Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 702
Filtrar
1.
BMC Microbiol ; 24(1): 306, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152378

RESUMO

BACKGROUND: Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly found in cereals and grains worldwide. The presence of this fungal secondary-metabolite raises public-health concerns at both the agriculture and food industry level. Recently, we have shown that DON has a negative impact on gut integrity, a feature also noticed for Campylobacter (C.) jejuni. We further demonstrated that DON increased the load of C. jejuni in the gut and inner organs. In contrast, feeding the less toxic DON metabolite deepoxy-deoxynivalenol (DOM-1) to broilers reduced the Campylobacter load in vivo. Consequently, it can be hypothesized that DON and DOM-1 have a direct effect on the growth profile of C. jejuni. The aim of the present study was to further resolve the nature of this interaction in vitro by co-incubation and RNA-sequencing. RESULTS: The co-incubation of C. jejuni with DON resulted in significantly higher bacterial growth rates from 30 h of incubation onwards. On the contrary, the co-incubation of C. jejuni with DOM-1 reduced the CFU counts, indicating that this DON metabolite might contribute to reduce the burden of C. jejuni in birds, altogether confirming in vivo data. Furthermore, the transcriptomic profile of C. jejuni following incubation with either DON or DOM-1 differed. Co-incubation of C. jejuni with DON significantly increased the expression of multiple genes which are critical for Campylobacter growth, particularly members of the Flagella gene family, frr (ribosome-recycling factor), PBP2 futA-like (Fe3+ periplasmic binding family) and PotA (ATP-binding subunit). Flagella are responsible for motility, biofilm formation and host colonization, which may explain the high Campylobacter load in the gut of DON-fed broiler chickens. On the contrary, DOM-1 downregulated the Flagella gene family and upregulated ribosomal proteins. CONCLUSION: The results highlight the adaptive mechanisms involved in the transcriptional response of C. jejuni to DON and its metabolite DOM-1, based on the following effects: (a) ribosomal proteins; (b) flagellar proteins; (c) engagement of different metabolic pathways. The results provide insight into the response of an important intestinal microbial pathogen against DON and lead to a better understanding of the luminal or environmental acclimation mechanisms in chickens.


Assuntos
Campylobacter jejuni , Galinhas , Transcriptoma , Tricotecenos , Tricotecenos/metabolismo , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/genética , Campylobacter jejuni/crescimento & desenvolvimento , Campylobacter jejuni/metabolismo , Animais , Transcriptoma/efeitos dos fármacos , Galinhas/microbiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Ração Animal/microbiologia
2.
Commun Biol ; 7(1): 984, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138305

RESUMO

Heme trafficking is essential for cellular function, yet mechanisms of transport and/or heme interaction are not well defined. The System I and System II bacterial cytochrome c biogenesis pathways are developing into model systems for heme trafficking due to their functions in heme transport, heme stereospecific positioning, and mediation of heme attachment to apocytochrome c. Here we focus on the System II pathway, CcsBA, that is proposed to be a bi-functional heme transporter and holocytochrome c synthase. An extensive structure-function analysis of recombinantly expressed Helicobacter pylori and Campylobacter jejuni CcsBAs revealed key residues required for heme interaction and holocytochrome c synthase activity. Homologous residues were previously identified to be required for heme interaction in Helicobacter hepaticus CcsBA. This study provides direct, biochemical evidence that mechanisms of heme interaction are conserved, leading to the proposal that the CcsBA WWD heme-handling domain represents a novel target for therapeutics.


Assuntos
Proteínas de Bactérias , Campylobacter jejuni , Helicobacter pylori , Heme , Heme/metabolismo , Helicobacter pylori/enzimologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Relação Estrutura-Atividade , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ligação Proteica , Modelos Moleculares , Liases
3.
mSystems ; 9(8): e0078424, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38980050

