Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.342
Filtrar
1.
Physiol Rep ; 12(14): e16139, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016176

RESUMO

The monocyte-macrophage system plays an important role in phagocytosis of pathogens and cellular debris following infection or tissue injury in several pathophysiological conditions. We examined ENaC/ASIC subunit transcript expression and the importance of select subunits in migration of bone marrow derived monocytes (freshly isolated) and macrophages (monocytes differentiated in culture). We also examined the effect of select subunit deletion on macrophage phenotype. BM monocytes were harvested from the femurs of male and female WT and KO mice (6-12 weeks of age). Our results show that α, ß, γENaC, and ASIC1-5 transcripts are expressed in BM macrophages and monocytes to varying degrees. At least αENaC, ßENaC, and ASIC2 subunits contribute to chemotactic migration responses in BM monocyte-macrophages. Polarization markers (CD86, soluble TNFα) in BM macrophages from mice lacking ASIC2a plus ßENaC were shifted towards the M1 phenotype. Furthermore, select M1 phenotypic markers were recovered with rescue of ßENaC or ASIC2. Taken together, these data suggest that ßENaC and ASIC2 play an important role in BM macrophage migration and loss of ßENaC and/or ASIC2 partially polarizes macrophages to the M1 phenotype. Thus, targeting ENaC/ASIC expression in BM macrophages may regulate their ability to migrate to sites of injury.


Assuntos
Canais Iônicos Sensíveis a Ácido , Quimiotaxia , Canais Epiteliais de Sódio , Macrófagos , Monócitos , Animais , Canais Epiteliais de Sódio/metabolismo , Canais Epiteliais de Sódio/genética , Macrófagos/metabolismo , Masculino , Camundongos , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Feminino , Monócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células da Medula Óssea/metabolismo , Células Cultivadas
2.
Nature ; 631(8022): 826-834, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987597

RESUMO

Glutamate is traditionally viewed as the first messenger to activate NMDAR (N-methyl-D-aspartate receptor)-dependent cell death pathways in stroke1,2, but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other mechanisms3-7. Here we show that glutamate and its structural analogues, including NMDAR antagonist L-AP5 (also known as APV), robustly potentiate currents mediated by acid-sensing ion channels (ASICs) associated with acidosis-induced neurotoxicity in stroke4. Glutamate increases the affinity of ASICs for protons and their open probability, aggravating ischaemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis, structure-based modelling and functional assays reveal a bona fide glutamate-binding cavity in the extracellular domain of ASIC1a. Computational drug screening identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs. LK-2 reduces the infarct volume and improves sensorimotor recovery in a mouse model of ischaemic stroke, reminiscent of that seen in mice with Asic1a knockout or knockout of other cation channels4-7. We conclude that glutamate functions as a positive allosteric modulator for ASICs to exacerbate neurotoxicity, and preferential targeting of the glutamate-binding site on ASICs over that on NMDARs may be strategized for developing stroke therapeutics lacking the psychotic side effects of NMDAR antagonists.


Assuntos
Canais Iônicos Sensíveis a Ácido , Isquemia Encefálica , Ácido Glutâmico , Animais , Feminino , Humanos , Masculino , Camundongos , 2-Amino-5-fosfonovalerato/efeitos adversos , 2-Amino-5-fosfonovalerato/metabolismo , 2-Amino-5-fosfonovalerato/farmacologia , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/deficiência , Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação/genética , Isquemia Encefálica/induzido quimicamente , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Ácido Glutâmico/toxicidade , Camundongos Knockout , Mutagênese Sítio-Dirigida , Prótons , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Life Sci ; 351: 122853, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889841

