Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.882
Filtrar
1.
J Forensic Sci ; 69(4): 1429-1440, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38880998

RESUMO

To establish the correlation between thermal conditions imposed on bloodstains and visualizing effect of enhancement techniques, infrared photography and four chemical enhancement reagents were used to visualize bloodstains following thermal exposure. A black tile was selected as the substrate to intensify the visualization challenge, with a Cone Calorimeter serving as the standardized heating source to control thermal conditions. Compared with standard photography, infrared photography is proven to be a valuable complement to chemical reagents, showing significant advantages in visualizing bloodstains after thermal exposure. However, it is worth noting that infrared image fell short of standard image when bloodstains displayed raised, embossed morphology or when bloodstains almost disappeared under specific conditions. The enhancement effectiveness was found to be strongly correlated with thermal conditions imposed on bloodstains, and the morphology evolution of bloodstains during heating affected the chemical enhancement effect additionally, especially when the bulge morphology was formed, and it was observed that reagents were more effective after removing the dense shell of the bulge. Among the four selected chemical enhancement reagents, fluorescein performed exceptionally well, maintaining its effectiveness even for bloodstains heated at 641°C for 10 min. TMB demonstrated its visualizing ability for bloodstains heated at 396°C for 5 min and heated at 310°C for 20 min. BLUESTAR® followed afterwards, while luminol performed worst. The correlation between thermal conditions imposed on bloodstains and the corresponding visualizing effectiveness of enhancement techniques provides important references for detecting bloodstains at fire scenes.


Assuntos
Manchas de Sangue , Temperatura Alta , Fotografação , Humanos , Raios Infravermelhos , Luminol , Fluoresceína , Indicadores e Reagentes , Calorimetria , Corantes Fluorescentes , Medicina Legal/métodos , Substâncias Luminescentes
2.
Methods Mol Biol ; 2796: 271-289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38856907

RESUMO

Ion channels are membrane proteins that may also have intracellular and extracellular domains that interact with other ligands. In many cases, these interaction sites are highly mobile and may undergo changes in the configuration upon binding with regulatory signaling molecules. Isothermal titration calorimetry (ITC) is a powerful technique to quantify protein-ligand interactions of purified samples in solution. This chapter describes a fragment-based analysis method using ITC to quantify the interactions between a domain of the voltage-gated Kv7 channel and the calcium-regulated protein calmodulin. This example can be used to quantify the interactions between specific domains of other ion channels and their regulatory signaling proteins.


Assuntos
Calmodulina , Calorimetria , Ligação Proteica , Calorimetria/métodos , Calmodulina/metabolismo , Calmodulina/química , Ligantes , Canais Iônicos/metabolismo , Canais Iônicos/química , Humanos , Sítios de Ligação
3.
Biomolecules ; 14(6)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38927114

RESUMO

Incidences of drug-resistant tuberculosis have become common and are rising at an alarming rate. Aminoacyl t-RNA synthetase has been validated as a newer target against Mycobacterium tuberculosis. Leucyl t-RNA synthetase (LeuRS) is ubiquitously found in all organisms and regulates transcription, protein synthesis, mitochondrial RNA cleavage, and proofreading of matured t-RNA. Leucyl t-RNA synthetase promotes growth and development and is the key enzyme needed for biofilm formation in Mycobacterium. Inhibition of this enzyme could restrict the growth and development of the mycobacterial population. A database consisting of 2734 drug-like molecules was screened against leucyl t-RNA synthetase enzymes through virtual screening. Based on the docking scores and MMGBSA energy values, the top three compounds were selected for molecular dynamics simulation. The druggable nature of the top three hits was confirmed by predicting their pharmacokinetic parameters. The top three hits-compounds 1035 (ZINC000001543916), 1054 (ZINC000001554197), and 2077 (ZINC000008214483)-were evaluated for their binding affinity toward leucyl t-RNA synthetase by an isothermal titration calorimetry study. The inhibitory activity of these compounds was tested against antimycobacterial activity, biofilm formation, and LeuRS gene expression potential. Compound 1054 (Macimorelin) was found to be the most potent molecule, with better antimycobacterial activity, enzyme binding affinity, and significant inhibition of biofilm formation, as well as inhibition of the LeuRS gene expression. Compound 1054, the top hit compound, has the potential to be used as a lead to develop successful leucyl t-RNA synthetase inhibitors.