RESUMO

Campylobacter jejuni and Arcobacter butzleri are microaerobic food-borne human gastrointestinal pathogens that mainly cause diarrheal disease. These related species of the Campylobacteria class face variable atmospheric environments during infection and transmission, ranging from nearly anaerobic to aerobic conditions. Consequently, their lifestyles require that both pathogens need to adjust their metabolism and respiration to the changing oxygen concentrations of the colonization sites. Our transcriptomic and proteomic studies revealed that C. jejuni and A. butzleri, lacking a Campylobacteria-specific regulatory protein, C. jejuni Cj1608, or a homolog, A. butzleri Abu0127, are unable to reprogram tricarboxylic acid cycle or respiration pathways, respectively, to produce ATP efficiently and, in consequence, adjust growth to changing oxygen supply. We propose that these Campylobacteria energy and metabolism regulators (CemRs) are long-sought transcription factors controlling the metabolic shift related to oxygen availability, essential for these bacteria's survival and adaptation to the niches they inhabit. Besides their significant universal role in Campylobacteria, CemRs, as pleiotropic regulators, control the transcription of many genes, often specific to the species, under microaerophilic conditions and in response to oxidative stress. IMPORTANCE: C. jejuni and A. butzleri are closely related pathogens that infect the human gastrointestinal tract. In order to infect humans successfully, they need to change their metabolism as nutrient and respiratory conditions change. A regulator called CemR has been identified, which helps them adapt their metabolism to changing conditions, particularly oxygen availability in the gastrointestinal tract so that they can produce enough energy for survival and spread. Without CemR, these bacteria, as well as a related species, Helicobacter pylori, produce less energy, grow more slowly, or, in the case of C. jejuni, do not grow at all. Furthermore, CemR is a global regulator that controls the synthesis of many genes in each species, potentially allowing them to adapt to their ecological niches as well as establish infection. Therefore, the identification of CemR opens new possibilities for studying the pathogenicity of C. jejuni and A. butzleri.


Assuntos
Proteínas de Bactérias , Campylobacter jejuni , Metabolismo Energético , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Campylobacter jejuni/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidade , Metabolismo Energético/fisiologia , Arcobacter/metabolismo , Arcobacter/genética , Arcobacter/patogenicidade , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
4.
Microb Pathog ; 193: 106766, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942248

RESUMO

Campylobacter jejuni is one of the major causes of bacterial gastrointestinal disease in humans worldwide. This foodborne pathogen colonizes the intestinal tracts of chickens, and consumption of chicken and poultry products is identified as a common route of transmission. We analyzed two C. jejuni strains after oral challenge with 105 CFU/ml of C. jejuni per chick; one strain was a robust colonizer (A74/C) and the other a poor colonizer (A74/O). We also found extensive phenotypic differences in growth rate, biofilm production, and in vitro adherence, invasion, intracellular survival, and transcytosis. Strains A74/C and A74/O were genotypically similar with respect to their whole genome alignment, core genome, and ribosomal MLST, MLST, flaA, porA, and PFGE typing. The global proteomes of the two congenic strains were quantitatively analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and 618 and 453 proteins were identified from A74/C and A74/O isolates, respectively. Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that carbon metabolism and motility proteins were distinctively overexpressed in strain A74/C. The robust colonizer also exhibited a unique proteome profile characterized by significantly increased expression of proteins linked to adhesion, invasion, chemotaxis, energy, protein synthesis, heat shock proteins, iron regulation, two-component regulatory systems, and multidrug efflux pump. Our study underlines phenotypic, genotypic, and proteomic variations of the poor and robust colonizing C. jejuni strains, suggesting that several factors may contribute to mediating the different colonization potentials of the isogenic isolates.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias , Biofilmes , Infecções por Campylobacter , Campylobacter jejuni , Galinhas , Genótipo , Fenótipo , Proteoma , Proteômica , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Campylobacter jejuni/crescimento & desenvolvimento , Animais , Galinhas/microbiologia , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Biofilmes/crescimento & desenvolvimento , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doenças das Aves Domésticas/microbiologia , Tipagem de Sequências Multilocus , Espectrometria de Massas em Tandem , Genoma Bacteriano/genética
5.
Nat Commun ; 15(1): 5240, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897989

RESUMO

Like for many bacteria, flagella are crucial for Campylobacter jejuni motility and virulence. Biogenesis of the flagellar machinery requires hierarchical transcription of early, middle (RpoN-dependent), and late (FliA-dependent) genes. However, little is known about post-transcriptional regulation of flagellar biogenesis by small RNAs (sRNAs). Here, we characterized two sRNAs with opposing effects on C. jejuni filament assembly and motility. We demonstrate that CJnc230 sRNA (FlmE), encoded downstream of the flagellar hook protein, is processed from the RpoN-dependent flgE mRNA by RNase III, RNase Y, and PNPase. We identify mRNAs encoding a flagella-interaction regulator and the anti-sigma factor FlgM as direct targets of CJnc230 repression. CJnc230 overexpression upregulates late genes, including the flagellin flaA, culminating in longer flagella and increased motility. In contrast, overexpression of the FliA-dependent sRNA CJnc170 (FlmR) reduces flagellar length and motility. Overall, our study demonstrates how the interplay of two sRNAs post-transcriptionally fine-tunes flagellar biogenesis through balancing of the hierarchically-expressed components.