RESUMO

AIMS: Activation of central respiratory chemoreceptors provides excitatory drive to both respiratory and sympathetic outputs. The enhanced respiratory-sympathetic coupling contributes to the onset and development of hypertension. However, the specific central targets and molecular mechanisms involved in this process remain elusive. This study aimed to investigate the role of acid-sensing ion channel 1 (ASIC1) in nucleus tractus solitarii (NTS) neurons in CO2-stimulated cardiorespiratory effects in spontaneously hypertensive rats (SHRs). MAIN METHODS: Respiration and blood pressure of conscious rats were recorded by whole-body plethysmography and telemetry, respectively. Western blot was used to detect the expression difference of ASIC1 protein in NTS region between Wistar-Kyoto (WKY) rats and SHRs. Excitability of NTS neurons were assessed by extracellular recordings. KEY FINDINGS: Compared to WKY rats, the enhanced CO2-stimulated cardiopulmonary effect and up-regulation of ASIC1 in the NTS were already observed in 4-week-old prehypertensive SHRs. Furthermore, specific blockade of ASIC1 effectively attenuated the CO2-stimulated increase in firing rate of NTS neurons in anesthetized adult SHRs. Intracerebroventricular injections of the ASIC1a blocker PcTx1 or knockdown Asic1 in NTS neurons significantly reduced the heightened CO2-stimulated ventilatory response, and diminished the CO2-stimulated increase in arterial pressure and heart rate in adult SHRs. SIGNIFICANCE: These findings showed that dysregulated ASIC1 signaling in the NTS contribute to the exaggerated CO2-stimulated cardiorespiratory effects observed in SHRs.


Assuntos
Canais Iônicos Sensíveis a Ácido , Pressão Sanguínea , Dióxido de Carbono , Hipertensão , Neurônios , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Núcleo Solitário , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Núcleo Solitário/metabolismo , Ratos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Masculino , Dióxido de Carbono/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Respiração/efeitos dos fármacos , Peptídeos , Venenos de Aranha
4.
Cell Mol Life Sci ; 81(1): 266, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880807

RESUMO

Acid-sensing ion channels (ASICs) are trimeric proton-gated cation channels that play a role in neurotransmission and pain sensation. The snake venom-derived peptides, mambalgins, exhibit potent analgesic effects in rodents by inhibiting central ASIC1a and peripheral ASIC1b. Despite their distinct species- and subtype-dependent pharmacology, previous structure-function studies have focussed on the mambalgin interaction with ASIC1a. Currently, the specific channel residues responsible for this pharmacological profile, and the mambalgin pharmacophore at ASIC1b remain unknown. Here we identify non-conserved residues at the ASIC1 subunit interface that drive differences in the mambalgin pharmacology from rat ASIC1a to ASIC1b, some of which likely do not make peptide binding interactions. Additionally, an amino acid variation below the core binding site explains potency differences between rat and human ASIC1. Two regions within the palm domain, which contribute to subtype-dependent effects for mambalgins, play key roles in ASIC gating, consistent with subtype-specific differences in the peptides mechanism. Lastly, there is a shared primary mambalgin pharmacophore for ASIC1a and ASIC1b activity, with certain peripheral peptide residues showing variant-specific significance for potency. Through our broad mutagenesis studies across various species and subtype variants, we gain a more comprehensive understanding of the pharmacophore and the intricate molecular interactions that underlie ligand specificity. These insights pave the way for the development of more potent and targeted peptide analogues required to advance our understating of human ASIC1 function and its role in disease.


Assuntos
Canais Iônicos Sensíveis a Ácido , Venenos Elapídicos , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/química , Animais , Humanos , Ratos , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Venenos Elapídicos/farmacologia , Venenos Elapídicos/genética , Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Xenopus laevis , Peptídeos
5.
Open Biol ; 14(6): 240028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896086

RESUMO

Acid-sensing ion channels (ASICs) are neuronal Na+-permeable ion channels activated by extracellular acidification. ASICs are involved in learning, fear sensing, pain sensation and neurodegeneration. Increasing the extracellular Ca2+ concentration decreases the H+ sensitivity of ASIC1a, suggesting a competition for binding sites between H+ and Ca2+ ions. Here, we predicted candidate residues for Ca2+ binding on ASIC1a, based on available structural information and our molecular dynamics simulations. With functional measurements, we identified several residues in cavities previously associated with pH-dependent gating, whose mutation reduced the modulation by extracellular Ca2+ of the ASIC1a pH dependence of activation and desensitization. This occurred likely owing to a disruption of Ca2+ binding. Our results link one of the two predicted Ca2+-binding sites in each ASIC1a acidic pocket to the modulation of channel activation. Mg2+ regulates ASICs in a similar way as does Ca2+. We show that Mg2+ shares some of the binding sites with Ca2+. Finally, we provide evidence that some of the ASIC1a Ca2+-binding sites are functionally conserved in the splice variant ASIC1b. Our identification of divalent cation-binding sites in ASIC1a shows how Ca2+ affects ASIC1a gating, elucidating a regulatory mechanism present in many ion channels.


