a pivotal role in the generation and maintenance of CPs. Consistently, Lrig1 knockout mice showed a significant increase in the density of pyramidal glutamatergic neurons placed in superficial layers 2 and 3 of the postnatal neocortex. Together, these results support a model in which Lrig1 regulates cortical neurogenesis by influencing the cycling activity of a set of progenitors that are temporally specified to produce upper layer glutamatergic neurons.


Assuntos
Janus Quinase 2 , Glicoproteínas de Membrana , Camundongos Knockout , Células-Tronco Neurais , Neurogênese , Neurônios , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Janus Quinase 2/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Camundongos , Neurogênese/genética , Neurônios/metabolismo , Neurônios/citologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Proliferação de Células , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Diferenciação Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas do Tecido Nervoso
9.
PLoS Biol ; 22(8): e3002751, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39137170

RESUMO

ADP ribosylation factor-like GTPase 2 (Arl2) is crucial for controlling mitochondrial fusion and microtubule assembly in various organisms. Arl2 regulates the asymmetric division of neural stem cells in Drosophila via microtubule growth. However, the function of mammalian Arl2 during cortical development was unknown. Here, we demonstrate that mouse Arl2 plays a new role in corticogenesis via regulating microtubule growth, but not mitochondria functions. Arl2 knockdown (KD) leads to impaired proliferation of neural progenitor cells (NPCs) and neuronal migration. Arl2 KD in mouse NPCs significantly diminishes centrosomal microtubule growth and delocalization of centrosomal proteins Cdk5rap2 and γ-tubulin. Moreover, Arl2 physically associates with Cdk5rap2 by in silico prediction using AlphaFold multimer, which was validated by co-immunoprecipitation and proximity ligation assay. Remarkably, Cdk5rap2 overexpression significantly rescues the neurogenesis defects caused by Arl2 KD. Therefore, Arl2 plays an important role in mouse cortical development through microtubule growth via the centrosomal protein Cdk5rap2.


Assuntos
Proteínas de Ciclo Celular , Centrossomo , Microtúbulos , Proteínas do Tecido Nervoso , Células-Tronco Neurais , Neurogênese , Animais , Microtúbulos/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Neurogênese/genética , Células-Tronco Neurais/metabolismo , Centrossomo/metabolismo , Proliferação de Células , Movimento Celular , Córtex Cerebral/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Tubulina (Proteína)/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética
10.
Mol Biol Cell ; 35(10): ar129, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39167527

RESUMO

Nde1 is a cytoplasmic dynein regulatory protein with important roles in vertebrate brain development. One noteworthy function is in the nuclear oscillatory behavior in neural progenitor cells, the control and mechanism of which remain poorly understood. Nde1 contains multiple phosphorylation sites for the cell cycle-dependent protein kinase CDK1, though the function of these sites is not well understood. To test their role in brain development, we expressed phosphorylation-state mutant forms of Nde1 in embryonic rat brains using in utero electroporation. We find that Nde1 T215 and T243 phosphomutants block apical interkinetic nuclear migration (INM) and, consequently, mitosis in radial glial progenitor cells. Another Nde1 phosphomutant at T246 also interfered with mitotic entry without affecting INM, suggesting a more direct role for Nde1 T246 in mitotic regulation. We also found that the Nde1 S214F mutation, which is associated with schizophrenia, inhibits Cdk5 phosphorylation at an adjacent residue which causes alterations in neuronal lamination. These results together identify important new roles for Nde1 phosphorylation in neocortical development and disease, and represent the first evidence for Nde1 phosphorylation roles in INM and neuronal lamination.