Assuntos
Proteínas de Bactérias , Campylobacter jejuni , Flagelos , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano , Pequeno RNA não Traduzido , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Flagelos/genética , Flagelos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Flagelina/metabolismo , Flagelina/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Ribonuclease III/metabolismo , Ribonuclease III/genética
6.
ACS Chem Biol ; 19(7): 1570-1582, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38934647

RESUMO

N-linked glycosylation plays a key role in the efficacy of many therapeutic proteins. One limitation to the bacterial glycoengineering of human N-linked glycans is the difficulty of installing a single N-acetylglucosamine (GlcNAc), the reducing end sugar of many human-type glycans, onto asparagine in a single step (N-GlcNAcylation). Here, we develop an in vitro method for N-GlcNAcylating proteins using the oligosaccharyltransferase PglB from Campylobacter jejuni. We use cell-free protein synthesis (CFPS) to test promiscuous PglB variants previously reported in the literature for the ability to produce N-GlcNAc and successfully determine that PglB with an N311V mutation (PglBN311V) exhibits increased GlcNAc transferase activity relative to the wild-type enzyme. We then improve the transfer efficiency by producing CFPS extracts enriched with PglBN311V and further optimize the reaction conditions, achieving a 98.6 ± 0.5% glycosylation efficiency. We anticipate this method will expand the glycoengineering toolbox for therapeutic research and biomanufacturing.


Assuntos
Acetilglucosamina , Campylobacter jejuni , Sistema Livre de Células , Glicoproteínas , Hexosiltransferases , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Glicosilação , Glicoproteínas/metabolismo , Glicoproteínas/genética , Glicoproteínas/química , Acetilglucosamina/metabolismo , Acetilglucosamina/química , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética
7.
Biochem Biophys Res Commun ; 723: 150166, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38810321

RESUMO

CorA is a Mg2+ channel that plays a key role in the homeostasis of intracellular Mg2+ in bacteria and archaea. CorA consists of a cytoplasmic domain and a transmembrane domain and generates a Mg2+ pathway by forming a pentamer in the cell membrane. CorA gating is regulated via negative feedback by Mg2+, which is accommodated by the pentamerization interface of the CorA cytoplasmic domain (CorACD). The Mg2+-binding sites of CorACD differ depending on the species, suggesting that the Mg2+-binding modes and Mg2+-mediated gating mechanisms of CorA vary across prokaryotes. To define the Mg2+-binding mechanism of CorA in the Campylobacter jejuni pathogen, we structurally and biochemically characterized C. jejuni CorACD (cjCorACD). cjCorACD adopts a three-layered α/ß/α structure as observed in other CorA orthologs. Interestingly, cjCorACD exhibited enhanced thermostability in the presence of Ca2+, Ni2+, Zn2+, or Mn2+ in addition to Mg2+, indicating that cjCorACD interacts with diverse divalent cations. This cjCorACD stabilization is mediated by divalent cation accommodation by negatively charged residues located at the bottom of the cjCorACD structure away from the pentamerization interface. Consistently, cjCorACD exists as a monomer irrespective of the presence of divalent cations. We concluded that cjCorACD binds divalent cations in a unique pentamerization-independent manner.