Assuntos
Canais Iônicos Sensíveis a Ácido , Cálcio , Simulação de Dinâmica Molecular , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/genética , Sítios de Ligação , Cálcio/metabolismo , Animais , Ligação Proteica , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Humanos , Ativação do Canal Iônico , Mutação , Conformação Proteica
6.
Nat Commun ; 15(1): 5288, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902277

RESUMO

Psoriasis is an immune-mediated skin disease associated with neurogenic inflammation, but the underlying molecular mechanism remains unclear. We demonstrate here that acid-sensing ion channel 3 (ASIC3) exacerbates psoriatic inflammation through a sensory neurogenic pathway. Global or nociceptor-specific Asic3 knockout (KO) in female mice alleviates imiquimod-induced psoriatic acanthosis and type 17 inflammation to the same extent as nociceptor ablation. However, ASIC3 is dispensable for IL-23-induced psoriatic inflammation that bypasses the need for nociceptors. Mechanistically, ASIC3 activation induces the activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons to promote neurogenic inflammation. Botulinum neurotoxin A and CGRP antagonists prevent sensory neuron-mediated exacerbation of psoriatic inflammation to similar extents as Asic3 KO. In contrast, replenishing CGRP in the skin of Asic3 KO mice restores the inflammatory response. These findings establish sensory ASIC3 as a critical constituent in psoriatic inflammation, and a promising target for neurogenic inflammation management.


Assuntos
Canais Iônicos Sensíveis a Ácido , Peptídeo Relacionado com Gene de Calcitonina , Camundongos Knockout , Psoríase , Células Receptoras Sensoriais , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Feminino , Psoríase/metabolismo , Psoríase/patologia , Psoríase/genética , Psoríase/induzido quimicamente , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Células Receptoras Sensoriais/metabolismo , Pele/metabolismo , Pele/patologia , Imiquimode , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação Neurogênica/metabolismo , Humanos , Nociceptores/metabolismo , Interleucina-23/metabolismo , Interleucina-23/genética
7.
Kaohsiung J Med Sci ; 40(6): 561-574, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634140

RESUMO

Slow transit constipation (STC) is one of the most common gastrointestinal disorders in children and adults worldwide. Paeoniflorin (PF), a monoterpene glycoside compound extracted from the dried root of Paeonia lactiflora, has been found to alleviate STC, but the mechanisms of its effect remain unclear. The present study aimed to investigate the effects and mechanisms of PF on intestinal fluid metabolism and visceral sensitization in rats with compound diphenoxylate-induced STC. Based on the evaluation of the laxative effect, the abdominal withdrawal reflex test, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry were used to detect the visceral sensitivity, fluid metabolism-related proteins, and acid-sensitive ion channel 3/extracellular signal-regulated kinase (ASIC3/ERK) pathway-related molecules. PF treatment not only attenuated compound diphenoxylate-induced constipation symptoms and colonic pathological damage in rats but also ameliorated colonic fluid metabolic disorders and visceral sensitization abnormalities, as manifested by increased colonic goblet cell counts and mucin2 protein expression, decreased aquaporin3 protein expression, improved abdominal withdrawal reflex scores, reduced visceral pain threshold, upregulated serum 5-hydroxytryptamine, and downregulated vasoactive intestinal peptide levels. Furthermore, PF activated the colonic ASIC3/ERK pathway in STC rats, and ASIC3 inhibition partially counteracted PF's modulatory effects on intestinal fluid and visceral sensation. In conclusion, PF alleviated impaired intestinal fluid metabolism and abnormal visceral sensitization in STC rats and thus relieved their symptoms through activation of the ASIC3/ERK pathway.