Assuntos
Antituberculosos , Inibidores Enzimáticos , Leucina-tRNA Ligase , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Ligantes , Antituberculosos/farmacologia , Antituberculosos/química , Leucina-tRNA Ligase/antagonistas & inibidores , Leucina-tRNA Ligase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Calorimetria , Simulação de Dinâmica Molecular , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Simulação por Computador , Ligação Proteica , Humanos
4.
Chem Commun (Camb) ; 60(55): 7021-7024, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38895769

RESUMO

A quantitative understanding of thermodynamic effects of avidity in biomolecular interactions is important. Herein, we synthesized discrete glycooligomers and evaluated their interactions with a model protein using isothermal titration calorimetry. The dimeric glycooligomer exhibited higher binding constants compared to the glycomonomer, attributed to the reduced conformational entropy loss through local presentation of multiple carbohydrate units. Conversely, divalent glycoligands with polyethylene glycol linkers, aiming for multivalent binding, showed enhanced interactions through increased enthalpy. These findings emphasize the importance of distinguishing between the "local avidity" and the "multipoint avidity".


Assuntos
Termodinâmica , Calorimetria , Oligossacarídeos/química , Carboidratos/química , Polietilenoglicóis/química
5.
PLoS One ; 19(6): e0305823, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38917203

RESUMO

SlyD is a widely-occurring prokaryotic FKBP-family prolyl isomerase with an additional chaperone domain. Often, such as in Escherichia coli, a third domain is found at its C-terminus that binds nickel and provides it for nickel-enzyme biogenesis. SlyD has been found to bind signal peptides of proteins that are translocated by the Tat pathway, a system for the transport of folded proteins across membranes. Using peptide arrays to analyze these signal peptide interactions, we found that SlyD interacted only with positively charged peptides, with a preference for arginines over lysines, and large hydrophobic residues enhanced binding. Especially a twin-arginine motif was recognized, a pair of highly conserved arginines adjacent to a stretch of hydrophobic residues. Using isothermal titration calorimetry (ITC) with purified SlyD and a signal peptide-containing model Tat substrate, we could show that the wild type twin-arginine signal peptide was bound with higher affinity than an RR>KK mutated variant, confirming that positive charges are recognized by SlyD, with a preference of arginines over lysines. The specific role of negative charges of the chaperone domain surface and of hydrophobic residues in the chaperone active site was further analyzed by ITC of mutated SlyD variants. Our data show that the supposed key hydrophobic residues of the active site are indeed crucial for binding, and that binding is influenced by negative charges on the chaperone domain. Recognition of positive charges is likely achieved by a large negatively charged surface region of the chaperone domain, which is highly conserved although individual positions are variable.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Chaperonas Moleculares , Peptidilprolil Isomerase , Ligação Proteica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Peptidilprolil Isomerase/metabolismo , Peptidilprolil Isomerase/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Sinais Direcionadores de Proteínas , Interações Hidrofóbicas e Hidrofílicas , Calorimetria , Arginina/metabolismo , Sequência de Aminoácidos
6.
Int J Pharm ; 660: 124315, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38852747

RESUMO

The compendial USP〈701〉 disintegration test method offers a crucial pass/fail assessment for immediate release tablet disintegration. However, its single end-point approach provides limited insight into underlying mechanisms. This study introduces a novel calorimetric approach, aimed at providing comprehensive process profiles beyond binary outcomes. We developed a novel disintegration reaction calorimeter to monitor the heat release throughout the disintegration process and successfully obtained enthalpy change profiles of placebo tablets with various porosities. The formulation comprised microcrystalline cellulose (MCC), anhydrous lactose, croscarmellose sodium (CCS), and magnesium stearate (MgSt). An abrupt temperature rise was observed after introducing the disintegration medium to tablets, and the relationship between the heat rise time and the tablet's porosity was investigated. The calorimeter's sensitivity was sufficient to discern distinct heat changes among individual tablets, and the analysis revealed a direct correlation between the two. Higher porosity corresponded to shorter heat rise time, indicating faster disintegration rates. Additionally, the analysis identified a concurrent endothermic process alongside the anticipated exothermic phenomenon, potentially associated with the dissolution of anhydrous lactose. Since lactose is the only soluble excipient within the blend composition, the endothermic process can be attributed to the absorption of heat as lactose molecules dissolve in water. The findings from this study underscore the potential of utilising calorimetric methods to quantify the wettability of complex compounds and, ultimately, optimise tablet formulations.


