Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(32): 18257-18270, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39084609

RESUMO

Camellia oleifera, a major woody oil crop in China, produces tea oil rich in unsaturated fatty acids, earning it names like liquid gold and eastern olive oil. This study provides an integrated investigation of the transcriptome and lipidome within seeds at the maturing process across three C. oleifera varieties, revealing a significant relationship between fatty acid production and genes involved in lipid synthesis. Through transcriptomic analysis, 26,344 genes with varied expression were found. Functional enrichment analysis highlighted that pathways related to starch and sucrose metabolism, plant hormone signal transduction, and lipid accumulation were highly enriched among the differentially expressed genes. Coordinated high expression of key genes (ACCase, KAS I, KAS II, KAS III, KAR, HAD, EAR, SAD, LPAAT, LACS, DGAT, PDAT) during the late maturation stage contributes largely to high oil content. Additionally, expression variations of SAD and FADs among different varieties were explored. The analysis suggests that high expression of genes such as FAD3, FAD7, and FAD8 notably increased linolenic acid content. This research provides new insights into the molecular mechanisms of oil biosynthesis in C. oleifera, offering valuable references for improving yield and quality.


Assuntos
Camellia , Ácidos Graxos , Regulação da Expressão Gênica de Plantas , Lipidômica , Proteínas de Plantas , Sementes , Transcriptoma , Camellia/metabolismo , Camellia/genética , Camellia/crescimento & desenvolvimento , Camellia/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Óleos de Plantas/química , China
2.
Plant J ; 119(3): 1299-1312, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838090

RESUMO

Hydrolyzable tannins (HTs), a class of polyphenolic compounds found in dicotyledonous plants, are widely used in food and pharmaceutical industries because of their beneficial effects on human health. Although the biosynthesis of simple HTs has been verified at the enzymatic level, relevant genes have not yet been identified. Here, based on the parent ion-fragment ion pairs in the feature fragment data obtained using UPLC-Q-TOF-/MS/MS, galloyl phenolic compounds in the leaves of Camellia sinensis and C. oleifera were analyzed qualitatively and quantitatively. Correlation analysis between the transcript abundance of serine carboxypeptidase-like acyltransferases (SCPL-ATs) and the peak area of galloyl products in Camellia species showed that SCPL3 expression was highly correlated with HT biosynthesis. Enzymatic verification of the recombinant protein showed that CoSCPL3 from C. oleifera catalyzed the four consecutive steps involved in the conversion of digalloylglucose to pentagalloylglucose. We also identified the residues affecting the enzymatic activity of CoSCPL3 and determined that SCPL-AT catalyzes the synthesis of galloyl glycosides. The findings of this study provide a target gene for germplasm innovation of important cash crops that are rich in HTs, such as C. oleifera, strawberry, and walnut.


Assuntos
Aciltransferases , Camellia , Carboxipeptidases , Taninos Hidrolisáveis , Proteínas de Plantas , Camellia/genética , Camellia/enzimologia , Camellia/metabolismo , Carboxipeptidases/metabolismo , Carboxipeptidases/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Taninos Hidrolisáveis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/enzimologia , Espectrometria de Massas em Tandem
3.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891958

RESUMO

The plant MADS-box transcription factor family is a major regulator of plant flower development and reproduction, and the AGAMOUS-LIKE11/SEEDSTICK (AGL11/STK) subfamily plays conserved functions in the seed development of flowering plants. Camellia japonica is a world-famous ornamental flower, and its seed kernels are rich in highly valuable fatty acids. Seed abortion has been found to be common in C. japonica, but little is known about how it is regulated during seed development. In this study, we performed a genome-wide analysis of the MADS-box gene the in C. japonica genome and identified 126 MADS-box genes. Through gene expression profiling in various tissue types, we revealed the C/D-class MADS-box genes were preferentially expressed in seed-related tissues. We identified the AGL11/STK-like gene, CjSTK, and showed that it contained a typical STK motif and exclusively expressed during seed development. We found a significant increase in the CjSTK expression level in aborted seeds compared with normally developing seeds. Furthermore, overexpression of CjSTK in Arabidopsis thaliana caused shorter pods and smaller seeds. Taken together, we concluded that the fine regulation of the CjSTK expression at different stages of seed development is critical for ovule formation and seed abortion in C. japonica. The present study provides evidence revealing the regulation of seed development in Camellia.