Assuntos
Canais Iônicos Sensíveis a Ácido , Constipação Intestinal , Glucosídeos , Sistema de Sinalização das MAP Quinases , Monoterpenos , Animais , Glucosídeos/farmacologia , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico , Canais Iônicos Sensíveis a Ácido/metabolismo , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/metabolismo , Ratos , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ratos Sprague-Dawley , Colo/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Trânsito Gastrointestinal/efeitos dos fármacos , Aquaporina 3/metabolismo , Aquaporina 3/genética , Serotonina/metabolismo , Dor Visceral/tratamento farmacológico , Dor Visceral/metabolismo
8.
Pflugers Arch ; 476(6): 923-937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38627262

RESUMO

Fast growing solid tumors are frequently surrounded by an acidic microenvironment. Tumor cells employ a variety of mechanisms to survive and proliferate under these harsh conditions. In that regard, acid-sensitive membrane receptors constitute a particularly interesting target, since they can affect cellular functions through ion flow and second messenger cascades. Our knowledge of these processes remains sparse, however, especially regarding medulloblastoma, the most common pediatric CNS malignancy. In this study, using RT-qPCR, whole-cell patch clamp, and Ca2+-imaging, we uncovered several ion channels and a G protein-coupled receptor, which were regulated directly or indirectly by low extracellular pH in DAOY and UW228 medulloblastoma cells. Acidification directly activated acid-sensing ion channel 1a (ASIC1a), the proton-activated Cl- channel (PAC, ASOR, or TMEM206), and the proton-activated G protein-coupled receptor OGR1. The resulting Ca2+ signal secondarily activated the large conductance calcium-activated potassium channel (BKCa). Our analyses uncover a complex relationship of these transmembrane proteins in DAOY cells that resulted in cell volume changes and induced cell death under strongly acidic conditions. Collectively, our results suggest that these ion channels in concert with OGR1 may shape the growth and evolution of medulloblastoma cells in their acidic microenvironment.


Assuntos
Canais Iônicos Sensíveis a Ácido , Meduloblastoma , Receptores Acoplados a Proteínas G , Humanos , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Linhagem Celular Tumoral , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Concentração de Íons de Hidrogênio , Tamanho Celular , Morte Celular , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Cálcio/metabolismo , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia
9.
Chem Biodivers ; 21(7): e202400538, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38639566

RESUMO

This is the first study to analyze the anti-inflammatory and antinociceptive effect of withanicandrin, isolated from Datura Ferox leaves, and the possible mechanism of action involved in adult zebrafish (ZFa). To this end, the animals were treated intraperitoneally (i. p.) with withanicandrin (4; 20 and 40 mg/kg; 20 µL) and subjected to locomotor activity and acute toxicity. Nociception tests were also carried out with chemical agents, in addition to tests to evaluate inflammatory processes induced by κ-Carrageenan 1.5 % and a Molecular Docking study. As a result, withanicandrin reduced nociceptive behavior by capsaicin at a dose of 40 mg/kg and by acid saline at doses of 4 and 40 mg/kg, through neuromodulation of TRPV1 channels and ASICs, identified through blocking the antinociceptive effect of withanicandrin by the antagonists capsazepine and naloxone. Furthermore, withanicandrin caused an anti-inflammatory effect through the reduction of abdominal edema, absence of leukocyte infiltrate in the liver tissue and reduction of ROS in thel liver tissue and presented better affinity energy compared to control morphine (TRPV1) and ibuprofen (COX-1 and COX-2).


Assuntos
Analgésicos , Peixe-Zebra , Animais , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/isolamento & purificação , Canais Iônicos Sensíveis a Ácido/metabolismo , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Carragenina , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Edema/tratamento farmacológico , Edema/induzido quimicamente , Folhas de Planta/química , Estrutura Molecular
10.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612396

