Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83.719
Filtrar
1.
J Cancer Res Clin Oncol ; 150(6): 287, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833016

RESUMO

BACKGROUND: Butyrate is a common short-chain fatty acids (SCFA), and it has been demonstrated to regulate the development of breast cancer (BC), while the underlying mechanism is still unreported. METHODS: Gas chromatography was used to measure the amounts of SCFA (acetate, propionate, and butyrate) in the feces. Cell viability was measured by the CCK-8 assay. The wound healing assay demonstrated cell migration, and the transwell assay demonstrated cell invasion. The levels of protein and gene were determined by western blot assay and RT-qPCR assay, respectively. RESULTS: The levels of SCFA were lower in the faecal samples from BC patients compared to control samples. In cellular experiments, butyrate significantly suppressed the cell viability, migration and invasion of T47D in a dose-dependent manner. In animal experiments, butyrate effectively impeded the growth of BC tumors. Toll like receptor 4 (TLR4) was highly expressed in the tumors from BC patients. Butyrate inhibited the expression of TLR4. In addition, butyrate promoted the expression of cuproptosis-related genes including PDXK (pyridoxal kinase) and SLC25A28 (solute carrier family 25 member 28), which was lowly expressed in BC tumors. Importantly, overexpression of TLR4 can reverses the promotion of butyrate to PDXK and SLC25A28 expression and the prevention of butyrate to the malignant biological behaviors of T47D cells. CONCLUSION: In summary, butyrate inhibits the development of BC by facilitating the expression of PDXK and SLC25A28 through inhibition of TLR4. Our investigation first identified a connection among butyrate, TLR4 and cuproptosis-related genes in BC progression. These findings may provide novel target for the treatment of BC.


Assuntos
Neoplasias da Mama , Butiratos , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Butiratos/farmacologia , Animais , Camundongos , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Nus , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C
2.
Cell Death Dis ; 15(6): 395, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839744

RESUMO

Hepatocellular carcinoma (HCC) is a highly heterogeneous and malignant cancer with poor overall survival. The application of sorafenib is a major breakthrough in the treatment of HCC. In our study, FOXQ1 was significantly overexpressed in sorafenib-resistant HCC cells and suppressed sorafenib-induced ferroptosis. We found that phosphorylation of FOXQ1 at serine 248 is critical for the suppression of sorafenib-induced ferroptosis. Furthermore, as the upstream phosphorylation kinase of FOXQ1, JNK1, which is activated by sorafenib, can directly phosphorylate the serine 248 site of FOXQ1. Then, the phosphorylated FOXQ1 got a high affinity for the promoter of ETHE1 and activates its transcription. Further flow cytometry results showed that ETHE1 reduced intracellular lipid peroxidation and iron levels. Collectively, our study implicated the JNK1-FOXQ1-ETHE1 axis in HCC ferroptosis induced by sorafenib, providing mechanistic insight into sensitivity to sorafenib therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Proteína Quinase 8 Ativada por Mitógeno , Sorafenibe , Ferroptose/efeitos dos fármacos , Sorafenibe/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Fosforilação/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/genética , Animais , Camundongos Nus , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia
3.
Nat Commun ; 15(1): 4790, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839752

RESUMO

Cancer cells are often addicted to serine synthesis to support growth. How serine synthesis is regulated in cancer is not well understood. We recently demonstrated protein arginine methyltransferase 1 (PRMT1) is upregulated in hepatocellular carcinoma (HCC) to methylate and activate phosphoglycerate dehydrogenase (PHGDH), thereby promoting serine synthesis. However, the mechanisms underlying PRMT1 upregulation and regulation of PRMT1-PHGDH axis remain unclear. Here, we show the E3 ubiquitin ligase F-box-only protein 7 (FBXO7) inhibits serine synthesis in HCC by binding PRMT1, inducing lysine 37 ubiquitination, and promoting proteosomal degradation of PRMT1. FBXO7-mediated PRMT1 downregulation cripples PHGDH arginine methylation and activation, resulting in impaired serine synthesis, accumulation of reactive oxygen species (ROS), and inhibition of HCC cell growth. Notably, FBXO7 is significantly downregulated in human HCC tissues, and inversely associated with PRMT1 protein and PHGDH methylation level. Overall, our study provides mechanistic insights into the regulation of cancer serine synthesis by FBXO7-PRMT1-PHGDH axis, and will facilitate the development of serine-targeting strategies for cancer therapy.