Assuntos
Camellia , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS , Proteínas de Plantas , Sementes , Camellia/genética , Camellia/metabolismo , Camellia/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Arabidopsis/genética , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Família Multigênica , Genoma de Planta , Estudo de Associação Genômica Ampla
4.
Plant Sci ; 346: 112160, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38908800

RESUMO

Vegetative propagation through cutting is a widely used clonal approach for maintaining desired genotypes. However, some woody species have difficulty forming adventitious roots (ARs) with this approach, including yellow camellia (YC) C. nitidissima. Yellow camellias, prized for their ornamental value and potential health benefits in tea, remain difficult to propagate clonally due to this rooting recalcitrance. As part of the efforts to understand YC cuttings' recalcitrance, we conducted a detailed investigation into AR formation in yellow camellia cuttings via histology and endogenous phytohormone dynamics during this process. We also compared YC endogenous phytohormone and metabolite phytohormone profiles with those of easy-to-root poplar and willow cuttings. Our results indicate that the induction of ARs in YC cuttings is achievable through auxin treatment, and YC ARs are initiated from cambial derivatives and develop a vascular system connected with that of the stem. During AR induction, endogenous hormones showed a dynamic profile, with IAA continuing to increase starting 9 days after auxin induction. JA, JA-Ile, and OPDA showed a similar trend as IAA but decreased by the 45th day. Cytokinin first decreased to its lowest level by the 18th day and then increased. SA largely exhibited an increasing trend with a drop on the 36th day, while ABA first increased to its peak level by the 18th day and then decreased. Compared to poplar, YC cuttings had a low level of IAA, IAA-Asp, and OPDA, and a high level of cytokinin and SA. Metabolite profiling highlighted significant down-accumulation of compounds associated with AR formation in yellow camellias, such as citric and ascorbic acid, fructose, sucrose, flavonoids, and phenolic acid derivatives. Our study reveals the unfavorable endogenous hormone and metabolite profiles underlying the rooting recalcitrance of YC cuttings, providing valuable knowledge for addressing this challenge in clonal propagation.


Assuntos
Camellia , Reguladores de Crescimento de Plantas , Raízes de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Camellia/metabolismo , Camellia/genética , Camellia/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo
5.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1233-1241, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886421

RESUMO

The alteration of stand age instigates modifications in soil properties and microbial communities. Understanding the impacts of stand age on soil enzyme stoichiometry and microbial nutrient limitations in Camellia oleifera plantation is crucial for nutrient management. Taking C. oleifera plantation across four age groups (<10 a, 15-25 a, 30-50 a, >60 a) in a subtropical red soil region as test objects, we examined the response of soil enzyme stoichiometry and microbial nutrient limitations to change in stand age and analyzed the pathways for such responses. The results showed that, compared to that of stand age <10 a, enzyme C:N in the 15-25 a was increased and enzyme N:P was significantly reduced. Microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP) exhibited a trend of initially decreasing and then increasing with stand age. MBN and MBN:MBP were significantly higher in the <10 a compared to that in the 30-50 a. MBC:MBN was significantly higher in the 30-50 a and >60 a compared to the <10 a and 15-25 a. Results of redundancy analysis revealed that soil nutrients, microbial biomass and their stoichiometry explained 92.4% of the variations in enzyme stoichiometry. Partial least squares path modeling (PLS-PM) results demonstrated that soil organic carbon (SOC) had a positive effect on microbial C limitation; MBN, MBN:MBP, MBC:MBP, SOC, and total nitrogen had a nega-tive overall effect on microbial P limitation, whereas soil C:N had a positive overall effect on microbial P limitation. There was a significant positive correlation between microbial C and P limitations. With increasing stand age, microbial nutrient limitation shifted from N and P limitation (<10 a) to C and P limitation (15-25 a, 30-50 a, >60 a).