Assuntos
Proteínas de Bactérias , Campylobacter jejuni , Cátions Bivalentes , Magnésio , Campylobacter jejuni/metabolismo , Campylobacter jejuni/química , Cátions Bivalentes/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Magnésio/metabolismo , Magnésio/química , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Domínios Proteicos , Cristalografia por Raios X , Estabilidade Proteica
8.
BMC Microbiol ; 24(1): 191, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822261

RESUMO

BACKGROUND: The main natural reservoir for Campylobacter jejuni is the avian intestinal tract. There, C. jejuni multiplies optimally at 42 °C - the avian body temperature. After infecting humans through oral intake, the bacterium encounters the lower temperature of 37 °C in the human intestinal tract. Proteome profiling by label-free mass spectrometry (DIA-MS) was performed to examine the processes which enable C. jejuni 81-176 to thrive at 37 °C in comparison to 42 °C. In total, four states were compared with each other: incubation for 12 h at 37 °C, for 24 h at 37 °C, for 12 h at 42 °C and 24 h at 42 °C. RESULTS: It was shown that the proteomic changes not only according to the different incubation temperature but also to the length of the incubation period were evident when comparing 37 °C and 42 °C as well as 12 h and 24 h of incubation. Altogether, the expression of 957 proteins was quantifiable. 37.1 - 47.3% of the proteins analyzed showed significant differential regulation, with at least a 1.5-fold change in either direction (i.e. log2 FC ≥ 0.585 or log2 FC ≤ -0.585) and an FDR-adjusted p-value of less than 0.05. The significantly differentially expressed proteins could be arranged in 4 different clusters and 16 functional categories. CONCLUSIONS: The C. jejuni proteome at 42 °C is better adapted to high replication rates than that at 37 °C, which was in particular indicated by the up-regulation of proteins belonging to the functional categories "replication" (e.g. Obg, ParABS, and NapL), "DNA synthesis and repair factors" (e.g. DNA-polymerase III, DnaB, and DnaE), "lipid and carbohydrate biosynthesis" (e.g. capsular biosynthesis sugar kinase, PrsA, AccA, and AccP) and "vitamin synthesis, metabolism, cofactor biosynthesis" (e.g. MobB, BioA, and ThiE). The relative up-regulation of proteins with chaperone function (GroL, DnaK, ClpB, HslU, GroS, DnaJ, DnaJ-1, and NapD) at 37 °C in comparison to 42 °C after 12 h incubation indicates a temporary lower-temperature proteomic response. Additionally the up-regulation of factors for DNA uptake (ComEA and RecA) at 37 °C compared to 42 °C indicate a higher competence for the acquisition of extraneous DNA at human body temperature.


Assuntos
Proteínas de Bactérias , Campylobacter jejuni , Proteoma , Proteômica , Campylobacter jejuni/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/química , Proteoma/análise , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteômica/métodos , Espectrometria de Massas/métodos , Regulação Bacteriana da Expressão Gênica , Temperatura , Humanos
9.
Front Cell Infect Microbiol ; 14: 1391758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716194

RESUMO

Campylobacter jejuni, a Gram-negative bacterium, is one of the most common causes of foodborne illness worldwide. Its adhesion mechanism is mediated by several bacterial factors, including flagellum, protein adhesins, lipooligosaccharides, proteases, and host factors, such as surface glycans on epithelial cells and mucins. Fungal lectins, specialized carbohydrate-binding proteins, can bind to specific glycans on host and bacterial cells and thus influence pathogenesis. In this study, we investigated the effects of fungal lectins and protease inhibitors on the adhesion of C. jejuni to model biotic surfaces (mucin, fibronectin, and collagen) and Caco-2 cells as well as the invasion of Caco-2 cells. The lectins Marasmius oreades agglutinin (MOA) and Laccaria bicolor tectonin 2 (Tec2) showed remarkable efficacy in all experiments. In addition, different pre-incubations of lectins with C. jejuni or Caco-2 cells significantly inhibited the ability of C. jejuni to adhere to and invade Caco-2 cells, but to varying degrees. Pre-incubation of Caco-2 cells with selected lectins reduced the number of invasive C. jejuni cells the most, while simultaneous incubation showed the greatest reduction in adherent C. jejuni cells. These results suggest that fungal lectins are a promising tool for the prevention and treatment of C. jejuni infections. Furthermore, this study highlights the potential of fungi as a rich reservoir for novel anti-adhesive agents.