Assuntos
Carcinoma Hepatocelular , Proteínas F-Box , Neoplasias Hepáticas , Fosfoglicerato Desidrogenase , Proteína-Arginina N-Metiltransferases , Serina , Ubiquitinação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Serina/metabolismo , Serina/biossíntese , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/genética , Linhagem Celular Tumoral , Animais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Camundongos , Proliferação de Células , Metilação , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Masculino , Células HEK293 , Feminino , Células Hep G2
4.
Nat Commun ; 15(1): 4770, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839769

RESUMO

SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex, is the causative gene of rhabdoid tumors and epithelioid sarcomas. Here, we identify a paralog pair of CBP and p300 as a synthetic lethal target in SMARCB1-deficient cancers by using a dual siRNA screening method based on the "simultaneous inhibition of a paralog pair" concept. Treatment with CBP/p300 dual inhibitors suppresses growth of cell lines and tumor xenografts derived from SMARCB1-deficient cells but not from SMARCB1-proficient cells. SMARCB1-containing SWI/SNF complexes localize with H3K27me3 and its methyltransferase EZH2 at the promotor region of the KREMEN2 locus, resulting in transcriptional downregulation of KREMEN2. By contrast, SMARCB1 deficiency leads to localization of H3K27ac, and recruitment of its acetyltransferases CBP and p300, at the KREMEN2 locus, resulting in transcriptional upregulation of KREMEN2, which cooperates with the SMARCA1 chromatin remodeling complex. Simultaneous inhibition of CBP/p300 leads to transcriptional downregulation of KREMEN2, followed by apoptosis induction via monomerization of KREMEN1 due to a failure to interact with KREMEN2, which suppresses anti-apoptotic signaling pathways. Taken together, our findings indicate that simultaneous inhibitors of CBP/p300 could be promising therapeutic agents for SMARCB1-deficient cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína SMARCB1 , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/genética , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Montagem e Desmontagem da Cromatina/genética , Camundongos Nus , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Regiões Promotoras Genéticas/genética , Proliferação de Células/genética , Proliferação de Células/efeitos dos fármacos , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patologia
5.
J Nanobiotechnology ; 22(1): 313, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840120

RESUMO

Adoptive cellular immunotherapy as a promising and alternative cancer therapy platform is critical for future clinical applications. Natural killer (NK) cells have attracted attention as an important type of innate immune regulatory cells that can rapidly kill multiple adjacent cancer cells. However, these cells are significantly less effective in treating solid tumors than in treating hematological tumors. Herein, we report the synthesis of a Fe3O4-PEG-CD56/Avastin@Ce6 nanoprobe labeled with NK-92 cells that can be used for adoptive cellular immunotherapy, photodynamic therapy and dual-modality imaging-based in vivo fate tracking. The labeled NK-92 cells specifically target the tumor cells, which increases the amount of cancer cell apoptosis in vitro. Furthermore, the in vivo results indicate that the labeled NK-92 cells can be used for tumor magnetic resonance imaging and fluorescence imaging, adoptive cellular immunotherapy, and photodynamic therapy after tail vein injection. These data show that the developed multifunctional nanostructure is a promising platform for efficient innate immunotherapy, photodynamic treatment and noninvasive therapeutic evaluation of breast cancer.


Assuntos
Neoplasias da Mama , Antígeno CD56 , Células Matadoras Naturais , Fotoquimioterapia , Polietilenoglicóis , Neoplasias da Mama/terapia , Humanos , Feminino , Animais , Fotoquimioterapia/métodos , Camundongos , Polietilenoglicóis/química , Linhagem Celular Tumoral , Antígeno CD56/metabolismo , Imunoterapia Adotiva/métodos , Apoptose/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Camundongos Endogâmicos BALB C , Camundongos Nus
6.
Exp Dermatol ; 33(6): e15112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840385

RESUMO

Cutaneous squamous cell carcinoma (cSCC) ranks as the second most prevalent skin tumour (excluding melanoma). However, the molecular mechanisms driving cSCC progression remain elusive. This study aimed to investigate GBP1 expression in cSCC and elucidate its potential molecular mechanisms underlying cSCC development. GBP1 expression was assessed across public databases, cell lines and tissue samples. Various assays, including clone formation, CCK8 and EdU were employed to evaluate cell proliferation, while wound healing and transwell assays determined cell migration and invasion. Subcutaneous tumour assays were conducted to assess in vivo tumour proliferation, and molecular mechanisms were explored through western blotting, immunofluorescence and immunoprecipitation. Results identified GBP1 as an oncogene in cSCC, with elevated expression in both tumour tissues and cells, strongly correlating with tumour stage and grade. In vitro and in vivo investigations revealed that increased GBP1 expression significantly enhanced cSCC cell proliferation, migration and invasion. Mechanistically, GBP1 interaction with SP1 promoted STAT3 activation, contributing to malignant behaviours. In conclusion, the study highlights the crucial role of the GBP1/SP1/STAT3 signalling axis in regulating tumour progression in cSCC. These findings provide valuable insights into the molecular mechanisms of cSCC development and offer potential therapeutic targets for interventions against cSCC.