Assuntos
Camellia , Carbono , Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Camellia/metabolismo , Camellia/crescimento & desenvolvimento , Camellia/química , Solo/química , Nitrogênio/metabolismo , Nitrogênio/análise , Carbono/metabolismo , Fósforo/metabolismo , Nutrientes/metabolismo , Nutrientes/análise , Fatores de Tempo , China , Biomassa
6.
Food Chem ; 450: 139333, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636384

RESUMO

Camellia saponins are important by-products of Camellia Oleifer Abel. processing. In this study, an eco-friendly method based on natural deep eutectic solvents (NaDESs, proline and glycerol at a molar ratio of 2:5) was established to extract saponins from C.oleifera cakes. The content of saponin (702.22 ± 1.28 mg/g) obtained using NaDES was higher than those extracted using water or methanol. UPLC-Q-TOF MS analysis of chemical structure showed that the difference in the extraction technique alter individual saponins. A widely targeted metabolomic approach and KEGG metabolic pathway analysis showed that the upregulated metabolites in the NaDES-based extract mainly included flavonoids, alkaloids, and phenolic acids; and they were involved in arginine and proline metabolism, metabolic pathways, phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, and flavonoid biosynthesis. The present study proposes a selective substitute for use in the extraction of camellia saponins with composition analysis.


Assuntos
Camellia , Metabolômica , Extratos Vegetais , Saponinas , Camellia/química , Camellia/metabolismo , Saponinas/química , Saponinas/metabolismo , Saponinas/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Solventes/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
7.
PeerJ ; 12: e17275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650646

RESUMO

Background: Sect. Chrysantha Chang, belonging to the Camellia genus, is one of the rare and precious ornamental plants distinguished by a distinctive array of yellow-toned petals. However, the variation mechanisms of petal color in Sect. Chrysantha Chang remains largely unclear. Methods: We conducted an integrated analysis of metabolome and transcriptome to reveal petal coloration mechanism in three species, which have different yellow tones petals, including C. chuongtsoensis (CZ, golden yellow), C. achrysantha (ZD, light yellow), and C. parvipetala (XB, milk white). Results: A total of 356 flavonoid metabolites were detected, and 295 differential metabolites were screened. The contents of 74 differential metabolites showed an upward trend and 19 metabolites showed a downward trend, among which 11 metabolites were annotated to the KEGG pathway database. We speculated that 10 metabolites were closely related to the deepening of the yellowness. Transcriptome analysis indicated that there were 2,948, 14,018 and 13,366 differentially expressed genes (DEGs) between CZ vs. ZD, CZ vs. XB and ZD vs. XB, respectively. Six key structural genes (CcCHI, CcFLS, CcDFR1, CcDFR2, CcDFR3, and CcCYP75B1) and five candidate transcription factors (MYB22, MYB28, MYB17, EREBP9, and EREBP13) were involved in the regulation of flavonoid metabolites. The findings indicate that flavonoid compounds influence the color intensity of yellow-toned petals in Sect. Chrysantha Chang. Our results provide a new perspective on the molecular mechanisms underlying flower color variation and present potential candidate genes for Camellia breeding.


Assuntos
Camellia , Flores , Regulação da Expressão Gênica de Plantas , Metaboloma , Pigmentação , Transcriptoma , Flores/genética , Flores/metabolismo , Metaboloma/genética , Pigmentação/genética , Camellia/genética , Camellia/metabolismo , Flavonoides/metabolismo , Perfilação da Expressão Gênica
8.
BMC Plant Biol ; 24(1): 19, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166635

RESUMO

BACKGROUND: Camellia olelfera petals are colorful, and have high ornamental value. However, the color formation mechanism of C. olelfera petals with different color is still unclear. In our study, WGCNA method was applied to integrate metabolites and transcriptomes to investigate the coloration mechanism of four C. olelfera cultivars with different petal colors. RESULTS: Here, a total of 372 flavonoids were identified (including 27 anthocyanins), and 13 anthocyanins were significantly differentially accumulated in C. olelfera petals. Among them, cyanidin-3-O-(6''-O-p-Coumaroyl) glucoside was the main color constituent in pink petals, cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-rutinoside, and cyanidin-3-O-(6''-O-malonyl) glucoside were the main contributors to candy pink petals, and peonidin-3-O-glucoside was the important color substance responsible for the red petals of C. oleifera. Furthermore, six structural genes (Co4CL1, CoF3H1, CoF3'H, CoANS, CoUGT75C1-4, and CoUGT75C1-5), three MYBs (CoMYB1, CoMYB4, and CoMYB44-3), three bHLHs (CobHLH30, CobHLH 77, and CobHLH 79-1), and two WRKYs (CoWRKY7 and CoWRKY22) could be identified candidate genes related to anthocyanins biosynthesis and accumulation, and lead to the pink and red phenotypes. The regulatory network of differentially accumulated anthocyanins and the anthocyanins related genes in C. olelfera petals were established. CONCLUSIONS: These findings elucidate the molecular basis of the coloration mechanisms of pink and red color in C. olelfera petals, and provided valuable target genes for future improvement of petals color in C. olelfera.