Assuntos
Aderência Bacteriana , Campylobacter jejuni , Lectinas , Inibidores de Proteases , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/fisiologia , Campylobacter jejuni/metabolismo , Humanos , Células CACO-2 , Aderência Bacteriana/efeitos dos fármacos , Lectinas/metabolismo , Lectinas/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Fungos/efeitos dos fármacos , Mucinas/metabolismo , Células Epiteliais/microbiologia , Fibronectinas/metabolismo
10.
PLoS One ; 19(5): e0303856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787822

RESUMO

This study investigates the impact of casein hydrolysates on the poultry ceca inoculated with Campylobacter focusing on microbial molecular preferences for different protein sources in the presence of Campylobacter jejuni. Three casein sources (intact casein (IN), casein enzyme hydrolysate (EH), and casein acid hydrolysate (AH)) were introduced to cecal contents in combination with inoculated C. jejuni in an in vitro model system incubated for 48 h at 42°C under microaerophilic conditions. Samples were collected at 0, 24, and 48 h. Genomic DNA was extracted and amplified using custom dual-indexed primers, followed by sequencing on an Illumina MiSeq platform. The obtained sequencing data were then analyzed via QIIME2-2021.11. Metabolite extracts were analyzed with ultra-high-performance liquid orbitrap chromatography-mass spectrometry (UHPLC-MS). Statistical analysis of metabolites was conducted using MetaboAnalyst 5.0, while functional analysis was performed using Mummichog 2.0 with a significance threshold set at P < 0.00001. DNA sequencing and metabolomic analyses revealed that C. jejuni was most abundant in the EH group. Microbial diversity and richness improved in casein supplemented groups, with core microbial differences observed, compared to non-supplemented groups. Vitamin B-associated metabolites significantly increased in the supplemented groups, displaying distinct patterns in vitamin B6 and B9 metabolism between EH and AH groups (P < 0.05). Faecalibacterium and Phascolarctobacterium were associated with AH and EH groups, respectively. These findings suggest microbial interactions in the presence of C. jejuni and casein supplementation are influenced by microbial community preferences for casein hydrolysates impacting B vitamin production and shaping competitive dynamics within the cecal microbial community. These findings underscore the potential of nutritional interventions to modulate the poultry GIT microbiota for improved health outcomes.


Assuntos
Campylobacter jejuni , Caseínas , Ceco , Metaboloma , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/metabolismo , Animais , Ceco/microbiologia , Ceco/metabolismo , Ceco/efeitos dos fármacos , Caseínas/metabolismo , Metaboloma/efeitos dos fármacos , Galinhas/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Aves Domésticas/microbiologia
11.
J Sci Food Agric ; 104(9): 5474-5485, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38391155

RESUMO

BACKGROUND: Campylobacter jejuni (C. jejuni), a widely distributed global foodborne pathogen, primarily linked with contaminated chicken meat, poses a significant health risk. Reducing the abundance of this pathogen in poultry meat is challenging but essential. This study assessed the impact of Lactobacillus-fermented rapeseed meal (LFRM) on broilers exposed to C. jejuni-contaminated litter, evaluating growth performance, Campylobacter levels, and metagenomic profile. RESULTS: By day 35, the litter contamination successfully colonized broilers with Campylobacter spp., particularly C. jejuni. In the grower phase, LFRM improved (P < 0.05) body weight and daily weight gain, resulting in a 9.2% better feed conversion ratio during the pre-challenge period (the period before artificial infection; days 13-20). The LFRM also reduced the C. jejuni concentration in the ceca (P < 0.05), without altering alpha and beta diversity. However, metagenomic data analysis revealed LFRM targeted a reduction in the abundance of C. jejuni biosynthetic pathways of l-tryptophan and l-histidine and gene families associated with transcription and virulence factors while also possibly leading to selected stress-induced resistance mechanisms. CONCLUSION: The study demonstrated that LFRM inclusion improved growth and decreased cecal Campylobacter spp. concentration and the relative abundance of pivotal C. jejuni genes. Performance benefits likely resulted from LFRM metabolites. At the molecular level, LFRM may have reduced C. jejuni colonization, likely by decreasing the abundance of energy transduction and l-histidine and l-tryptophan biosynthesis genes otherwise required for bacterial survival and increased virulence. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ração Animal , Infecções por Campylobacter , Campylobacter jejuni , Ceco , Galinhas , Fermentação , Histidina , Lactobacillus , Triptofano , Animais , Galinhas/microbiologia , Ração Animal/análise , Campylobacter jejuni/metabolismo , Ceco/microbiologia , Ceco/metabolismo , Triptofano/metabolismo , Lactobacillus/metabolismo , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Histidina/metabolismo , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Vias Biossintéticas , Suplementos Nutricionais/análise , Brassica rapa/microbiologia , Brassica rapa/química , Brassica napus/microbiologia
12.
Carbohydr Res ; 536: 109058, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354653