Assuntos
Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Proteínas de Ligação ao GTP , Invasividade Neoplásica , Fator de Transcrição STAT3 , Neoplasias Cutâneas , Fator de Transcrição Sp1 , Fator de Transcrição STAT3/metabolismo , Humanos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Fator de Transcrição Sp1/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Linhagem Celular Tumoral , Animais , Camundongos , Transdução de Sinais , Feminino , Camundongos Nus
7.
Nat Commun ; 15(1): 4703, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830868

RESUMO

Nuclear factor erythroid 2-related factor 2 (NRF2) hyperactivation has been established as an oncogenic driver in a variety of human cancers, including non-small cell lung cancer (NSCLC). However, despite massive efforts, no specific therapy is currently available to target NRF2 hyperactivation. Here, we identify peptidylprolyl isomerase A (PPIA) is required for NRF2 protein stability. Ablation of PPIA promotes NRF2 protein degradation and blocks NRF2-driven growth in NSCLC cells. Mechanistically, PPIA physically binds to NRF2 and blocks the access of ubiquitin/Kelch Like ECH Associated Protein 1 (KEAP1) to NRF2, thus preventing ubiquitin-mediated degradation. Our X-ray co-crystal structure reveals that PPIA directly interacts with a NRF2 interdomain linker via a trans-proline 174-harboring hydrophobic sequence. We further demonstrate that an FDA-approved drug, cyclosporin A (CsA), impairs the interaction of NRF2 with PPIA, inducing NRF2 ubiquitination and degradation. Interestingly, CsA interrupts glutamine metabolism mediated by the NRF2/KLF5/SLC1A5 pathway, consequently suppressing the growth of NRF2-hyperactivated NSCLC cells. CsA and a glutaminase inhibitor combination therapy significantly retard tumor progression in NSCLC patient-derived xenograft (PDX) models with NRF2 hyperactivation. Our study demonstrates that targeting NRF2 protein stability is an actionable therapeutic approach to treat NRF2-hyperactivated NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Estabilidade Proteica , Ubiquitinação , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Linhagem Celular Tumoral , Progressão da Doença , Proteólise , Camundongos Nus , Feminino , Peptidilprolil Isomerase de Interação com NIMA
8.
Cell Death Dis ; 15(6): 390, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830885

RESUMO

Glioma is the most common and aggressive type of primary malignant brain tumor. The N6-methyladenosine (m6A) modification widely exists in eukaryotic cells and plays an important role in the occurrence and development of human tumors. However, the function and mechanism of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an RNA-binding protein and m6A reader in gliomas remains to be comprehensively and extensively explored. Herein, we found that HNRNPC mRNA and protein overexpression were associated with a poor prognosis for patients with gliomas, based on the data from TCGA, the CGGA, and the TMAs. Biologically, HNRNPC knockdown markedly repressed malignant phenotypes of glioma in vitro and in vivo, whereas ectopic HNRNPC expression had the opposite effect. Integrative RNA sequencing and MeRIP sequencing analyses identified interleukin-1 receptor-associated kinase 1 (IRAK1) as a downstream target of HNRNPC. The glioma public datasets and tissue microarrays (TMAs) data indicated that IRAK1 overexpression was associated with poor prognosis, and IRAK1 knockdown significantly repressed malignant biological behavior in vitro. Mechanistically, HNRNPC maintains the mRNA stability of IRAK1 in an m6A-dependent manner, resulting in activation of the mitogen-activated protein kinase (MAPK) signaling pathway, which was necessary for the malignant behavior of glioma. Our findings demonstrate the HNRNPC-IRAK1-MAPK axis as a crucial carcinogenic factor for glioma and the novel underlying mechanism of IRAK1 upregulation, which provides a rationale for therapeutically targeting epitranscriptomic modulators in glioma.


Assuntos
Progressão da Doença , Glioma , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Quinases Associadas a Receptores de Interleucina-1 , Sistema de Sinalização das MAP Quinases , RNA Mensageiro , Humanos , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Estabilidade de RNA/genética , Camundongos Nus , Animais , Regulação Neoplásica da Expressão Gênica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Feminino , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Prognóstico
9.
Commun Biol ; 7(1): 680, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831092