Assuntos
Antocianinas , Camellia , Antocianinas/metabolismo , Camellia/genética , Camellia/metabolismo , Flores/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Metaboloma , Glucosídeos/metabolismo , Cor
9.
BMC Plant Biol ; 24(1): 18, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166751

RESUMO

Camellia reticulata Lindl., also known as Yunnan Camellia, is an important ornamental plant in China, especially for its large and stunning flowers. A comprehensive understanding of their coloration mechanisms can aid breeders in developing new cultivars and improving their ornamental value; however, it is still unclear in Yunnan Camellia, especially in mixed-color flowers. In this study, we conducted metabolic and transcriptomic comparison analyses to investigate the coloration differences in three Yunnan Camellia cultivars: C. reticulata 'Shizitou' (SZT), C. reticulata 'Damanao' (MN), and C. reticulata 'Tongzimian' (TZM). Our results revealed that the initial flowering stage may play a critical role in the color change of MN. Metabolome analysis demonstrated that cyanidin was the primary anthocyanin in SZT and MN's red region, while its content was low in TZM and MN's white region. According to the transcriptome analysis, the anthocyanins biosynthesis pathway was reconstructed in Yunnan Camellia, and the low expression of CHS was detected in TZM and MN's white region, while ANR maintained a high expression level, which may lead to the low content of cyanidin in them. Transcription factors MYBs, bHLH, and bZIP may play a key role in regulating anthocyanin-structural genes. The co-expression analysis showed that the meristem tissue may play a crucial role in the formation of the mixed white-red color in MN. Our study enriched the genetic basis of flower coloration differences in Yunnan Camellia which will be a valuable genomic resource to understanding the biology of coloration formation and for breeding the Camellia cultivars.


Assuntos
Camellia , Camellia/genética , Camellia/metabolismo , Antocianinas/metabolismo , China , Melhoramento Vegetal , Perfilação da Expressão Gênica , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Pigmentação/genética
10.
Plant Physiol Biochem ; 205: 108157, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939544

RESUMO

Tea is one of the most popular beverages, it has many health benefits and flavor properties due to the presence of numerous secondary metabolites. Camellia assamica is also a main source of tea, which is mainly planted in the regions of southwest China. In this study, a non-targeted and targeted metabolomics analysis and sensory evaluation on tea leaves with and without mistletoe (Viscum articulatum) was carried out using liquid chromatography-mass spectrometry. RNA-seq-based transcriptomic analysis was conducted in parallel on the same samples, subsequently gene expression and metabolic differentiation were also investigated. Tea leaves with mistletoe presented much lower contents of (-)-catechin, (-)-epicatechin, (-)-gallocatechin gallate and (-)-epicatechin gallate, but significantly higher levels of free amino acids including Arg, Asp, GABA and Gln than that without mistletoe. Transcriptomic analysis also confirmed the main differentially expressed genes (DEGs) containing phenylpropanoid and flavonoid biosynthesis were down-regulated, but genes of amino acid biosynthesis were up-regulated. qRT-PCR analysis further revealed that the relative expression of CsCHS, CsC4H, CsANS, CsLAR, and CsF3H was hindered, while CsglyA and CsilvE expression was increased.