RESUMO

Campylobacters are important causes of gastrointestinal illness and the capsular polysaccharides (CPS) they produce are key virulence factors and targets for vaccine development. We report here the synthesis of two fragments of the Campylobacter jejuni CG8486 strain CPS that contain a rare 6-deoxy-d-ido-heptopyranose residue and, in one target, two O-methyl phosphoramidate (MeOPN) motifs. The synthetic approach features the stereoselective construction of the ß-d-ido-heptopyranoside linkage via glycosylation with a ß-d-galacto-heptopyranoside donor followed by a one-pot sequential C-2 and C-3 inversion. During the syntheses, we uncovered a number of interesting conformational effects with regard to the 6-deoxy-ido-heptopyranose ring, the glycosidic linkage connecting the two monosaccharides, and the MeOPN groups.


Assuntos
Campylobacter jejuni , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Campylobacter jejuni/química , Campylobacter jejuni/metabolismo , Monossacarídeos , Glicosilação
13.
Int J Biol Macromol ; 264(Pt 1): 130388, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417756

RESUMO

Among the major Surface Exposed Colonization Proteins (SECPs) of Campylobacter jejuni (C. jejuni), Jejuni lipoprotein A (JlpA) plays a crucial role in host cell adhesion specifically by binding to the N-terminal domain of the human heat shock protein 90α (Hsp90α-NTD). Although the JlpA binding to Hsp90α activates NF-κB and p38 MAP kinase pathways, the underlying mechanism of JlpA association with the cellular receptor remains unclear. To this end, we predicted two potential receptor binding sites within the C-terminal domain of JlpA: one spanning from amino acid residues Q332-A354 and the other from S258-T295; however, the latter exhibited weaker binding. To assess the functional attributes of these predicted sequences, we generated two JlpA mutants (JlpAΔ1: S258-T295; JlpAΔ2: Q332-A354) and assessed the Hsp90α-binding affinity-kinetics by in vitro and ex vivo experiments. Our findings confirmed that the residues Q332-A354 are of greater importance in host cell adhesion with a measurable impact on cellular responses. Further, thermal denaturation by circular dichroism (CD) confirmed that the reduced binding affinity of the JlpAΔ2 to Hsp90α is not associated with protein folding or stability. Together, this study provides a possible framework for determining the molecular function of designing rational inhibitors efficiently targeting JlpA.


Assuntos
Campylobacter jejuni , Lipoproteína(a) , Humanos , Lipoproteína(a)/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Ligantes , Proteínas de Choque Térmico/metabolismo , NF-kappa B/metabolismo
14.
Cells ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334616

RESUMO

Fundamental functions of the intestinal epithelium include the digestion of food, absorption of nutrients, and its ability to act as the first barrier against intruding microbes. Campylobacter jejuni is a major zoonotic pathogen accounting for a substantial portion of bacterial foodborne illnesses. The germ colonizes the intestines of birds and is mainly transmitted to humans through the consumption of contaminated poultry meat. In the human gastrointestinal tract, the bacterium triggers campylobacteriosis that can progress to serious secondary disorders, including reactive arthritis, inflammatory bowel disease and Guillain-Barré syndrome. We recently discovered that C. jejuni serine protease HtrA disrupts intestinal epithelial barrier functions via cleavage of the tight and adherens junction components occludin, claudin-8 and E-cadherin. However, it is unknown whether epithelial damage is mediated by the secreted soluble enzyme, by HtrA contained in shed outer-membrane vesicles (OMVs) or by another mechanism that has yet to be identified. In the present study, we investigated whether soluble recombinant HtrA and/or purified OMVs induce junctional damage to polarized intestinal epithelial cells compared to live C. jejuni bacteria. By using electron and confocal immunofluorescence microscopy, we show that HtrA-expressing C. jejuni bacteria trigger efficient junctional cell damage, but not soluble purified HtrA or HtrA-containing OMVs, not even at high concentrations far exceeding physiological levels. Instead, we found that only bacteria with active protein biosynthesis effectively cleave junctional proteins, which is followed by paracellular transmigration of C. jejuni through the epithelial cell layer. These findings shed new light on the pathogenic activities of HtrA and virulence strategies of C. jejuni.