Assuntos
Calorimetria , Celulose , Excipientes , Temperatura Alta , Lactose , Ácidos Esteáricos , Comprimidos , Lactose/química , Celulose/química , Excipientes/química , Porosidade , Ácidos Esteáricos/química , Calorimetria/métodos , Solubilidade , Carboximetilcelulose Sódica/química , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Composição de Medicamentos/métodos
7.
Biophys Chem ; 312: 107268, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38843749

RESUMO

The thermal effect of the formation of the "burst-phase" folding intermediate has been studied using a titration calorimeter. It is shown that, unlike the total thermal effect of native structure formation, it can be both positive and negative depending on the temperature. The reasons for this paradoxical behavior are analyzed. A conclusion is drawn about the leading role of dehydration of non-polar groups in the first stage of folding.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Dobramento de Proteína , Água , Água/química , Proteínas/química , Temperatura , Calorimetria , Termodinâmica
8.
Dent Mater ; 40(6): 976-983, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729778

RESUMO

OBJECTIVES: This study demonstrates the use of photopolymerization to create semi-crystalline linear polymers suitable for thermally reversible materials in dental cast moldings produced from 3D printing. METHODS: An aromatic diallyl, aliphatic dithiol chain extender, and monofunctional thiol were used in a photoinitiated system. The photopolymerization and crystallization kinetics as a function of chemistry and temperature were investigated using spectroscopy and calorimetry. These insights were used to realize vat photopolymerization-based 3D printing of functional objects that could be remotely melted and thereby removed using induction heating. RESULTS: The addition of monothiol was shown to decrease the polymer molecular weight which correspondingly increased the crystallization rate. Photopolymerization kinetics are independent of temperature while crystallization was slowed as the temperature approaches the melting point of the materials. Through inclusion of chromium oxide, semicrystalline materials could be melted through induction heating. These materials were implemented in vat photopolymerization 3D printing to realize high-resolution objects that could be used as releasable dental molds following printing and induction heating. SIGNIFICANCE: This work demonstrates a proof-of-concept methodology to realize directly printable, thermally reversible semicrystalline materials for potential use as dental molding materials.


Assuntos
Polimerização , Polímeros , Impressão Tridimensional , Polímeros/química , Cristalização , Processos Fotoquímicos , Calorimetria , Materiais Dentários/química , Revestimento para Fundição Odontológica/química , Temperatura , Teste de Materiais
9.
J Appl Physiol (1985) ; 137(1): 1-9, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695352

RESUMO

We tested whether spontaneous physical activity (SPA) from accelerometers could be used in a whole room calorimeter to estimate thermic effect of food (TEF). Eleven healthy participants (n = 7 females; age: 27 ± 4 yr; body mass index: 22.8 ± 2.6 kg/m2) completed two 23-h visits in randomized order: one "fed" with meals provided and one "fasted" with no food. SPA was measured by ActivPAL and Actigraph accelerometers. Criterion TEF was calculated as the difference in total daily energy expenditure (TDEE) between fed and fasted visits and compared with three methods of estimating TEF: 1) SPA-adjusted TEF (adjTEF)-difference in TDEE without SPA between visits, 2) Wakeful TEF-difference in energy expenditure obtained from linear regression and basal metabolic rate during waking hours, 3) 24-h TEF-increase in TDEE above SPA and sleeping metabolic rate. Criterion TEF was 9.4 ± 4.5% of TDEE. AdjTEF (difference in estimated vs. criterion TEF: activPAL: -0.3 ± 3.3%; Actigraph: -1.8 ± 8.0%) and wakeful TEF (activPAL: -0.9 ± 6.1%; Actigraph: -2.8 ± 7.6%) derived from both accelerometers did not differ from criterion TEF (all P > 0.05). ActivPAL-derived 24-h TEF overestimated TEF (6.8 ± 5.4%, P = 0.002), whereas Actigraph-derived 24-h TEF was not significantly different (4.3 ± 9.4%, P = 0.156). TEF estimations using activPAL tended to show better individual-level agreement (i.e., smaller coefficients of variation). Both accelerometers can be used to estimate TEF in a whole room calorimeter; wakeful TEF using activPAL is the most viable option given strong group-level accuracy and reasonable individual agreement.NEW & NOTEWORTHY Two research-grade accelerometers can effectively estimate spontaneous physical activity and improve the estimation of thermic effect of food (TEF) in whole room calorimeters. The activPAL demonstrates strong group-level accuracy and reasonable individual-level agreement in estimating wakeful TEF, whereas a hip-worn Actigraph is an acceptable approach for estimating 24-h TEF. These results highlight the promising potential of accelerometers in advancing energy balance research by improving the assessment of TEF within whole room calorimeters.