Assuntos
Camellia sinensis , Camellia , Catequina , Camellia/genética , Camellia/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolômica , Catequina/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Chá , Flavonoides/metabolismo
11.
Ann Bot ; 132(5): 1007-1020, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37831901

RESUMO

BACKGROUND AND AIMS: The functional specialization of microRNA and its target genes is often an important factor in the establishment of spatiotemporal patterns of gene expression that are essential to plant development and growth. In different plant lineages, understanding the functional conservation and divergence of microRNAs remains to be explored. METHODS: To identify small regulatory RNAs underlying floral patterning, we performed a tissue-specific profiling of small RNAs in various floral organs from single and double flower varieties (flowers characterized by multiple layers of petals) in Camellia japonica. We identified cja-miR5179, which belongs to a deeply conserved microRNA family that is conserved between angiosperms and basal plants but frequently lost in eudicots. We characterized the molecular function of cja-miR5179 and its target - a B-function MADS-box gene - through gene expression analysis and transient expression assays. KEY RESULTS: We showed that cja-miR5179 is exclusively expressed in ovule tissues at the early stage of floral development. We found that cja-miR5179 targets the coding sequences of a DEFICIENS-like B-class gene (CjDEF) mRNA, which is located in the K motif of the MADS-box domain; and the target sites of miR5179/MADS-box were consistent in Camellia and orchids. Furthermore, through a petal transient-expression assay, we showed that the BASIC PENTACYSTEINE proteins bind to the GA-rich motifs in the cja-miR5179 promoter region and suppresses its expression. CONCLUSIONS: We propose that the regulation between miR5179 and a B-class MADS-box gene in C. japonica has a deep evolutionary origin before the separation of monocots and dicots. During floral development of C. japonica, cja-miR5179 is specifically expressed in the ovule, which may be required for the inhibition of CjDEF function. This work highlights the evolutionary conservation as well as functional divergence of small RNAs in floral development.


Assuntos
Camellia , MicroRNAs , MicroRNAs/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Camellia/genética , Camellia/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Evolução Molecular , Flores/fisiologia , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Planta ; 258(3): 65, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566145

RESUMO

MAIN CONCLUSION: Ectopic expression of Camellia oleifera Abel. gibberellin 20-oxidase 1 caused a taller phenotype, promoted secondary cell wall deposition, leaf enlargement, and early flowering, and reduced chlorophyll and anthocyanin accumulation and seed enlargement phenotype in Arabidopsis. Plant height and secondary cell wall (SCW) deposition are important plant traits. Gibberellins (GAs) play important roles in regulating plant height and SCWs deposition. Gibberellin 20-oxidase (GA20ox) is an important enzyme involved in GA biosynthesis. In the present study, we identified a GA synthesis gene in Camellia oleifera. The total length of the CoGA20ox1 gene sequence was 1146 bp, encoding 381 amino acids. Transgenic plants with CoGA20ox1 had a taller phenotype; a seed enlargement phenotype; promoted SCWs deposition, leaf enlargement, and early flowering; and reduced chlorophyll and anthocyanin accumulation. Genetic analysis showed that the mutant ga20ox1-3 Arabidopsis partially rescued the phenotype of CoGA20ox1 overexpression plants. The results showed that CoGA20ox1 participates in the growth and development of C. oleifera. The morphological changes in CoGA20ox1 overexpressed plants provide a theoretical basis for further exploration of GA biosynthesis and analysis of the molecular mechanism in C. oleifera.


Assuntos
Arabidopsis , Camellia , Arabidopsis/metabolismo , Camellia/genética , Camellia/metabolismo , Antocianinas/metabolismo , Expressão Ectópica do Gene , Giberelinas/metabolismo , Plantas Geneticamente Modificadas/genética , Parede Celular/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37511309