Assuntos
Campylobacter jejuni , Humanos , Campylobacter jejuni/metabolismo , Serina Proteases/metabolismo , Serina Endopeptidases/metabolismo , Bactérias/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo
15.
BMC Microbiol ; 24(1): 46, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302896

RESUMO

BACKGROUND: Campylobacter jejuni and Campylobacter coli are the major causative agents of bacterial gastroenteritis worldwide and are known obligate microaerophiles. Despite being sensitive to oxygen and its reduction products, both species are readily isolated from animal food products kept under atmospheric conditions where they face high oxygen tension levels. RESULTS: In this study, Transposon Directed Insertion-site Sequencing (TraDIS) was used to investigate the ability of one C. jejuni strain and two C. coli strains to overcome oxidative stress, using H2O2 to mimic oxidative stress. Genes were identified that were required for oxidative stress resistance for each individual strain but also allowed a comparison across the three strains. Mutations in the perR and ahpC genes were found to increase Campylobacter tolerance to H2O2. The roles of these proteins in oxidative stress were previously known in C. jejuni, but this data indicates that they most likely play a similar role in C. coli. Mutation of czcD decreased Campylobacter tolerance to H2O2. The role of CzcD, which functions as a zinc exporter, has not previously been linked to oxidative stress. The TraDIS data was confirmed using defined deletions of perR and czcD in C. coli 15-537360. CONCLUSIONS: This is the first study to investigate gene fitness in both C. jejuni and C. coli under oxidative stress conditions and highlights both similar roles for certain genes for both species and highlights other genes that have a role under oxidative stress.


Assuntos
Infecções por Campylobacter , Campylobacter coli , Campylobacter jejuni , Animais , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Campylobacter coli/genética , Campylobacter coli/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estresse Oxidativo/genética , Oxigênio/metabolismo , Infecções por Campylobacter/microbiologia
16.
Front Cell Infect Microbiol ; 13: 1289359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035327

RESUMO

Cytolethal distending toxins (CDTs) are intracellular-acting bacterial genotoxins generated by a diverse group of mucocutaneous human pathogens. CDTs must successfully bind to the plasma membrane of host cells in order to exert their modulatory effects. Maximal toxin activity requires all three toxin subunits, CdtA, CdtB, and CdtC, which, based primarily on high-resolution structural data, are believed to preassemble into a tripartite complex necessary for toxin activity. However, biologically active toxin has not been experimentally demonstrated to require assembly of the three subunits into a heterotrimer. Here, we experimentally compared concentration-dependent subunit interactions and toxin cellular activity of the Campylobacter jejuni CDT (Cj-CDT). Co-immunoprecipitation and dialysis retention experiments provided evidence for the presence of heterotrimeric toxin complexes, but only at concentrations of Cj-CdtA, Cj-CdtB, and Cj-CdtC several logs higher than required for Cj-CDT-mediated arrest of the host cell cycle at the G2/M interface, which is triggered by the endonuclease activity associated with the catalytic Cj-CdtB subunit. Microscale thermophoresis confirmed that Cj-CDT subunit interactions occur with low affinity. Collectively, our data suggest that at the lowest concentrations of toxin sufficient for arrest of cell cycle progression, mixtures of Cj-CdtA, Cj-CdtB, and Cj-CdtC consist primarily of non-interacting, subunit monomers. The lack of congruence between toxin tripartite structure and cellular activity suggests that the widely accepted model that CDTs principally intoxicate host cells as preassembled heterotrimeric structures should be revisited.


Assuntos
Toxinas Bacterianas , Campylobacter jejuni , Humanos , Toxinas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Ciclo Celular
17.
Vet Microbiol ; 287: 109918, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029692

RESUMO

Microaerophilic, Gram-negative Campylobacter jejuni is the causative agent of campylobacteriosis, the most common bacterial gastrointestinal infection worldwide. Adhesion is the crucial first step in both infection or interaction with the host and biofilm formation, and is a critical factor for bacterial persistence. Here we describe the proteins and other surface structures that promote adhesion to various surfaces, including abiotic surfaces, microorganisms, and animal and human hosts. In addition, we provide insight into the distribution of adhesion proteins among strains from different ecological niches and highlight unexplored proteins involved in C. jejuni adhesion. Protein-protein, protein-glycan, and glycan-glycan interactions are involved in C. jejuni adhesion, with different factors contributing to adhesion to varying degrees under different circumstances. As adhesion is essential for survival and persistence, it represents an interesting target for C. jejuni control. Knowledge of the adhesion process is incomplete, as different molecular and functional aspects have been studied for different structures involved in adhesion. Therefore, it is important to strive for an integration of different approaches to obtain a clearer picture of the adhesion process on different surfaces and to consider the involvement of proteins, glycoconjugates, and polysaccharides and their cooperation.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Humanos , Animais , Aderência Bacteriana , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Estrutura Molecular , Polissacarídeos , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/microbiologia
18.
J Environ Sci Health B ; 58(12): 711-717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37897369