Assuntos
Acelerometria , Metabolismo Energético , Exercício Físico , Humanos , Feminino , Adulto , Masculino , Acelerometria/métodos , Acelerometria/instrumentação , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Calorimetria/métodos , Adulto Jovem , Jejum/fisiologia , Calorimetria Indireta/métodos , Metabolismo Basal/fisiologia , Alimentos
10.
Microbiologyopen ; 13(3): e1415, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38780167

RESUMO

The standard method of receptor activation involves the binding of signals or signal-loaded solute binding proteins (SBPs) to sensor domains. Many sensor histidine kinases (SHKs), which are activated by SBP binding, are encoded adjacent to their corresponding sbp gene. We examined three SBPs of Pseudomonas aeruginosa PAO1, encoded near the genes for the AgtS (PA0600) and AruS (PA4982) SHKs, to determine how common this arrangement is. Ligand screening and microcalorimetric studies revealed that the SBPs PA0602 and PA4985 preferentially bind to GABA (KD = 2.3 and 0.58 µM, respectively), followed by 5-aminovalerate (KD = 30 and 1.6 µM, respectively) and ethanoldiamine (KD = 2.3 and 0.58 µM, respectively). In contrast, AgtB (PA0604) exclusively recognizes 5-aminovaleric acid (KD = 2.9 µM). However, microcalorimetric titrations did not show any binding between the AgtS sensor domain and AgtB or PA0602, regardless of the presence of ligands. Similarly, bacterial two-hybrid assays did not demonstrate an interaction between PA4985 and the AruS sensor domain. Therefore, sbp and shk genes located nearby are not always functionally linked. We previously identified PA0222 as a GABA-specific SBP. The presence of three SBPs for GABA may be linked to GABA's role as a trigger for P. aeruginosa virulence.


Assuntos
Proteínas de Bactérias , Ligação Proteica , Pseudomonas aeruginosa , Ácido gama-Aminobutírico , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimologia , Ácido gama-Aminobutírico/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aminoácidos Neutros/metabolismo , Histidina Quinase/metabolismo , Histidina Quinase/genética , Calorimetria
11.
Arch Biochem Biophys ; 756: 109995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621448

RESUMO

T4 polynucleotide kinase (T4 PNK) phosphorylates the 5'-terminus of DNA and RNA substrates. It is widely used in molecular biology. Single nucleotides can serve as substrates if a 3'-phosphate group is present. In this study, the T4 PNK-catalyzed conversion of adenosine 3'-monophosphate (3'-AMP) to adenosine-3',5'-bisphosphate was characterized using isothermal titration calorimetry (ITC). Although ITC is typically used to study ligand binding, in this case the instrument was used to evaluate enzyme kinetics by monitoring the heat production due to reaction enthalpy. The reaction was initiated with a single injection of 3'-AMP substrate into the sample cell containing T4 PNK and ATP at pH 7.6 and 30 °C, and Michaelis-Menten analysis was performed on the reaction rates derived from the plot of differential power versus time. The Michaelis-Menten constant, KM, was 13 µM, and the turnover number, kcat, was 8 s-1. The effect of inhibitors was investigated using pyrophosphate (PPi). PPi caused a dose-dependent decrease in the apparent kcat and increase in the apparent KM under the conditions tested. Additionally, the intrinsic reaction enthalpy and the activation energy of the T4 PNK-catalyzed phosphorylation of 3'-AMP were determined to be -25 kJ/mol and 43 kJ/mol, respectively. ITC is seldom used as a tool to study enzyme kinetics, particularly for technically-challenging enzymes such as kinases. This study demonstrates that quantitative analysis of kinase activity can be amenable to the ITC single injection approach.