Assuntos
Núcleo Celular , Quinase 5 Dependente de Ciclina , Proteínas Associadas aos Microtúbulos , Mitose , Animais , Fosforilação , Ratos , Quinase 5 Dependente de Ciclina/metabolismo , Núcleo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Proteína Quinase CDC2/metabolismo , Movimento Celular , Córtex Cerebral/metabolismo , Córtex Cerebral/embriologia , Células-Tronco Neurais/metabolismo , Mutação/genética , Humanos , Neurogênese/fisiologia , Células Ependimogliais/metabolismo , Ratos Sprague-Dawley
11.
Development ; 151(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39189593

RESUMO

It is well known that the human cortex is expanded compared with other mammalian species, but the molecular mechanisms underpinning the evolution of human corticogenesis are not well understood. A new paper in Development takes a novel computational approach to screen for genetic changes that could have played an important role in human brain evolution. To learn more about the story behind the paper, we caught up with first author Juan Moriano and corresponding author Cedric Boeckx, a Research Professor at Catalan Institute for Research and Advanced Studies (ICREA).


Assuntos
Evolução Biológica , Humanos , Animais , História do Século XXI , Córtex Cerebral/embriologia , História do Século XX , Encéfalo/embriologia , Encéfalo/metabolismo
12.
J Neurosci ; 44(29)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38844343

RESUMO

During the second-to-third trimester, the neuronal pathways of the fetal brain experience rapid development, resulting in the complex architecture of the interwired network at birth. While diffusion MRI-based tractography has been employed to study the prenatal development of structural connectivity network (SCN) in preterm neonatal and postmortem fetal brains, the in utero development of SCN in the normal fetal brain remains largely unknown. In this study, we utilized in utero dMRI data from human fetuses of both sexes between 26 and 38 gestational weeks to investigate the developmental trajectories of the fetal brain SCN, focusing on intrahemispheric connections. Our analysis revealed significant increases in global efficiency, mean local efficiency, and clustering coefficient, along with significant decrease in shortest path length, while small-worldness persisted during the studied period, revealing balanced network integration and segregation. Widespread short-ranged connectivity strengthened significantly. The nodal strength developed in a posterior-to-anterior and medial-to-lateral order, reflecting a spatiotemporal gradient in cortical network connectivity development. Moreover, we observed distinct lateralization patterns in the fetal brain SCN. Globally, there was a leftward lateralization in network efficiency, clustering coefficient, and small-worldness. The regional lateralization patterns in most language, motor, and visual-related areas were consistent with prior knowledge, except for Wernicke's area, indicating lateralized brain wiring is an innate property of the human brain starting from the fetal period. Our findings provided a comprehensive view of the development of the fetal brain SCN and its lateralization, as a normative template that may be used to characterize atypical development.


Assuntos
Imagem de Difusão por Ressonância Magnética , Rede Nervosa , Terceiro Trimestre da Gravidez , Humanos , Feminino , Masculino , Gravidez , Imagem de Difusão por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/embriologia , Rede Nervosa/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/embriologia , Segundo Trimestre da Gravidez , Vias Neurais/embriologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Feto/diagnóstico por imagem , Desenvolvimento Fetal/fisiologia , Imagem de Tensor de Difusão/métodos
13.
Neurobiol Dis ; 199: 106577, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38914171

RESUMO

Proper topographically organized neural connections between the thalamus and the cerebral cortex are mandatory for thalamus function. Thalamocortical (TC) fiber growth begins during the embryonic period and completes by the third trimester of gestation, so that human neonates at birth have a thalamus with a near-facsimile of adult functional parcellation. Whether congenital neocortical anomaly (e.g., lissencephaly) affects TC connection in humans is unknown. Here, via diffusion MRI fiber-tractography analysis of long-term formalin-fixed postmortem fetal brain diagnosed as lissencephaly in comparison with an age-matched normal one, we found similar topological patterns of thalamic subregions and of internal capsule parcellated by TC fibers. However, lissencephaly fetal brain showed white matter structural changes, including fewer/less organized TC fibers and optic radiations, and much less cortical plate invasion by TC fibers - particularly around the shallow central sulcus. Diffusion MRI fiber tractography of normal fetal brains at 15, 23, and 26 gestational weeks (GW) revealed dynamic volumetric change of each parcellated thalamic subregion, suggesting coupled developmental progress of the thalamus with the corresponding cortex. Moreover, from GW23 and GW26 normal fetal brains, TC endings in the cortical plate could be delineated to reflect cumulative progressive TC invasion of cortical plate. By contrast, lissencephaly brain showed a dramatic decrease in TC invasion of the cortical plate. Our study thus shows the feasibility of diffusion MRI fiber tractography in postmortem long-term formalin-fixed fetal brains to disclose the developmental progress of TC tracts coordinating with thalamic and neocortical growth both in normal and lissencephaly fetal brains at mid-gestational stage.