RESUMO

Camellia oleifera a member of the family Theaceae, is a phosphorus (P) tolerator native to southern China. The SPX gene family critically regulates plant growth and development and maintains phosphate (Pi) homeostasis. However, the involvement of SPX genes in Pi signaling in Tea-Oil Camellia remains unknown. In this work, 20 SPX genes were identified and categorized into four subgroups. Conserved domains, motifs, gene structure, chromosomal location and gene duplication events were also investigated in the SPX gene family. Defense and stress responsiveness cis-elements were identified in the SPX gene promoters, which participated in low-Pi stress responses. Based on transcriptome data and qRT-PCR results, nine CoSPX genes had similar expression patterns and eight genes (except CoPHO1H3) were up-regulated at 30 days after exposure to low-Pi stress. CoSPX-MFS3 was selected as a key candidate gene by WGCNA analysis. CoSPX-MFS3 was a tonoplast protein. Overexpression of CoSPX-MFS3 in Arabidopsis promoted the accumulation of total P content and decreased the anthocyanin content. Overexpression of CoSPX-MFS3 could enhance low-Pi tolerance by increased biomass and organic acid contents in transgenic Arabidopsis lines. Furthermore, the expression patterns of seven phosphate starvation genes were higher in transgenic Arabidopsis than those in the wild type. These results highlight novel physiological roles of the SPX family genes in C. oleifera under low-Pi stress, and lays the foundation for a deeper knowledge of the response mechanism of C. oleifera to low-Pi stress.


Assuntos
Arabidopsis , Camellia , Camellia/genética , Camellia/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Fosfatos/metabolismo , Chá , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
14.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511379

RESUMO

Camellia oil (CO) is a high medicinal and nutritional value edible oil. However, its ability to alleviate fat accumulation in high-fat Caenorhabditis elegans has not been well elucidated. Therefore, this study aimed to investigate the effect of CO on fat accumulation in high-fat C. elegans via transcriptome and metabolome analysis. The results showed that CO significantly reduced fat accumulation in high-fat C. elegans by 10.34% (Oil Red O method) and 11.54% (TG content method), respectively. Furthermore, CO primarily altered the transcription levels of genes involved in longevity regulating pathway. Specifically, CO decreased lipid storage in high-fat C. elegans by inhibiting fat synthesis. In addition, CO supplementation modulated the abundance of metabolic biomarkers related to pyrimidine metabolism and riboflavin metabolism. The integrated transcriptome and metabolome analyses indicated that CO supplementation could alleviate fat accumulation in high-fat C. elegans by regulating retinol metabolism, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, ascorbate and aldarate metabolism, and pentose and glucuronate interconversions. Overall, these findings highlight the potential health benefits of CO that could potentially be used as a functional edible oil.


Assuntos
Proteínas de Caenorhabditis elegans , Camellia , Animais , Caenorhabditis elegans/metabolismo , Transcriptoma , Camellia/genética , Camellia/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo dos Lipídeos , Metaboloma
15.
Food Chem ; 414: 135681, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827778

RESUMO

Emulsification is the practical limitation of aqueous enzymatic extractions of Camellia oils. This study aimed to investigate the influence and demulsification mechanisms of isopropanol ultrasonic pretreatments and Ca2+ additions on aqueous enzymatic extractions of Camellia oils. Combining isopropanol ultrasonic pretreatments with Ca2+ flow additions obtained the highest free oil recovery (78.03 %) and lowest emulsion content (1.5 %). Results indicated that the superior demulsification performance originated from the decrease in emulsion stabilities and formations. First, demulsification pretreatments reduced the oil (14.69 %) and solid (13.21 %) fractions in emulsions to decrease the stability of as-formed emulsions. Meanwhile, isopropanol ultrasonic pretreatments extracted tea saponins (0.38 mg/mL) and polysaccharides (0.23 mg/mL), while Ca2+ combined with protein isolates (5.82 mg/mL), tea saponins (7.48 mg/mL) and polysaccharides (0.78 mg/mL) to form precipitates and reduce emulsion formation. This work could promote the practical application of aqueous enzymatic extractions of Camellia oils and enlighten the rise of advanced demulsification pretreatments.


Assuntos
Camellia , Camellia/metabolismo , 2-Propanol , Óleos de Plantas/metabolismo , Emulsões , Ultrassom , Sementes/metabolismo , Chá
16.
Food Chem ; 402: 134198, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116277

RESUMO

Oil body (OB) is the lipid-storage organelle in oilseed, and its stability is crucial for oilseed processing. Herein, effects of roasting and boiling on the structure, stability, and in vitro lipid digestion of Camellia OB were studied. The interfacial structure and physical stability of the extracted OB were investigated by electrophoresis, confocal-Raman spectroscopy, zeta-potential, and surface hydrophobicity, etc. Boiling caused protein loss on the OB surfaces, forming a stable phospholipid interface, which resulted in coalescence of the droplets (d > 100 µm) and negative ζ-potential (-3 âˆ¼ -8 mV) values at a pH of 2.0. However, roasting partially denatured the proteins in the seeds, which were adsorbed on the OB surfaces. The random coil structure of interfacial protein increased to ∼20 % after thermal treatment. Besides, heating decreased the surface hydrophobicity of OB and improved lipid digestion. After boiling 60 min, the extent of lipolysis increased from 41.7 % (raw) to 57.4 %.