RESUMO

Acid-sensing ion channels (ASICs) play a key role in the perception and response to extracellular acidification changes. These proton-gated cation channels are critical for neuronal functions, like learning and memory, fear, mechanosensation and internal adjustments like synaptic plasticity. Moreover, they play a key role in neuronal degeneration, ischemic neuronal injury, seizure termination, pain-sensing, etc. Functional ASICs are homo or heterotrimers formed with (ASIC1-ASIC3) homologous subunits. ASIC1a, a major ASIC isoform in the central nervous system (CNS), possesses an acidic pocket in the extracellular region, which is a key regulator of channel gating. Growing data suggest that ASIC1a channels are a potential therapeutic target for treating a variety of neurological disorders, including stroke, epilepsy and pain. Many studies were aimed at identifying allosteric modulators of ASIC channels. However, the regulation of ASICs remains poorly understood. Using all available crystal structures, which correspond to different functional states of ASIC1, and a molecular dynamics simulation (MD) protocol, we analyzed the process of channel inactivation. Then we applied a molecular docking procedure to predict the protein conformation suitable for the amiloride binding. To confirm the effect of its sole active blocker against the ASIC1 state transition route we studied the complex with another MD simulation run. Further experiments evaluated various compounds in the Enamine library that emerge with a detectable ASIC inhibitory activity. We performed a detailed analysis of the structural basis of ASIC1a inhibition by amiloride, using a combination of in silico approaches to visualize its interaction with the ion pore in the open state. An artificial activation (otherwise, expansion of the central pore) causes a complex modification of the channel structure, namely its transmembrane domain. The output protein conformations were used as a set of docking models, suitable for a high-throughput virtual screening of the Enamine chemical library. The outcome of the virtual screening was confirmed by electrophysiological assays with the best results shown for three hit compounds.


Assuntos
Amilorida , Benzamidinas , Humanos , Simulação de Acoplamento Molecular , Canais Iônicos Sensíveis a Ácido , Dor
11.
Neuron ; 112(8): 1200-1202, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636452

RESUMO

In this issue of Neuron, Yamada et al.1 show that fast excitatory neurotransmission by protons acting at acid-sensing ion channels (ASICs) mediates mechanical force-evoked signaling at the Merkel cell-neurite complex, contributing to mammalian tactile discrimination.


Assuntos
Células de Merkel , Neurônios , Animais , Neurônios/metabolismo , Prótons , Neuritos/metabolismo , Transmissão Sináptica , Canais Iônicos Sensíveis a Ácido/metabolismo , Mamíferos/metabolismo
12.
Molecules ; 29(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611859

RESUMO

A novel Lycopodium alkaloid, lycocasine A (1), and seven known Lycopodium alkaloids (2-8), were isolated from Lycopodiastrum casuarinoides. Their structures were determined through NMR, HRESIMS, and X-ray diffraction analysis. Compound 1 features an unprecedented 5/6/6 tricyclic skeleton, highlighted by a 5-aza-tricyclic[6,3,1,02,6]dodecane motif. In bioactivity assays, compound 1 demonstrated weak inhibitory activity against acid-sensing ion channel 1a.


Assuntos
Alcaloides , Lycopodiaceae , Lycopodium , Canais Iônicos Sensíveis a Ácido , Alcaloides/farmacologia , Azacitidina
13.
Stroke ; 55(6): 1660-1671, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660789

RESUMO

BACKGROUND: Activation of the acid-sensing ion channels (ASICs) by tissue acidosis, a common feature of brain ischemia, contributes to ischemic brain injury, while blockade of ASICs results in protection. Cholestane-3ß,5α,6ß-triol (Triol), a major cholesterol metabolite, has been demonstrated as an endogenous neuroprotectant; however, the mechanism underlying its neuroprotective activity remains elusive. In this study, we tested the hypothesis that inhibition of ASICs is a potential mechanism. METHODS: The whole-cell patch-clamp technique was used to examine the effect of Triol on ASICs heterogeneously expressed in Chinese hamster ovary cells and ASICs endogenously expressed in primary cultured mouse cortical neurons. Acid-induced injury of cultured mouse cortical neurons and middle cerebral artery occlusion-induced ischemic brain injury in wild-type and ASIC1 and ASIC2 knockout mice were studied to examine the protective effect of Triol. RESULTS: Triol inhibits ASICs in a subunit-dependent manner. In Chinese hamster ovary cells, it inhibits homomeric ASIC1a and ASIC3 without affecting ASIC1ß and ASIC2a. In cultured mouse cortical neurons, it inhibits homomeric ASIC1a and heteromeric ASIC1a-containing channels. The inhibition is use-dependent but voltage- and pH-independent. Structure-activity relationship analysis suggests that hydroxyls at the 5 and 6 positions of the A/B ring are critical functional groups. Triol alleviates acidosis-mediated injury of cultured mouse cortical neurons and protects against middle cerebral artery occlusion-induced brain injury in an ASIC1a-dependent manner. CONCLUSIONS: Our study identifies Triol as a novel ASIC inhibitor, which may serve as a new pharmacological tool for studying ASICs and may also be developed as a potential drug for treating stroke.