RESUMO

Ferroptosis, a type of iron-dependent non-apoptotic cell death, plays a vital role in both tumor proliferation and resistance to chemotherapy. Here, our study demonstrates that MAX's Next Tango (MNT), by involving itself in the spermidine/spermine N1-acetyltransferase 1 (SAT1)-related ferroptosis pathway, promotes the proliferation of lung adenocarcinoma (LUAD) cells and diminishes their sensitivity to chemotherapy. Initially, an RNA-sequence screen of LUAD cells treated with ferroptosis inducers (FINs) reveals a significant increase in MNT expression, suggesting a potential link between MNT and ferroptosis. Overexpression of MNT in LUAD cells hinders changes associated with ferroptosis. Moreover, the upregulation of MNT promotes cell proliferation and suppresses chemotherapy sensitivity, while the knockdown of MNT has the opposite effect. Through the intersection of ChIP-Seq and ferroptosis-associated gene sets, and validation by qPCR and western blot, SAT1 is identified as a potential target of MNT. Subsequently, we demonstrate that MNT binds to the promoter sequence of SAT1 and suppresses its transcription by ChIP-qPCR and dual luciferase assays. Restoration of SAT1 levels antagonizes the efficacy of MNT to inhibit ferroptosis and chemosensitivity and promote cell growth in vitro as well as in vivo. In the clinical context, MNT expression is elevated in LUAD and is inversely connected with SAT1 expression. High MNT expression is also associated with poor patient survival. Our research reveals that MNT inhibits ferroptosis, and impairing chemotherapy effectiveness of LUAD.


Assuntos
Acetiltransferases , Adenocarcinoma de Pulmão , Ferroptose , Neoplasias Pulmonares , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Acetiltransferases/genética , Acetiltransferases/metabolismo , Camundongos , Linhagem Celular Tumoral , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Camundongos Endogâmicos BALB C , Masculino
10.
Cell Commun Signal ; 22(1): 302, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831335

RESUMO

The ubiquitination-mediated protein degradation exerts a vital role in the progression of multiple tumors. NEDD4L, which belongs to the E3 ubiquitin ligase NEDD4 family, is related to tumor genesis, metastasis and drug resistance. However, the anti-tumor role of NEDD4L in esophageal carcinoma, and the potential specific recognition substrate remain unclear. Based on public esophageal carcinoma database and clinical sample data, it was discovered in this study that the expression of NEDD4L in esophageal carcinoma was apparently lower than that in atypical hyperplastic esophageal tissue and esophageal squamous epithelium. Besides, patients with high expression of NEDD4L in esophageal carcinoma tissue had longer progression-free survival than those with low expression. Experiments in vivo and in vitro also verified that NEDD4L suppressed the growth and metastasis of esophageal carcinoma. Based on co-immunoprecipitation and proteome analysis, the NEDD4L ubiquitination-degraded protein ITGB4 was obtained. In terms of the mechanism, the HECT domain of NEDD4L specifically bound to the Galx-ß domain of ITGB4, which modified the K915 site of ITGB4 in an ubiquitination manner, and promoted the ubiquitination degradation of ITGB4, thus suppressing the malignant phenotype of esophageal carcinoma.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Integrina beta4 , Ubiquitina-Proteína Ligases Nedd4 , Proteólise , Ubiquitinação , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Humanos , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Animais , Linhagem Celular Tumoral , Integrina beta4/metabolismo , Integrina beta4/genética , Camundongos Nus , Camundongos , Proliferação de Células , Masculino , Regulação Neoplásica da Expressão Gênica , Feminino
11.
Biol Direct ; 19(1): 42, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831379

RESUMO

Triple-negative breast cancer (TNBC) is more aggressive and has a higher metastasis rate compared with other subtypes of breast cancer. Due to the lack of drug-targetable receptors, chemotherapy is now the only available systemic treatment for TNBC. However, some patients might still develop drug resistance and have poor prognosis. Therefore, novel molecular biomarkers and new treatment targets are urgently needed for patients with TNBC. To provide molecular insights into TNBC progression, we investigated the function and the underlying mechanism of Defective in cullin neddylation 1 domain containing 5 (DCUN1D5) in the regulation of TNBC. By TCGA dataset and surgical specimens with immunohistochemical (IHC) staining method, DCUN1D5 was identified to be significantly upregulated in TNBC tumor tissues and negatively associated with prognosis. A series of in vitro and in vivo experiments were performed to confirm the oncogenic role of DCUN1D5 in TNBC. Overexpression of FN1 or PI3K/AKT activator IGF-1 could restore the proliferative and invasive ability induced by DCUN1D5 knockdown and DCUN1D5 could act as a novel transcriptional target of transcription factor Yin Yang 1 (YY1). In conclusion, YY1-enhanced DCUN1D5 expression could promote TNBC progression by FN1/PI3K/AKT pathway and DCUN1D5 might be a potential prognostic biomarker and therapeutic target for TNBC treatment.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias de Mama Triplo Negativas , Fator de Transcrição YY1 , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Feminino , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Animais , Progressão da Doença , Transdução de Sinais , Camundongos , Ativação Transcricional , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Fibronectinas
12.
Cell Commun Signal ; 22(1): 306, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831454