Assuntos
Calorimetria , Polinucleotídeo 5'-Hidroxiquinase , Cinética , Calorimetria/métodos , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Polinucleotídeo 5'-Hidroxiquinase/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Termodinâmica , Bacteriófago T4/enzimologia , Difosfatos/química , Difosfatos/metabolismo , Fosforilação
12.
Chembiochem ; 25(12): e202400154, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38616168

RESUMO

Histamine is a biogenic amine that poses a potential threat to public health due to its toxicological effects. In this study, we identified histamine-binding peptides by screening a random 12-mer peptide library, employing a novel biopanning approach that excluded histidine-binding sequences in the final round. This additional step enhanced the selectivity of the peptides and prevented interference from histidine during detection. The binding affinities of synthesized peptides to histamine were assessed using isothermal titration calorimetry (ITC). Among the identified peptides, HBF10 (SGFRDGIEDFLW) and HBF26 (IPLENQHKIYST) showed significant affinity to histamine, with Ka values of 2.56×104 (M-1) and 8.94×104 (M-1), respectively. Notably, the identified peptides did not demonstrate binding affinity towards histidine, despite its structural similarity to histamine. Subsequently, the surface plasmon resonance (SPR) sensor surface was prepared by immobilizing the peptide HBF26 to investigate the potential of the peptide as a recognition agent for histamine detection. The findings suggest that the identified peptides have an affinity to histamine specifically, showcasing their potential applications as diagnostic agents with specific targeting capabilities.


Assuntos
Histamina , Biblioteca de Peptídeos , Peptídeos , Ressonância de Plasmônio de Superfície , Histamina/química , Histamina/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Calorimetria , Sequência de Aminoácidos , Ligação Proteica , Humanos
13.
Chembiochem ; 25(14): e202400116, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38668388

RESUMO

The 4-aminoquinoline class of compounds includes the important antimalarial compounds amodiaquine and chloroquine. Despite their medicinal importance, the mode of action of these compounds is poorly understood. In a previous study we observed these compounds, as well as quinine and mefloquine, tightly bind the DNA cocaine-binding aptamer. Here, we further explore the range of nucleic acid structures bound by these compounds. To gauge a wide range of binding affinities, we used isothermal titration calorimetry to explore high affinity binding (nM to tens of µM) and NMR spectroscopy to assay weak binding biding in the hundreds of micromolar range. We find that amodiaquine tightly binds all double stranded DNA structures explored. Mefloquine binds double stranded DNA duplex molecules tightly and weakly associates with a three-way junction DNA construct. Quinine and chloroquine only weakly bind duplex DNA but do not tightly bind any of the DNA constructs explored. A simulation of the free energy of binding of these ligands to the Dickerson-Drew dodecamer resulted in an excellent agreement between the simulated and experimental free energy. These results provide new insight into the DNA binding of clinically important antimalarial compounds and may play a role in future development of new antimalarials.


Assuntos
Amodiaquina , DNA , DNA/química , DNA/metabolismo , Amodiaquina/química , Amodiaquina/metabolismo , Amodiaquina/análogos & derivados , Antimaláricos/química , Antimaláricos/metabolismo , Conformação de Ácido Nucleico , Sítios de Ligação , Termodinâmica , Calorimetria
14.
J Phys Chem Lett ; 15(15): 4047-4055, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38580324

RESUMO

Liquid-liquid phase separation (LLPS) plays a key role in the compartmentalization of cells via the formation of biomolecular condensates. Here, we combined atomistic molecular dynamics (MD) simulations and terahertz (THz) spectroscopy to determine the solvent entropy contribution to the formation of condensates of the human eye lens protein γD-Crystallin. The MD simulations reveal an entropy tug-of-war between water molecules that are released from the protein droplets and those that are retained within the condensates, two categories of water molecules that were also assigned spectroscopically. A recently developed THz-calorimetry method enables quantitative comparison of the experimental and computational entropy changes of the released water molecules. The strong correlation mutually validates the two approaches and opens the way to a detailed atomic-level understanding of the different driving forces underlying the LLPS.