Assuntos
Canais Iônicos Sensíveis a Ácido , Acidose , Cricetulus , Camundongos Knockout , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Camundongos , Células CHO , Acidose/metabolismo , Acidose/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cricetinae , Fármacos Neuroprotetores/farmacologia , Colestanóis/farmacologia , Camundongos Endogâmicos C57BL , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Masculino , Células Cultivadas
14.
Biophys J ; 123(14): 2122-2135, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38549370

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to fast synaptic transmission and have roles in fear conditioning and nociception. Apart from activation at low pH, ASIC1a also undergoes several types of desensitization, including acute desensitization, which terminates activation; steady-state desensitization, which occurs at sub-activating proton concentrations and limits subsequent activation; and tachyphylaxis, which results in a progressive decrease in response during a series of activations. Structural insights from a desensitized state of ASIC1 have provided great spatial detail, but dynamic insights into conformational changes in different desensitizing conditions are largely missing. Here, we use electrophysiology and voltage-clamp fluorometry to follow the functional changes of the pore along with conformational changes at several positions in the extracellular and upper transmembrane domain via cysteine-labeled fluorophores. Acute desensitization terminates activation in wild type, but introducing an N414K mutation in the ß11-12 linker of mouse ASIC1a interfered with this process. The mutation also affected steady-state desensitization and led to pronounced tachyphylaxis. Although the extracellular domain of this mutant remained sensitive to pH and underwent pH-dependent conformational changes, these conformational changes did not necessarily lead to desensitization. N414K-containing channels also remained sensitive to a known peptide modulator that increases steady-state desensitization, indicating that the mutation only reduced, but not precluded, desensitization. Together, this study contributes to our understanding of the fundamental properties of ASIC1a desensitization, emphasizing the complex interplay between the conformational changes of the extracellular domain and the pore during channel activation and desensitization.


Assuntos
Canais Iônicos Sensíveis a Ácido , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Animais , Camundongos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Conformação Proteica , Mutação , Domínios Proteicos , Xenopus laevis
15.
Inflamm Res ; 73(4): 669-691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483556

RESUMO

OBJECTIVE AND DESIGN: Our aim was to determine an age-dependent role of Nav1.8 and ASIC3 in dorsal root ganglion (DRG) neurons in a rat pre-clinical model of long-term inflammatory pain. METHODS: We compared 6 and 24 months-old female Wistar rats after cutaneous inflammation. We used behavioral pain assessments over time, qPCR, quantitative immunohistochemistry, selective pharmacological manipulation, ELISA and in vitro treatment with cytokines. RESULTS: Older rats exhibited delayed recovery from mechanical allodynia and earlier onset of spontaneous pain than younger rats after inflammation. Moreover, the expression patterns of Nav1.8 and ASIC3 were time and age-dependent and ASIC3 levels remained elevated only in aged rats. In vivo, selective blockade of Nav1.8 with A803467 or of ASIC3 with APETx2 alleviated mechanical and cold allodynia and also spontaneous pain in both age groups with slightly different potency. Furthermore, in vitro IL-1ß up-regulated Nav1.8 expression in DRG neurons cultured from young but not old rats. We also found that while TNF-α up-regulated ASIC3 expression in both age groups, IL-6 and IL-1ß had this effect only on young and aged neurons, respectively. CONCLUSION: Inflammation-associated mechanical allodynia and spontaneous pain in the elderly can be more effectively treated by inhibiting ASIC3 than Nav1.8.


Assuntos
Canais Iônicos Sensíveis a Ácido , Hiperalgesia , Canal de Sódio Disparado por Voltagem NAV1.8 , Dor , Animais , Feminino , Ratos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/farmacologia , Analgésicos/uso terapêutico , Gânglios Espinais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Inflamação/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Células Receptoras Sensoriais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo
16.
J Appl Physiol (1985) ; 136(5): 1097-1104, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38511209