Assuntos
Córtex Cerebral , Imagem de Tensor de Difusão , Lisencefalia , Vias Neurais , Tálamo , Humanos , Tálamo/diagnóstico por imagem , Tálamo/patologia , Tálamo/embriologia , Córtex Cerebral/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/embriologia , Lisencefalia/patologia , Lisencefalia/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/embriologia , Imagem de Tensor de Difusão/métodos , Feto/patologia , Feto/diagnóstico por imagem , Idade Gestacional , Feminino , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/embriologia , Imagem de Difusão por Ressonância Magnética/métodos
14.
Sci Adv ; 10(23): eadn1640, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838158

RESUMO

Folding of the cerebral cortex is a key aspect of mammalian brain development and evolution, and defects are linked to severe neurological disorders. Primary folding occurs in highly stereotyped patterns that are predefined in the cortical germinal zones by a transcriptomic protomap. The gene regulatory landscape governing the emergence of this folding protomap remains unknown. We characterized the spatiotemporal dynamics of gene expression and active epigenetic landscape (H3K27ac) across prospective folds and fissures in ferret. Our results show that the transcriptomic protomap begins to emerge at early embryonic stages, and it involves cell-fate signaling pathways. The H3K27ac landscape reveals developmental cell-fate restriction and engages known developmental regulators, including the transcription factor Cux2. Manipulating Cux2 expression in cortical progenitors changed their proliferation and the folding pattern in ferret, caused by selective transcriptional changes as revealed by single-cell RNA sequencing analyses. Our findings highlight the key relevance of epigenetic mechanisms in defining the patterns of cerebral cortex folding.


Assuntos
Córtex Cerebral , Epigênese Genética , Furões , Regulação da Expressão Gênica no Desenvolvimento , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/embriologia , Furões/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Histonas/metabolismo , Histonas/genética , Redes Reguladoras de Genes
15.
Science ; 384(6698): eadh0559, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781390

RESUMO

Nucleotide changes in gene regulatory elements are important determinants of neuronal development and diseases. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 open chromatin regions, including thousands of sequences with cell type-specific accessibility and variants associated with brain gene regulation. In primary cells, we identified 46,802 active enhancer sequences and 164 variants that alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.


Assuntos
Córtex Cerebral , Neurogênese , Organoides , Humanos , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Cromatina/metabolismo , Cromatina/genética , Aprendizado Profundo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/genética , Neurônios/metabolismo , Organoides/metabolismo , Sequências Reguladoras de Ácido Nucleico , Regiões Promotoras Genéticas , Elementos Reguladores de Transcrição
16.
Trends Immunol ; 45(5): 327-328, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664101

RESUMO

Lawrence et al. report that fetal cortical boundaries are susceptible to morphogenetic stress that regulates a microglia state resembling postnatal, axon-tract associated microglia (ATM). This state performs a newfound function at these boundaries by preventing the formation of cavitary lesions, mediated in part by Spp1-regulated phagocytosis of fibronectin 1.


Assuntos
Microglia , Microglia/fisiologia , Animais , Humanos , Fagocitose , Córtex Cerebral/embriologia , Córtex Cerebral/citologia , Encéfalo/embriologia , Encéfalo/fisiologia , Fibronectinas/metabolismo
17.
Math Biosci ; 372: 109185, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561099

RESUMO

We have designed a stochastic model of embryonic neurogenesis in the mouse cerebral cortex, using the formalism of compound Poisson processes. The model accounts for the dynamics of different progenitor cell types and neurons. The expectation and variance of the cell number of each type are derived analytically and illustrated through numerical simulations. The effects of stochastic transition rates between cell types, and stochastic duration of the cell division cycle have been investigated sequentially. The model does not only predict the number of neurons, but also their spatial distribution into deeper and upper cortical layers. The model outputs are consistent with experimental data providing the number of neurons and intermediate progenitors according to embryonic age in control and mutant situations.