RESUMO

BACKGROUND: Dysregulation in histone acetylation, a significant epigenetic alteration closely associated with major pathologies including cancer, promotes tumorigenesis, inactivating tumor-suppressor genes and activating oncogenic pathways. AMP-activated protein kinase (AMPK) is a cellular energy sensor that regulates a multitude of biological processes. Although a number of studies have identified the mechanisms by which AMPK regulates cancer growth, the underlying epigenetic mechanisms remain unknown. METHODS: The impact of metformin, an AMPK activator, on cervical cancer was evaluated through assessments of cell viability, tumor xenograft model, pan-acetylation analysis, and the role of the AMPK-PCAF-H3K9ac signaling pathway. Using label-free quantitative acetylproteomics and chromatin immunoprecipitation-sequencing (ChIP) technology, the activation of AMPK-induced H3K9 acetylation was further investigated. RESULTS: In this study, we found that metformin, acting as an AMPK agonist, activates AMPK, thereby inhibiting the proliferation of cervical cancer both in vitro and in vivo. Mechanistically, AMPK activation induces H3K9 acetylation at epigenetic level, leading to chromatin remodeling in cervical cancer. This also enhances the binding of H3K9ac to the promoter regions of multiple tumor suppressor genes, thereby promoting their transcriptional activation. Furthermore, the absence of PCAF renders AMPK activation incapable of inducing H3K9 acetylation. CONCLUSIONS: In conclusion, our findings demonstrate that AMPK mediates the inhibition of cervical cancer growth through PCAF-dependent H3K9 acetylation. This discovery not only facilitates the clinical application of metformin but also underscores the essential role of PCAF in AMPK activation-induced H3K9 hyperacetylation.


Assuntos
Proteínas Quinases Ativadas por AMP , Proliferação de Células , Histonas , Metformina , Neoplasias do Colo do Útero , Fatores de Transcrição de p300-CBP , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Humanos , Acetilação/efeitos dos fármacos , Feminino , Histonas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células/efeitos dos fármacos , Animais , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/genética , Metformina/farmacologia , Camundongos , Camundongos Nus , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos
13.
J Transl Med ; 22(1): 533, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831470

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a common disease in the urinary system, with a high incidence and poor prognosis in advanced stages. Although γ-interferon-inducible protein 16 (IFI16) has been reported to play a role in various tumors, its involvement in ccRCC remains poorly documented, and the molecular mechanisms are not yet clear. METHODS: We conducted bioinformatics analysis to study the expression of IFI16 in ccRCC using public databases. Additionally, we analyzed and validated clinical specimens that we collected. Subsequently, we explored the impact of IFI16 on ccRCC cell proliferation, migration, and invasion through in vitro and in vivo experiments. Furthermore, we predicted downstream molecules and pathways using transcriptome analysis and confirmed them through follow-up experimental validation. RESULTS: IFI16 was significantly upregulated in ccRCC tissue and correlated with poor patient prognosis. In vitro, IFI16 promoted ccRCC cell proliferation, migration, and invasion, while in vivo, it facilitated subcutaneous tumor growth and the formation of lung metastatic foci. Knocking down IFI16 suppressed its oncogenic function. At the molecular level, IFI16 promoted the transcription and translation of IL6, subsequently activating the PI3K/AKT signaling pathway and inducing epithelial-mesenchymal transition (EMT). CONCLUSION: IFI16 induced EMT through the IL6/PI3K/AKT axis, promoting the progression of ccRCC.


Assuntos
Carcinoma de Células Renais , Movimento Celular , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Interleucina-6 , Neoplasias Renais , Proteínas Nucleares , Fosfatidilinositol 3-Quinases , Fosfoproteínas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Linhagem Celular Tumoral , Interleucina-6/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Animais , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Invasividade Neoplásica , Masculino , Feminino , Prognóstico
14.
Cancer Rep (Hoboken) ; 7(6): e2085, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837682