RESUMO

Foodborne pathogen Campylobacter jejuni has been associated with ruminants. The objectives of this experiment were to determine C. jejuni survivability in mixed in vitro rumen microbial populations and the impact on methane production with or without methane inhibitors 2-bromosulfonate (BES) and/or sodium nitrate. When inoculated into rumen microbial populations without or with 0.5 mM BES, 5.0 mM nitrate or their combination, C. jejuni viability decreased from 4.7 ± 0.1 log10 colony forming units (CFU)/mL after 24 h. Loss of C. jejuni viability was greater (P < 0.05) when incubated under 100% CO2 compared to 50% H2:50% CO2, decreasing 1.46 versus 1.15 log units, respectively. C. jejuni viability was also decreased (P < 0.05) by more than 0.43 log units by the anti-methanogen treatments. Rumen microbial populations produced less methane (P = 0.05) when incubated with than without C. jejuni regardless of whether under 100% CO2 or 50% H2:50% CO2. For either gas phase, nitrate was decreased (13.2 versus 37.9%) by the anti-methanogen treatments versus controls although not always significant. C. jejuni-inoculated populations metabolized 16.4% more (P < 0.05) nitrate under H2:CO2 versus 100% CO2. Apparently, C. jejuni can compete for H2 with methanogens but has limited survivability under rumen conditions.


Assuntos
Campylobacter jejuni , Animais , Bovinos , Campylobacter jejuni/metabolismo , Nitratos/farmacologia , Nitratos/metabolismo , Dióxido de Carbono/metabolismo , Metano/metabolismo , Rúmen
19.
J Proteome Res ; 22(11): 3519-3533, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37830485

RESUMO

Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC-MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC-MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria.


Assuntos
Campylobacter jejuni , Lisina , Humanos , Lisina/metabolismo , Fibronectinas , Campylobacter jejuni/metabolismo , Acetilação , Cromatografia Líquida , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-Traducional , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Peptídeos/metabolismo , Proteoma/genética , Proteoma/metabolismo
20.
ACS Infect Dis ; 9(11): 2325-2339, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37802046

RESUMO

Naturally secreted outer membrane vesicles (OMVs) from gut microbes carry diverse cargo, including proteins, nucleic acids, toxins, and many unidentified secretory factors. Bacterial OMVs can shuttle molecules across different cell types as a generalized secretion system, facilitating bacterial pathogenicity and self-survival. Numerous mucosal pathogens, including Campylobacter jejuni (C. jejuni), share a mechanism of harmonized secretion of major virulence factors. Intriguingly, as a common gut pathogen, C. jejuni lacks some classical virulence-associated secretion systems; alternatively, it often employs nanosized lipid-bound OMVs as an intensive strategy to deliver toxins, including secretory proteins, into the target cells. To better understand how the biophysical and compositional attributes of natural OMVs of C. jejuni regulate their cellular interactions to induce a biologically relevant host response, we conducted an in-depth morphological and compositional analysis of naturally secreted OMVs of C. jejuni. Next, we focused on understanding the mechanism of host cell-specific OMVs uptake from the extracellular milieu. We showed that intracellular perfusion of OMVs is mediated by cytosolic as well as multiple endocytic uptake processes due to the heterogenic nature, abundance of surface proteins, and membrane phospholipids acquired from the source bacteria. Furthermore, we used human and avian cells as two different host targets to provide evidence of target cell-specific preferential uptake of OMVs. Together, the present study provides insight into the unique functionality of natural OMVs of C. jejuni at the cellular interface, upholding their potential for multimodal use as prophylactic and therapeutic carriers.


Assuntos
Campylobacter jejuni , Vesículas Extracelulares , Humanos , Campylobacter jejuni/metabolismo , Transporte Biológico , Fatores de Virulência/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...