Assuntos
Camellia , Gotículas Lipídicas , Gotículas Lipídicas/química , Camellia/metabolismo , Óleos de Plantas/química , Digestão , Fosfolipídeos/análise , Emulsões/química
17.
Plant Mol Biol ; 111(3): 249-262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36371768

RESUMO

Flower color is a trait that affects the ornamental value of a plant. Camellia sasanqua is a horticultural plant with rich flower color, but little is known about the regulatory mechanism of color diversity in this plant. Here, the anthocyanin profile of 20 C. sasanqua cultivars revealed and quantified 11 anthocyanin derivatives (five delphinidin-based and six cyanidin-based anthocyanins) for the first time. Cyanidin-3-O-(6-O-(E)-p-coumaroyl)-glucoside was the main contributor to flower base color, and the accumulation of cyanidin and delphinidin derivatives differed in the petals. To further explore the molecular mechanism of color divergence, a transcriptome analysis was performed using C. sasanqua cultivars 'YingYueYe', 'WanXia', 'XueYueHua', and'XiaoMeiGui'. The co-expression network related to differences in delphinidin and cyanidin derivatives accumulation was identified. Eleven candidate genes encoding key enzymes (e.g., F3H, F3'H, and ANS) were involved in anthocyanin biosynthesis. Moreover, 27 transcription factors were screened as regulators of the two types of accumulating anthocyanins. The association was suggested by correlation analysis between the expression levels of the candidate genes and the different camellia cultivars. We concluded that cyanidin and delphinidin derivatives are the major drivers of color diversity in C. sasanqua. This finding provides valuable resources for the study of flower color in C. sasanqua and lays a foundation for genetic modification of anthocyanin biosynthesis.


Assuntos
Camellia , Camellia/genética , Camellia/metabolismo , Antocianinas , Perfilação da Expressão Gênica , Flores/genética , Pigmentação/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas
18.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361817

RESUMO

Floral initiation is a major phase change in the spermatophyte, where developmental programs switch from vegetative growth to reproductive growth. It is a key phase of flowering in tea-oil trees that can affect flowering time and yield, but very little is known about the molecular mechanism of floral initiation in tea-oil trees. A 12-year-old Camellia oleifera (cultivar 'changlin53') was the source of experimental materials in the current study. Scanning electron microscopy was used to identify the key stage of floral initiation, and transcriptome analysis was used to reveal the transcriptional regulatory network in old leaves involved in floral initiation. We mined 5 DEGs related to energy and 55 DEGs related to plant hormone signal transduction, and we found floral initiation induction required a high level of energy metabolism, and the phytohormones signals in the old leaves regulate floral initiation, which occurred at stage I and II. Twenty-seven rhythm-related DEGs and 107 genes associated with flowering were also identified, and the circadian rhythm interacted with photoperiod pathways to induce floral initiation. Unigene0017292 (PSEUDO-RESPONSE REGULATOR), Unigene0046809 (LATE ELONGATED HYPOCOTYL), Unigene0009932 (GIGANTEA), Unigene0001842 (CONSTANS), and Unigene0084708 (FLOWER LOCUS T) were the key genes in the circadian rhythm-photoperiod regulatory network. In conjunction with morphological observations and transcriptomic analysis, we concluded that the induction of floral initiation by old leaves in C. oleifera 'changlin53' mainly occurred during stages I and II, floral initiation was completed during stage III, and rhythm-photoperiod interactions may be the source of the main signals in floral initiation induced by old leaves.