RESUMO

When contracting muscles are freely perfused, the acid-sensing ion channel 3 (ASIC3) on group IV afferents plays a minor role in evoking the exercise pressor reflex. We recently showed in isolated dorsal root ganglion neurons innervating the gastrocnemius muscles that two mu opioid receptor agonists, namely endomorphin 2 and oxycodone, potentiated the sustained inward ASIC3 current evoked by acidic solutions. This in vitro finding prompted us to determine whether endomorphin 2 and oxycodone, when infused into the arterial supply of freely perfused contracting hindlimb muscles, potentiated the exercise pressor reflex. We found that infusion of endomorphin 2 and naloxone in decerebrated rats potentiated the pressor responses to contraction of the triceps surae muscles. The endomorphin 2-induced potentiation of the pressor responses to contraction was prevented by infusion of APETx2, an ASIC3 antagonist. Specifically, the peak pressor response to contraction averaged 19.3 ± 5.6 mmHg for control (n = 10), 27.2 ± 8.1 mmHg after naloxone and endomorphin 2 infusion (n = 10), and 20 ± 8 mmHg after APETx2 and endomorphin 2 infusion (n = 10). Infusion of endomorphin 2 and naloxone did not potentiate the pressor responses to contraction in ASIC3 knockout rats (n = 6). Partly similar findings were observed when oxycodone was substituted for endomorphin 2. Oxycodone infusion significantly increased the exercise pressor reflex over its control level, but subsequent APETx2 infusion failed to restore the increase to its control level (n = 9). The peak pressor response averaged 23.1 ± 8.6 mmHg for control (n = 9), 33.2 ± 11 mmHg after naloxone and oxycodone were infused (n = 9), and 27 ± 8.6 mmHg after APETx2 and oxycodone were infused (n = 9). Our data suggest that after opioid receptor blockade, ASIC3 stimulation by the endogenous mu opioid, endomorphin 2, potentiated the exercise pressor reflex.NEW & NOTEWORTHY This paper provides the first in vivo evidence that endomorphin 2, an endogenous opioid peptide, can paradoxically increase the magnitude of the exercise pressor reflex by an ASIC3-dependent mechanism even when the contracting muscles are freely perfused.


Assuntos
Canais Iônicos Sensíveis a Ácido , Contração Muscular , Músculo Esquelético , Naloxona , Oligopeptídeos , Receptores Opioides mu , Reflexo , Animais , Masculino , Ratos , Canais Iônicos Sensíveis a Ácido/metabolismo , Analgésicos Opioides/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Oligopeptídeos/farmacologia , Oxicodona/farmacologia , Oxicodona/administração & dosagem , Condicionamento Físico Animal/fisiologia , Ratos Sprague-Dawley , Receptores Opioides mu/metabolismo , Reflexo/efeitos dos fármacos , Reflexo/fisiologia
17.
Carcinogenesis ; 45(6): 399-408, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38306794

RESUMO

Hepatocellular carcinoma (HCC) exhibits a high mortality rate due to its high invasion and metastatic nature, and the acidic microenvironment plays a pivotal role. Acid-sensing ion channel 1 (ASIC1) is upregulated in HCC tissues and facilitates tumor progression in a pH-dependent manner, while the specific mechanisms therein remain currently unclear. Herein, we aimed to investigate the underlying mechanisms by which ASIC1 contributes to the development of HCC. Using bioinformatics analysis, we found a significant association between ASIC1 expression and malignant transformation of HCC, such as poor prognosis, metastasis and recurrence. Specifically, ASIC1 enhanced the migration and invasion capabilities of Li-7 cells in the in vivo experiment using an HCC lung metastasis mouse model, as well as in the in vitro experiments such as wound healing assay and Transwell assay. Furthermore, our comprehensive gene chip and molecular biology experiments revealed that ASIC1 promoted HCC migration and invasion by activating the PRKACA/AP-1 signaling pathway. Our findings indicate that targeting ASIC1 could have therapeutic potential for inhibiting HCC progression.


Assuntos
Canais Iônicos Sensíveis a Ácido , Carcinoma Hepatocelular , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Invasividade Neoplásica , Transdução de Sinais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Animais , Humanos , Camundongos , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Linhagem Celular Tumoral , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Masculino , Prognóstico , Proliferação de Células
18.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338690