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide. Long noncoding RNA (lncRNA) is involved in many malignant tumors. This study aimed to clarify the role of the lncRNA plasmacytoma variant translocation 1 (PVT1) in CRC growth and metastasis. METHODS: Differentially expressed lncRNAs in CRC were analyzed using the Cancer Genome Atlas. Gene expression profiling interactive analysis and a comprehensive resource for lncRNAs from cancer arrays databases were used to analyze lncRNA PVT1 expression and CRC prognosis, respectively. Cell counting kit-8, wound healing, colony formation, Transwell, and immunofluorescence assays were used to evaluate CRC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), respectively. Tumor growth and metastasis models were used to explore the PVT1 effect on the growth and metastasis of CRC in vivo. RESULTS: PVT1 was highly expressed in CRC, associated with a poor prognosis of CRC, and showed good diagnostic value. Transfection of sh-PVT1 or pcDNA3.1-PVT1 reduced or increased the proliferation, wound healing rate, colony formation, invasion, and EMT of CRC cells. PVT1 and miR-3619-5p were co-expressed in CRC cytoplasm, and PVT1 acted as a competitive endogenous RNA (ceRNA) by sponging miR-3619-5p to up-regulate tripartite motif containing 29 (TRIM29) expression. MiR-3619-5p overexpression and TRIM29 knockdown reduced proliferation, wound healing rate, invasion, and EMT of CRC cells. However, simultaneous PVT1 and miR-3619-5p overexpression or knockdown of miR-3619-5p and TRIM29 knockdown rescued the malignant phenotype of CRC cells. CONCLUSIONS: We first clarified the ceRNA mechanism of PVT1 in CRC, which induced growth and metastasis by sponging with miR-3619-5p to regulate TRIM29.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , RNA Longo não Codificante/genética , MicroRNAs/genética , Proliferação de Células/genética , Camundongos , Animais , Prognóstico , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Masculino , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos Nus , Feminino , Linhagem Celular Tumoral , Metástase Neoplásica , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Cancer Res Clin Oncol ; 150(6): 294, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842683

RESUMO

BACKGROUND: Cervical cancer (CC) is a common malignancy amongst women globally. Ubiquitination plays a dual role in the occurrence and development of cancers. This study analyzed the mechanism of long noncoding RNA HOXC cluster antisense RNA 3 (lncRNA HOXC-AS3) in malignant proliferation of CC cells via mediating ubiquitination of lysine demethylase 5B (KDM5B/JARID1B). METHODS: The expression patterns of lncRNA HOXC-AS3 and KDM5B were measured by real-time quantitative polymerase chain reaction or Western blot analysis. After transfection with lncRNA HOXC-AS3 siRNA and pcDNA3.1-KDM5B, proliferation of CC cells was assessed by the cell counting kit-8, colony formation, and 5-Ethynyl-2'-deoxyuridine staining assays. The xenograft tumor model was established to confirm the impact of lncRNA HOXC-AS3 on CC cell proliferation in vivo by measuring tumor size and weight and the immunohistochemistry assay. The subcellular location of lncRNA HOXC-AS3 and the binding of lncRNA HOXC-AS3 to KDM5B were analyzed. After treatment of lncRNA HOXC-AS3 siRNA or MG132, the protein and ubiquitination levels of KDM5B were determined. Thereafter, the interaction and the subcellular co-location of tripartite motif-containing 37 (TRIM37) and KDM5B were analyzed by the co-immunoprecipitation and immunofluorescence assays. RESULTS: LncRNA HOXC-AS3 and KDM5B were upregulated in CC tissues and cells. Depletion of lncRNA HOXC-AS3 repressed CC cell proliferation and in vivo tumor growth. Mechanically, lncRNA HOXC-AS3 located in the nucleus directly bound to KDM5B, inhibited TRIM37-mediated ubiquitination of KDM5B, and upregulated the protein levels of KDM5B. KDM5B overexpression attenuated the inhibitory role of silencing lncRNA HOXC-AS3 in CC cell proliferation in vivo and in vitro. CONCLUSION: Nucleus-located lncRNA HOXC-AS3 facilitated malignant proliferation of CC cells via stabilization of KDM5B protein levels.


Assuntos
Proliferação de Células , Histona Desmetilases com o Domínio Jumonji , Camundongos Nus , RNA Longo não Codificante , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , RNA Longo não Codificante/genética , Feminino , Proliferação de Células/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Camundongos , Ubiquitinação , Linhagem Celular Tumoral , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Nucleares
16.
J Exp Clin Cancer Res ; 43(1): 154, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822363