Assuntos
Camellia , Camellia/genética , Camellia/metabolismo , Árvores/genética , Perfilação da Expressão Gênica , Flores/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Chá/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas
19.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233104

RESUMO

Drought stress is considered the main obstacle restricting Camellia vietnamensis Huang (C. vietnamensis) yield. Hainan is the southernmost distribution region of C. vietnamensis in China and experiences a drought period annually. To study the drought-stress-response mechanism of C. vietnamensis, we treated seedlings of drought-tolerant (HD1) and drought-sensitive (WH1) cultivars with PEG-6000 (PEG) to simulate drought stress and compared the physiology and transcriptome of their leaves at 0 d, 3 d and 6 d posttreatment. Under drought stress, the growth of C. vietnamensis was inhibited, the relative water content (RWC) of leaves decreased and the contents of malondialdehyde (MDA), antioxidant enzyme activities, osmotic regulatory substances and secondary metabolites increased. Compared with those of WH1, the leaf RWC, osmotic-regulation substance content (proline, soluble protein and soluble sugar) and antioxidant enzyme activity (superoxide dismutase, peroxidase and catalase) of HD1 were significantly increased, while the relative electrical conductivity and MDA content were significantly decreased. Compared with WH1, 2812, 2070 and 919, differentially expressed genes (DEGs) were detected in HD1 0 d, 3 d and 6 d posttreatment, respectively, and the number of DEGs increased with increasing treatment time. The detected DEGs are involved in the drought stress response of C. vietnamensis mainly through plant-hormone signal transduction and lignin and flavonoid biosynthesis pathways. Drought stress significantly activated the expression of several lignin and flavonoid biosynthesis genes in HD1. Moreover, total flavonoid and total polyphenol contents in HD1 were significantly increased, suggesting that the accumulation of flavonoids may be a key factor in the drought stress response of C. vietnamensis. Additionally, 191 DEGs were associated with coding transcription factors (TFs). This study provides insight into the molecular mechanism of the drought stress response of C. vietnamensis and provides a theoretical basis for the development and cultivation of new drought-resistant cultivars.


Assuntos
Camellia , Secas , Antioxidantes/metabolismo , Camellia/genética , Camellia/metabolismo , Catalase , Hormônios , Lignina , Malondialdeído/metabolismo , Polifenóis , Prolina/metabolismo , Estresse Fisiológico/genética , Açúcares , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Água/metabolismo
20.
J Plant Physiol ; 278: 153814, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36179398

RESUMO

Tea-oil tree (Camellia oleifera Abel) is an important woody oil crop with high economic value. However, it has low photosynthetic production considering the low light intensity of its growth environment. To understand the acclimation mechanism of tea-oil trees to low light conditions, three light intensity treatments were conducted: high light (450-500 µmol. m-2. s-1), medium light (180-200 µmol. m-2. s-1), and low light (45-50 µmol. m-2. s-1). The carbon (C) and nitrogen (N) metabolism network were constructed by investigating the leaf anatomy, photosynthetic characteristics, N partitioning, transcriptome and metabolome. Results demonstrated that a larger proportion light energy was used for photochemical reactions in an environment with lower light intensity, which resulted in an increase in photosystem II photochemical efficiency and instantaneous light use efficiency (LUE) at the leaf level. As the light intensity increased, decreased electron transfer and carboxylation efficiencies, photorespiration and dark respiration rates, LUE at plant level, and N use efficiency (PNUE) were observed. Leaves trended to harvest more light using higher expression levels of light-harvesting protein genes, higher chlorophyll content, more granum and more tightly stacked granum lamella under lower light intensity. At transcriptional and metabolic levels, the TCA cycle, and the synthesis of starch and saccharides were weakened as light intensity decreased, while the Calvin cycle did not show the regularity between different treatments. Less N was distributed in Rubisco, respiration, and cell wall proteins as light decreased. Storage N was prominently accumulated in forms of amino acids (especially L-arginine) and amino acid derivatives as under medium and low light environments, to make up for C deficiency. Therefore, tea-oil trees actively improve light-harvesting capacity and enlarges the storage N pool to adapt to a low light environment, at the cost of a decrease of photosynthetic C assimilation and PNUE.


Assuntos
Camellia , Ribulose-Bifosfato Carboxilase , Aclimatação , Aminoácidos/metabolismo , Arginina/metabolismo , Camellia/metabolismo , Carbono/metabolismo , Clorofila/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Amido/metabolismo , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...