RESUMO

Tafalgin (Taf) is a tetrapeptide opioid used in clinical practice in Russia as an analgesic drug for subcutaneous administration as a solution (4 mg/mL; concentration of 9 mM). We found that the acid-sensing ion channels (ASICs) are another molecular target for this molecule. ASICs are proton-gated sodium channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Using electrophysiological methods, we demonstrated that Taf could increase the integral current through heterologically expressed ASIC with half-maximal effective concentration values of 0.09 mM and 0.3 mM for rat and human ASIC3, respectively, and 1 mM for ASIC1a. The molecular mechanism of Taf action was shown to be binding to the channel in the resting state and slowing down the rate of desensitization. Taf did not compete for binding sites with both protons and ASIC3 antagonists, such as APETx2 and amiloride (Ami). Moreover, Taf and Ami together caused an unusual synergistic effect, which was manifested itself as the development of a pronounced second desensitizing component. Thus, the ability of Taf to act as a positive allosteric modulator of these channels could potentially cause promiscuous effects in clinical practice. This fact must be considered in patients' treatment.


Assuntos
Canais Iônicos Sensíveis a Ácido , Analgésicos Opioides , Ratos , Humanos , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Analgésicos Opioides/farmacologia , Amilorida/farmacologia , Prótons , Sítios de Ligação
19.
Physiol Rep ; 12(3): e15933, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38312021

RESUMO

A feature of peripheral artery diseases (PAD) includes limb ischemia/reperfusion (I/R) and ischemia. Both I/R and ischemia amplify muscle afferent nerve-activated reflex sympathetic nervous and blood pressure responses (termed as exercise pressor reflex). Nevertheless, the underlying mechanisms responsible for the exaggerated autonomic responses in PAD are undetermined. Previous studies suggest that acid-sensing ion channels (ASICs) in muscle dorsal root ganglion (DRG) play a leading role in regulating the exercise pressor reflex in PAD. Thus, we determined if signaling pathways of nerve growth factor (NGF) contribute to the activities of ASICs in muscle DRG neurons of PAD. In particular, we examined ASIC1a and ASIC3 currents in isolectin B4 -negative muscle DRG neurons, a distinct subpopulation depending on NGF for survival. Hindlimb I/R and ischemia were obtained in male rats. In results, femoral artery occlusion increased the levels of NGF and NGF-stimulated TrkA receptor in DRGs, whereas they led to upregulation of ASIC3 but not ASIC1a. In addition, application of NGF onto DRG neurons increased the density of ASIC3 currents and the effect of NGF was significantly attenuated by TrkA antagonist GW441756. Moreover, the enhancing effect of NGF on the density of ASIC3-like currents was decreased by the respective inhibition of intracellular signaling pathways, namely JNK and NF-κB, by antagonists SP600125 and PDTC. Our results suggest contribution of NGF to the activities of ASIC3 currents via JNK and NF-κB signaling pathways in association with the exercise pressor reflex in experimental PAD.


Assuntos
Canais Iônicos Sensíveis a Ácido , Fator de Crescimento Neural , Doença Arterial Periférica , Animais , Masculino , Ratos , Canais Iônicos Sensíveis a Ácido/metabolismo , Artéria Femoral/metabolismo , Gânglios Espinais/metabolismo , Isquemia/metabolismo , Músculo Esquelético/metabolismo , Fator de Crescimento Neural/metabolismo , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo
20.
Neuron ; 112(8): 1286-1301.e8, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38359825

RESUMO

Tactile discrimination, the ability to differentiate objects' physical properties such as texture, shape, and edges, is essential for environmental exploration, social interaction, and early childhood development. This ability heavily relies on Merkel cell-neurite complexes (MNCs), the tactile end-organs enriched in the fingertips of humans and the whisker hair follicles of non-primate mammals. Although recent studies have advanced our knowledge on mechanical transduction in MNCs, it remains unknown how tactile signals are encoded at MNCs. Here, using rodent whisker hair follicles, we show that tactile signals are encoded at MNCs as fast excitatory synaptic transmission. This synaptic transmission is mediated by acid-sensing ion channels (ASICs) located on the neurites of MNCs, with protons as the principal transmitters. Pharmacological inhibition or genetic deletion of ASICs diminishes the tactile encoding at MNCs and impairs tactile discrimination in animals. Together, ASICs are required for tactile encoding at MNCs to enable tactile discrimination in mammals.


Assuntos
Canais Iônicos Sensíveis a Ácido , Células de Merkel , Pré-Escolar , Humanos , Animais , Células de Merkel/fisiologia , Tato/fisiologia , Transmissão Sináptica , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...