Assuntos
Separação de Fases , Água , Humanos , Solventes , Entropia , Calorimetria
15.
Sci Rep ; 14(1): 8685, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622354

RESUMO

To understand the effect of protein fusion on the recognition of a peptide-tag by an antibody, we fused a CCR5-derived peptide-tag (pep1) to GFP and investigated its recognition by an anti-pep1 antibody, 4B08. First, to characterize the thermodynamic properties associated with the pep1-4B08 binding, isothermal titration calorimetry experiments were conducted. It was found that pep1 fused to the C-terminus of GFP (GFP-CT) enhanced the enthalpic gain by 2.1 kcal mol-1 and the entropic loss only by 0.9 kcal mol-1, resulting in an 8-fold increase in the binding affinity compared to the unfused pep1. On the other hand, pep1 fused to the N-terminus of GFP (GFP-NT) enhanced the enthalpic gain by 3.0 kcal mol-1 and the entropic loss by 3.2 kcal mol-1, leading to no significant enhancement of the binding affinity. To gain deeper insights, molecular dynamics simulations of GFP-NT, GFP-CT, and pep1 were performed. The results showed that the location of the fusion point sensitively affects the interaction energy, the solvent accessible surface area, and the fluctuation of pep1 in the unbound state, which explains the difference in the experimental thermodynamic properties.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Proteínas , Calorimetria , Anticorpos , Termodinâmica
16.
Biochem Biophys Res Commun ; 711: 149908, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38613867

RESUMO

RNA aptamers are oligonucleotides, selected through Systematic Evolution of Ligands by EXponential Enrichment (SELEX), that can bind to specific target molecules with high affinity. One such molecule is the RNA aptamer that binds to a blue-fluorescent Hoechst dye that was modified with bulky t-Bu groups to prevent non-specific binding to DNA. This aptamer has potential for biosensor applications; however, limited information is available regarding its conformation, molecular interactions with the ligand, and binding mechanism. The study presented here aims to biophysically characterize the Hoechst RNA aptamer when complexed with the t-Bu Hoechst dye and to further optimize the RNA sequence by designing and synthesizing new sequence variants. Each variant aptamer-t-Bu Hoechst complex was evaluated through a combination of fluorescence emission, native polyacrylamide gel electrophoresis, fluorescence titration, and isothermal titration calorimetry experiments. The results were used to design a minimal version of the aptamer consisting of only 21 nucleotides. The performed study also describes a more efficient method for synthesizing the t-Bu Hoechst dye derivative. Understanding the biophysical properties of the t-Bu Hoechst dye-RNA complex lays the foundation for nuclear magnetic resonance spectroscopy studies and its potential development as a building block for an aptamer-based biosensor that can be used in medical, environmental or laboratory settings.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Conformação de Ácido Nucleico , Técnicas Biossensoriais/métodos , Sequência de Bases , Espectrometria de Fluorescência/métodos , Técnica de Seleção de Aptâmeros/métodos , Calorimetria/métodos , RNA/química
17.
Phys Med Biol ; 69(11)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38657625

RESUMO

Objective.The superior dose conformity provided by proton therapy relative to conventional x-ray radiotherapy necessitates more rigorous quality assurance (QA) procedures to ensure optimal patient safety. Practically however, time-constraints prevent comprehensive measurements to be made of the proton range in water: a key parameter in ensuring accurate treatment delivery.Approach.A novel scintillator-based device for fast, accurate water-equivalent proton range QA measurements for ocular proton therapy is presented. Experiments were conducted using a compact detector prototype, the quality assurance range calorimeter (QuARC), at the Clatterbridge cancer centre (CCC) in Wirral, UK for the measurement of pristine and spread-out Bragg peaks (SOBPs). The QuARC uses a series of 14 optically-isolated 100 × 100 × 2.85 mm polystyrene scintillator sheets, read out by a series of photodiodes. The detector system is housed in a custom 3D-printed enclosure mounted directly to the nozzle and a numerical model was used to fit measured depth-light curves and correct for scintillator light quenching.Main results.Measurements of the pristine 60 MeV proton Bragg curve found the QuARC able to measure proton ranges accurate to 0.2 mm and reduced QA measurement times from several minutes down to a few seconds. A new framework of the quenching model was deployed to successfully fit depth-light curves of SOBPs with similar range accuracy.Significance.The speed, range accuracy and simplicity of the QuARC make the device a promising candidate for ocular proton range QA. Further work to investigate the performance of SOBP fitting at higher energies/greater depths is warranted.