RESUMO

BACKGROUND: RNA modifications of transfer RNAs (tRNAs) are critical for tRNA function. Growing evidence has revealed that tRNA modifications are related to various disease processes, including malignant tumors. However, the biological functions of methyltransferase-like 1 (METTL1)-regulated m7G tRNA modifications in breast cancer (BC) remain largely obscure. METHODS: The biological role of METTL1 in BC progression were examined by cellular loss- and gain-of-function tests and xenograft models both in vitro and in vivo. To investigate the change of m7G tRNA modification and mRNA translation efficiency in BC, m7G-methylated tRNA immunoprecipitation sequencing (m7G tRNA MeRIP-seq), Ribosome profiling sequencing (Ribo-seq), and polysome-associated mRNA sequencing were performed. Rescue assays were conducted to decipher the underlying molecular mechanisms. RESULTS: The tRNA m7G methyltransferase complex components METTL1 and WD repeat domain 4 (WDR4) were down-regulated in BC tissues at both the mRNA and protein levels. Functionally, METTL1 inhibited BC cell proliferation, and cell cycle progression, relying on its enzymatic activity. Mechanistically, METTL1 increased m7G levels of 19 tRNAs to modulate the translation of growth arrest and DNA damage 45 alpha (GADD45A) and retinoblastoma protein 1 (RB1) in a codon-dependent manner associated with m7G. Furthermore, in vivo experiments showed that overexpression of METTL1 enhanced the anti-tumor effectiveness of abemaciclib, a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor. CONCLUSION: Our study uncovered the crucial tumor-suppressive role of METTL1-mediated tRNA m7G modification in BC by promoting the translation of GADD45A and RB1 mRNAs, selectively blocking the G2/M phase of the cell cycle. These findings also provided a promising strategy for improving the therapeutic benefits of CDK4/6 inhibitors in the treatment of BC patients.


Assuntos
Neoplasias da Mama , Metiltransferases , RNA de Transferência , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Camundongos , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Metilação , Linhagem Celular Tumoral , Proliferação de Células , Carcinogênese/genética , Pontos de Checagem do Ciclo Celular , Biossíntese de Proteínas , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
17.
BMC Cancer ; 24(1): 682, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835015

RESUMO

BACKGROUND: Astragaloside IV (AS-IV) is one of the basic components of Astragali radix, that has been shown to have preventive effects against various diseases, including cancers. This study aimed to explore the role of AS-IV in hepatocellular carcinoma (HCC) and its underlying mechanism. METHODS: The cell viability, glucose consumption, lactate production, and extracellular acidification rate (ECAR) in SNU-182 and Huh7 cell lines were detected by specific commercial kits. Western blot was performed to analyze the succinylation level in SNU-182 and Huh7 cell lines. The interaction between lysine acetyltransferase (KAT) 2 A and phosphoglycerate mutase 1 (PGAM1) was evaluated by co-immunoprecipitation and immunofluorescence assays. The role of KAT2A in vivo was explored using a xenografted tumor model. RESULTS: The results indicated that AS-IV treatment downregulated the protein levels of succinylation and KAT2A in SNU-182 and Huh7 cell lines. The cell viability, glucose consumption, lactate production, ECAR, and succinylation levels were decreased in AS-IV-treated SNU-182 and Huh7 cell lines, and the results were reversed after KAT2A overexpression. KAT2A interacted with PGAM1 to promote the succinylation of PGAM1 at K161 site. KAT2A overexpression promoted the viability and glycolysis of SNU-182 and Huh7 cell lines, which were partly blocked following PGAM1 inhibition. In tumor-bearing mice, AS-IV suppressed tumor growth though inhibiting KAT2A-mediated succinylation of PGAM1. CONCLUSION: AS-IV inhibited cell viability and glycolysis in HCC by regulating KAT2A-mediated succinylation of PGAM1, suggesting that AS-IV might be a potential and suitable therapeutic agent for treating HCC.


Assuntos
Carcinoma Hepatocelular , Sobrevivência Celular , Glicólise , Neoplasias Hepáticas , Fosfoglicerato Mutase , Saponinas , Triterpenos , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Animais , Fosfoglicerato Mutase/metabolismo , Camundongos , Glicólise/efeitos dos fármacos , Triterpenos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Saponinas/farmacologia , Linhagem Celular Tumoral , Histona Acetiltransferases/metabolismo , Camundongos Nus , Proliferação de Células/efeitos dos fármacos
18.
Cell Adh Migr ; 18(1): 1-12, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38831518

RESUMO

In this research, we investigated the role of PIK3R6, a regulatory subunit of PI3Kγ, known for its tumor-promoting properties, in clear cell renal cell carcinoma (CCRCC). Utilizing the UALCAN website, we found PIK3R6 upregulated in CCRCC, correlating with lower survival rates. We compared PIK3R6 expression in CCRCC tumor tissues and adjacent normal tissues using immunohistochemistry. Post RNA interference-induced knockdown of PIK3R6 in 786-O and ACHN cell lines, we performed CCK-8, colony formation, Edu staining, flow cytometry, wound healing, and transwell assays. Results showed that PIK3R6 silencing reduced cell proliferation, migration, and invasion, and induced G0/G1 phase arrest and apoptosis. Molecular analysis revealed decreased CDK4, Cyclin D1, N-cadherin, Vimentin, Bcl-2, p-PI3K and p-AKT, with increased cleaved caspase-3, Bax, and E-cadherin levels in CCRCC cells. Moreover, inhibiting PIK3R6 hindered tumor growth. These findings suggest a significant role for PIK3R6 in CCRCC cell proliferation and metastasis, presenting it as a potential therapeutic target.