Assuntos
Córtex Cerebral , Células-Tronco Neurais , Neurogênese , Processos Estocásticos , Animais , Camundongos , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Neurogênese/fisiologia , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/citologia , Modelos Neurológicos , Neurônios/fisiologia , Neurônios/citologia
18.
Sci Rep ; 14(1): 9355, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654093

RESUMO

Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.


Assuntos
Córtex Cerebral , Transportadores de Ácidos Monocarboxílicos , Neurogênese , Organoides , RNA Mensageiro , Simportadores , Receptores alfa dos Hormônios Tireóideos , Feminino , Humanos , Gravidez , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/metabolismo , Organoides/metabolismo , Primeiro Trimestre da Gravidez/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Simportadores/genética , Simportadores/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética
19.
Glia ; 72(7): 1290-1303, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38506330

RESUMO

Astrocytes represent a diverse and morphologically complex group of glial cells critical for shaping and maintaining nervous system homeostasis, as well as responding to injuries. Understanding the origins of astroglial heterogeneity, originated from a limited number of progenitors, has been the focus of many studies. Most of these investigations have centered on protoplasmic and pial astrocytes, while the clonal relationship of fibrous astrocytes or juxtavascular astrocytes has remained relatively unexplored. In this study, we sought to elucidate the morphological diversity and clonal distribution of astrocytes across adult cortical layers, with particular emphasis on their ontogenetic origins. Using the StarTrack lineage tracing tool, we explored the characteristics of adult astroglial clones derived from single and specific progenitors at various embryonic stages. Our results revealed a heterogeneous spatial distribution of astroglial clones, characterized by variations in location, clonal size, and rostro-caudal dispersion. While a considerable proportion of clones were confined within specific cortical layers, others displayed sibling cells crossing layer boundaries. Notably, we observed a correlation between clone location and developmental stage at earlier embryonic stages, although this relationship diminished in later stages. Fibrous astrocyte clones were exclusively confined to the corpus callosum. In contrast, protoplasmic or juxtavascular clones were located in either the upper or lower cortical layers, with certain clones displayed sibling cells distributed across both regions. Our findings underscore the developmental origins and spatial distribution of astroglial clones within cortical layers, providing new insights into the interplay between their morphology, clonal sizes, and progenitor heterogeneity.


Assuntos
Astrócitos , Astrócitos/citologia , Astrócitos/fisiologia , Animais , Células Clonais , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/embriologia , Camundongos Transgênicos , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia
20.
Nucleic Acids Res ; 52(8): 4167-4184, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38324473

RESUMO

Sam68 and SLM2 are paralog RNA binding proteins (RBPs) expressed in the cerebral cortex and display similar splicing activities. However, their relative functions during cortical development are unknown. We found that these RBPs exhibit an opposite expression pattern during development. Sam68 expression declines postnatally while SLM2 increases after birth, and this developmental pattern is reinforced by hierarchical control of Sam68 expression by SLM2. Analysis of Sam68:Slm2 double knockout (Sam68:Slm2dko) mice revealed hundreds of exons that respond to joint depletion of these proteins. Moreover, parallel analysis of single and double knockout cortices indicated that exons regulated mainly by SLM2 are characterized by a dynamic splicing pattern during development, whereas Sam68-dependent exons are spliced at relatively constant rates. Dynamic splicing of SLM2-sensitive exons is completely suppressed in the Sam68:Slm2dko developing cortex. Sam68:Slm2dko mice die perinatally with defects in neurogenesis and in neuronal differentiation, and develop a hydrocephalus, consistent with splicing alterations in genes related to these biological processes. Thus, our study reveals that developmental control of separate Sam68 and Slm2 paralog genes encoding homologous RBPs enables the orchestration of a dynamic splicing program needed for brain development and viability, while ensuring a robust redundant mechanism that supports proper cortical development.


Assuntos
Córtex Cerebral , Splicing de RNA , Proteínas de Ligação a RNA , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Éxons/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Knockout , Neurogênese/genética , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...