Assuntos
Calorimetria , Calorimetria/instrumentação , Controle de Qualidade , Terapia com Prótons/instrumentação , Humanos
18.
Viruses ; 16(4)2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675834

RESUMO

Tenofovir (TFV) is the active form of the prodrugs tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF), both clinically prescribed as HIV reverse transcriptase inhibitors. The biophysical interactions between these compounds and human serum albumin (HSA), the primary carrier of exogenous compounds in the human bloodstream, have not yet been thoroughly characterized. Thus, the present study reports the interaction profile between HSA and TFV, TDF, and TAF via UV-Vis, steady-state, and time-resolved fluorescence techniques combined with isothermal titration calorimetry (ITC) and in silico calculations. A spontaneous interaction in the ground state, which does not perturb the microenvironment close to the Trp-214 residue, is classified as weak. In the case of HSA/TFV and HSA/TDF, the binding is both enthalpically and entropically driven, while for HSA/TAF, the binding is only entropically dominated. The binding constant (Ka) and thermodynamic parameters obtained via ITC assays agree with those obtained using steady-state fluorescence quenching measurements, reinforcing the reliability of the data. The small internal cavity known as site I is probably the main binding pocket for TFV due to the low steric volume of the drug. In contrast, most external sites (II and III) can better accommodate TAF due to the high steric volume of this prodrug. The cross-docking approach corroborated experimental drug-displacement assays, indicating that the binding affinity of TFV and TAF might be impacted by the presence of different compounds bound to albumin. Overall, the weak binding capacity of albumin to TFV, TDF, and TAF is one of the main factors for the low residence time of these antiretrovirals in the human bloodstream; however, positive cooperativity for TAF and TDF was detected in the presence of some drugs, which might improve their residence time (pharmacokinetic profile).


Assuntos
Fármacos Anti-HIV , Ligação Proteica , Inibidores da Transcriptase Reversa , Albumina Sérica Humana , Tenofovir , Tenofovir/análogos & derivados , Humanos , Inibidores da Transcriptase Reversa/metabolismo , Inibidores da Transcriptase Reversa/química , Tenofovir/metabolismo , Tenofovir/química , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Fármacos Anti-HIV/metabolismo , Termodinâmica , Calorimetria , Sítios de Ligação , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , Alanina/metabolismo , Transcriptase Reversa do HIV/metabolismo , Transcriptase Reversa do HIV/química
19.
Eur Biophys J ; 53(4): 225-238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613566

RESUMO

Calibration of titration calorimeters is an ongoing problem, particularly with calorimeters with reaction vessel volumes < 10 mL in which an electrical calibration heater is positioned outside the calorimetric vessel. Consequently, a chemical reaction with a known enthalpy change must be used to accurately calibrate these calorimeters. This work proposes the use of standard solutions of potassium acid phthalate (KHP) titrated into solutions of excess sodium hydroxide (NaOH) or excess tris(hydroxymethyl)aminomethane (TRIS) as standard reactions to determine the collective accuracy of the relevant variables in a determination of the molar enthalpy change for a reaction. KHP is readily available in high purity, weighable for easy preparation of solutions with accurately known concentrations, stable in solution, not compromised by side reactions with common contaminants such as atmospheric CO2, and non-corrosive to materials used in calorimeter construction. Molar enthalpy changes for these reactions were calculated from 0 to 60 °C from reliable literature data for the pKa of KHP, the molar enthalpy change for protonation of TRIS, and the molar enthalpy change for ionization of water. The feasibility of using these reactions as enthalpic standards was tested in several calorimeters; a 50 mL CSC 4300, a 185 µL NanoITC, a 1.4 mL VP-ITC, and a TAM III with 1 mL reaction vessels. The results from the 50 mL CSC 4300, which was accurately calibrated with an electric heater, verified the accuracy of the calculated standard values for the molar enthalpy changes of the proposed reactions.


Assuntos
Calorimetria , Hidróxido de Sódio , Trometamina , Hidróxido de Sódio/química , Calibragem , Trometamina/química , Temperatura , Padrões de Referência , Termodinâmica
20.
Chem Commun (Camb) ; 60(32): 4350-4353, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38546190

RESUMO

The binding affinity of pillar[6]MaxQ toward a panel of neuromuscular blockers and neurotransmitters was measured in phosphate buffered saline by isothermal titration calorimetry and 1H NMR spectroscopy. In vivo efficacy studies showed that P6MQ sequesters rocuronium and vecuronium and reverses their influence on the recovery of the train-of-four (TOF) ratio.


Assuntos
Fármacos Neuromusculares não Despolarizantes , Brometo de Vecurônio , Brometo de Vecurônio/farmacologia , Rocurônio/farmacologia , Androstanóis/farmacologia , Fármacos Neuromusculares não Despolarizantes/farmacologia , Calorimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...