Assuntos
Apoptose , Carcinoma de Células Renais , Movimento Celular , Proliferação de Células , Neoplasias Renais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Apoptose/genética , Movimento Celular/genética , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Nus , Técnicas de Silenciamento de Genes , Feminino , Masculino
19.
Cancer Immunol Immunother ; 73(8): 151, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832951

RESUMO

BACKGROUND: Immunotherapy for gastric cancer remains a challenge due to its limited efficacy. Metabolic reprogramming toward glycolysis has emerged as a promising avenue for enhancing the sensitivity of tumors to immunotherapy. Pyruvate dehydrogenase kinases (PDKs) play pivotal roles in regulating glycolysis. The importance of PDKs in the context of gastric cancer immunotherapy and their potential as therapeutic targets have not been fully explored. METHODS: PDK and PD-L1 expression was analyzed using data from the GSE66229 and The Cancer Genome Atlas (TCGA) cohorts. Additionally, the Immune Checkpoint Blockade Therapy Atlas (ICBatlas) database was utilized to assess PDK expression in an immune checkpoint blockade (ICB) therapy group. Subsequently, the upregulation of PD-L1 and the enhancement of anticancer effects achieved by targeting PDK were validated through in vivo and in vitro assays. The impact of PDK on histone acetylation was investigated using ChIP‒qPCR to detect changes in histone acetylation levels. RESULTS: Our analysis revealed a notable negative correlation between PD-L1 and PDK expression. Downregulation of PDK led to a significant increase in PD-L1 expression. PDK inhibition increased histone acetylation levels by promoting acetyl-CoA generation. The augmentation of acetyl-CoA production and concurrent inhibition of histone deacetylation were found to upregulate PD-L1 expression in gastric cancer cells. Additionally, we observed a significant increase in the anticancer effect of PD-L1 antibodies following treatment with a PDK inhibitor. CONCLUSIONS: Downregulation of PDK in gastric cancer cells leads to an increase in PD-L1 expression levels, thus potentially improving the efficacy of PD-L1 immune checkpoint blockade therapy.


Assuntos
Antígeno B7-H1 , Glicólise , Imunoterapia , Piruvato Desidrogenase Quinase de Transferência de Acetil , Neoplasias Gástricas , Regulação para Cima , Antígeno B7-H1/metabolismo , Humanos , Animais , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Imunoterapia/métodos , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
20.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 206-210, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836659

RESUMO

We aimed to explore the role of regulating Smac expression levels in the occurrence and development of colon cancer through in vitro and in vivo experiments. Colon cancer cells HT-29 were cultured and transfected into different groups. qRT-PCR was used to detect the expression level of Smac in cells; Flow cytometry was used to detect the apoptotic ability of each group of cells; Western blot was used to detect the protein expression of Smac and apoptosis-related factors Survivin and Caspase-3; The nude mouse tumorigenesis experiment was conducted to detect the regulatory effect of regulating Smac expression levels on the growth of colon cancer transplanted tumors in vivo. In comparison to the FHC group, the HT-29 group exhibited a decrease in Smac expression. The si-Smac group, when compared with the si-NC group, showed significant reductions in Smac mRNA and protein levels, weaker cell apoptosis, increased Survivin, and decreased Caspase-3 expression. Contrarily, the oe-Smac group, against the oe-NC group, displayed increased Smac mRNA and protein levels, enhanced apoptosis, reduced Survivin, and elevated Caspase-3 expression. In nude mice tumor transplantation experiments, the LV-sh-Smac group, as opposed to the LV-sh-NC group, had tumors with greater volume and weight, reduced Smac and Caspase-3, and increased Survivin expression. In contrast, the LV-oe-Smac group, compared with the LV-oe-NC group, showed tumors with decreased volume and mass, increased expressions of Smac and Caspase-3, and decreased Survivin. Smac is lowly expressed in colon cancer. Upregulation of Smac expression can inhibit the occurrence and development of colon cancer, possibly by inhibiting Survivin expression and promoting Caspase-3 expression, thereby enhancing the pro-apoptotic function.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Caspase 3 , Neoplasias do Colo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Nus , Proteínas Mitocondriais , Survivina , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Survivina/metabolismo , Survivina/genética , Caspase 3/metabolismo , Caspase 3/genética , Células HT29 , Camundongos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos Endogâmicos BALB C , Proliferação de Células/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA