Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Cell Mol Life Sci ; 81(1): 266, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880807

RESUMO

Acid-sensing ion channels (ASICs) are trimeric proton-gated cation channels that play a role in neurotransmission and pain sensation. The snake venom-derived peptides, mambalgins, exhibit potent analgesic effects in rodents by inhibiting central ASIC1a and peripheral ASIC1b. Despite their distinct species- and subtype-dependent pharmacology, previous structure-function studies have focussed on the mambalgin interaction with ASIC1a. Currently, the specific channel residues responsible for this pharmacological profile, and the mambalgin pharmacophore at ASIC1b remain unknown. Here we identify non-conserved residues at the ASIC1 subunit interface that drive differences in the mambalgin pharmacology from rat ASIC1a to ASIC1b, some of which likely do not make peptide binding interactions. Additionally, an amino acid variation below the core binding site explains potency differences between rat and human ASIC1. Two regions within the palm domain, which contribute to subtype-dependent effects for mambalgins, play key roles in ASIC gating, consistent with subtype-specific differences in the peptides mechanism. Lastly, there is a shared primary mambalgin pharmacophore for ASIC1a and ASIC1b activity, with certain peripheral peptide residues showing variant-specific significance for potency. Through our broad mutagenesis studies across various species and subtype variants, we gain a more comprehensive understanding of the pharmacophore and the intricate molecular interactions that underlie ligand specificity. These insights pave the way for the development of more potent and targeted peptide analogues required to advance our understating of human ASIC1 function and its role in disease.


Assuntos
Canais Iônicos Sensíveis a Ácido , Venenos Elapídicos , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/química , Animais , Humanos , Ratos , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Venenos Elapídicos/farmacologia , Venenos Elapídicos/genética , Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Xenopus laevis , Peptídeos
2.
Open Biol ; 14(6): 240028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896086

RESUMO

Acid-sensing ion channels (ASICs) are neuronal Na+-permeable ion channels activated by extracellular acidification. ASICs are involved in learning, fear sensing, pain sensation and neurodegeneration. Increasing the extracellular Ca2+ concentration decreases the H+ sensitivity of ASIC1a, suggesting a competition for binding sites between H+ and Ca2+ ions. Here, we predicted candidate residues for Ca2+ binding on ASIC1a, based on available structural information and our molecular dynamics simulations. With functional measurements, we identified several residues in cavities previously associated with pH-dependent gating, whose mutation reduced the modulation by extracellular Ca2+ of the ASIC1a pH dependence of activation and desensitization. This occurred likely owing to a disruption of Ca2+ binding. Our results link one of the two predicted Ca2+-binding sites in each ASIC1a acidic pocket to the modulation of channel activation. Mg2+ regulates ASICs in a similar way as does Ca2+. We show that Mg2+ shares some of the binding sites with Ca2+. Finally, we provide evidence that some of the ASIC1a Ca2+-binding sites are functionally conserved in the splice variant ASIC1b. Our identification of divalent cation-binding sites in ASIC1a shows how Ca2+ affects ASIC1a gating, elucidating a regulatory mechanism present in many ion channels.


Assuntos
Canais Iônicos Sensíveis a Ácido , Cálcio , Simulação de Dinâmica Molecular , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/genética , Sítios de Ligação , Cálcio/metabolismo , Animais , Ligação Proteica , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Humanos , Ativação do Canal Iônico , Mutação , Conformação Proteica
3.
Nat Commun ; 15(1): 5288, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902277

RESUMO

Psoriasis is an immune-mediated skin disease associated with neurogenic inflammation, but the underlying molecular mechanism remains unclear. We demonstrate here that acid-sensing ion channel 3 (ASIC3) exacerbates psoriatic inflammation through a sensory neurogenic pathway. Global or nociceptor-specific Asic3 knockout (KO) in female mice alleviates imiquimod-induced psoriatic acanthosis and type 17 inflammation to the same extent as nociceptor ablation. However, ASIC3 is dispensable for IL-23-induced psoriatic inflammation that bypasses the need for nociceptors. Mechanistically, ASIC3 activation induces the activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons to promote neurogenic inflammation. Botulinum neurotoxin A and CGRP antagonists prevent sensory neuron-mediated exacerbation of psoriatic inflammation to similar extents as Asic3 KO. In contrast, replenishing CGRP in the skin of Asic3 KO mice restores the inflammatory response. These findings establish sensory ASIC3 as a critical constituent in psoriatic inflammation, and a promising target for neurogenic inflammation management.


Assuntos
Canais Iônicos Sensíveis a Ácido , Peptídeo Relacionado com Gene de Calcitonina , Camundongos Knockout , Psoríase , Células Receptoras Sensoriais , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Feminino , Psoríase/metabolismo , Psoríase/patologia , Psoríase/genética , Psoríase/induzido quimicamente , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Células Receptoras Sensoriais/metabolismo , Pele/metabolismo , Pele/patologia , Imiquimode , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação Neurogênica/metabolismo , Humanos , Nociceptores/metabolismo , Interleucina-23/metabolismo , Interleucina-23/genética
4.
Stroke ; 55(6): 1660-1671, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660789

RESUMO

BACKGROUND: Activation of the acid-sensing ion channels (ASICs) by tissue acidosis, a common feature of brain ischemia, contributes to ischemic brain injury, while blockade of ASICs results in protection. Cholestane-3ß,5α,6ß-triol (Triol), a major cholesterol metabolite, has been demonstrated as an endogenous neuroprotectant; however, the mechanism underlying its neuroprotective activity remains elusive. In this study, we tested the hypothesis that inhibition of ASICs is a potential mechanism. METHODS: The whole-cell patch-clamp technique was used to examine the effect of Triol on ASICs heterogeneously expressed in Chinese hamster ovary cells and ASICs endogenously expressed in primary cultured mouse cortical neurons. Acid-induced injury of cultured mouse cortical neurons and middle cerebral artery occlusion-induced ischemic brain injury in wild-type and ASIC1 and ASIC2 knockout mice were studied to examine the protective effect of Triol. RESULTS: Triol inhibits ASICs in a subunit-dependent manner. In Chinese hamster ovary cells, it inhibits homomeric ASIC1a and ASIC3 without affecting ASIC1ß and ASIC2a. In cultured mouse cortical neurons, it inhibits homomeric ASIC1a and heteromeric ASIC1a-containing channels. The inhibition is use-dependent but voltage- and pH-independent. Structure-activity relationship analysis suggests that hydroxyls at the 5 and 6 positions of the A/B ring are critical functional groups. Triol alleviates acidosis-mediated injury of cultured mouse cortical neurons and protects against middle cerebral artery occlusion-induced brain injury in an ASIC1a-dependent manner. CONCLUSIONS: Our study identifies Triol as a novel ASIC inhibitor, which may serve as a new pharmacological tool for studying ASICs and may also be developed as a potential drug for treating stroke.


Assuntos
Canais Iônicos Sensíveis a Ácido , Acidose , Cricetulus , Camundongos Knockout , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Camundongos , Células CHO , Acidose/metabolismo , Acidose/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cricetinae , Fármacos Neuroprotetores/farmacologia , Colestanóis/farmacologia , Camundongos Endogâmicos C57BL , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Masculino , Células Cultivadas
5.
Pflugers Arch ; 476(6): 923-937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38627262

RESUMO

Fast growing solid tumors are frequently surrounded by an acidic microenvironment. Tumor cells employ a variety of mechanisms to survive and proliferate under these harsh conditions. In that regard, acid-sensitive membrane receptors constitute a particularly interesting target, since they can affect cellular functions through ion flow and second messenger cascades. Our knowledge of these processes remains sparse, however, especially regarding medulloblastoma, the most common pediatric CNS malignancy. In this study, using RT-qPCR, whole-cell patch clamp, and Ca2+-imaging, we uncovered several ion channels and a G protein-coupled receptor, which were regulated directly or indirectly by low extracellular pH in DAOY and UW228 medulloblastoma cells. Acidification directly activated acid-sensing ion channel 1a (ASIC1a), the proton-activated Cl- channel (PAC, ASOR, or TMEM206), and the proton-activated G protein-coupled receptor OGR1. The resulting Ca2+ signal secondarily activated the large conductance calcium-activated potassium channel (BKCa). Our analyses uncover a complex relationship of these transmembrane proteins in DAOY cells that resulted in cell volume changes and induced cell death under strongly acidic conditions. Collectively, our results suggest that these ion channels in concert with OGR1 may shape the growth and evolution of medulloblastoma cells in their acidic microenvironment.


Assuntos
Canais Iônicos Sensíveis a Ácido , Meduloblastoma , Receptores Acoplados a Proteínas G , Humanos , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Linhagem Celular Tumoral , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Concentração de Íons de Hidrogênio , Tamanho Celular , Morte Celular , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Cálcio/metabolismo , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia
6.
Inflamm Res ; 73(4): 669-691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483556

RESUMO

OBJECTIVE AND DESIGN: Our aim was to determine an age-dependent role of Nav1.8 and ASIC3 in dorsal root ganglion (DRG) neurons in a rat pre-clinical model of long-term inflammatory pain. METHODS: We compared 6 and 24 months-old female Wistar rats after cutaneous inflammation. We used behavioral pain assessments over time, qPCR, quantitative immunohistochemistry, selective pharmacological manipulation, ELISA and in vitro treatment with cytokines. RESULTS: Older rats exhibited delayed recovery from mechanical allodynia and earlier onset of spontaneous pain than younger rats after inflammation. Moreover, the expression patterns of Nav1.8 and ASIC3 were time and age-dependent and ASIC3 levels remained elevated only in aged rats. In vivo, selective blockade of Nav1.8 with A803467 or of ASIC3 with APETx2 alleviated mechanical and cold allodynia and also spontaneous pain in both age groups with slightly different potency. Furthermore, in vitro IL-1ß up-regulated Nav1.8 expression in DRG neurons cultured from young but not old rats. We also found that while TNF-α up-regulated ASIC3 expression in both age groups, IL-6 and IL-1ß had this effect only on young and aged neurons, respectively. CONCLUSION: Inflammation-associated mechanical allodynia and spontaneous pain in the elderly can be more effectively treated by inhibiting ASIC3 than Nav1.8.


Assuntos
Canais Iônicos Sensíveis a Ácido , Hiperalgesia , Canal de Sódio Disparado por Voltagem NAV1.8 , Dor , Animais , Feminino , Ratos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/farmacologia , Analgésicos/uso terapêutico , Gânglios Espinais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Inflamação/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Células Receptoras Sensoriais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo
7.
Carcinogenesis ; 45(6): 399-408, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38306794

RESUMO

Hepatocellular carcinoma (HCC) exhibits a high mortality rate due to its high invasion and metastatic nature, and the acidic microenvironment plays a pivotal role. Acid-sensing ion channel 1 (ASIC1) is upregulated in HCC tissues and facilitates tumor progression in a pH-dependent manner, while the specific mechanisms therein remain currently unclear. Herein, we aimed to investigate the underlying mechanisms by which ASIC1 contributes to the development of HCC. Using bioinformatics analysis, we found a significant association between ASIC1 expression and malignant transformation of HCC, such as poor prognosis, metastasis and recurrence. Specifically, ASIC1 enhanced the migration and invasion capabilities of Li-7 cells in the in vivo experiment using an HCC lung metastasis mouse model, as well as in the in vitro experiments such as wound healing assay and Transwell assay. Furthermore, our comprehensive gene chip and molecular biology experiments revealed that ASIC1 promoted HCC migration and invasion by activating the PRKACA/AP-1 signaling pathway. Our findings indicate that targeting ASIC1 could have therapeutic potential for inhibiting HCC progression.


Assuntos
Canais Iônicos Sensíveis a Ácido , Carcinoma Hepatocelular , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Invasividade Neoplásica , Transdução de Sinais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Animais , Humanos , Camundongos , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Linhagem Celular Tumoral , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Masculino , Prognóstico , Proliferação de Células
8.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233146

RESUMO

Stroke continues to be a leading cause of death and long-term disabilities worldwide, despite extensive research efforts. The failure of multiple clinical trials raises the need for continued study of brain injury mechanisms and novel therapeutic strategies for ischemic stroke. The contribution of acid-sensing ion channel 1a (ASIC1a) to neuronal injury during the acute phase of stroke has been well studied; however, the long-term impact of ASIC1a inhibition on stroke recovery has not been established. The present study sought to bridge part of the translational gap by focusing on long-term behavioral recovery after a 30 min stroke in mice that had ASIC1a knocked out or inhibited by PcTX1. The neurological consequences of stroke in mice were evaluated before and after the stroke using neurological deficit score, open field, and corner turn test over a 28 d period. ASIC1a knock-out and inhibited mice showed improved neurological scores more quickly than wild-type control and vehicle-injected mice after the stroke. ASIC1a knock-out mice also recovered from mobility deficits in the open field test more quickly than wild-type mice, while PcTX1-injected mice did not experience significant mobility deficits at all after the stroke. In contrast to vehicle-injected mice that showed clear-sidedness bias in the corner turn test after stroke, PcTX1-injected mice never experienced significant-sidedness bias at all. This study supports and extends previous work demonstrating ASIC1a as a potential therapeutic target for the treatment of ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Encéfalo/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
9.
Exp Physiol ; 109(1): 66-80, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37489658

RESUMO

Although acid-sensing ion channels (ASICs) are proton-gated ion channels responsible for sensing tissue acidosis, accumulating evidence has shown that ASICs are also involved in neurosensory mechanotransduction. However, in contrast to Piezo ion channels, evidence of ASICs as mechanically gated ion channels has not been found using conventional mechanoclamp approaches. Instead, ASICs are involved in the tether model of mechanotransduction, with the channels gated via tethering elements of extracellular matrix and intracellular cytoskeletons. Methods using substrate deformation-driven neurite stretch and micropipette-guided ultrasound were developed to reveal the roles of ASIC3 and ASIC1a, respectively. Here we summarize the evidence supporting the roles of ASICs in neurosensory mechanotransduction in knockout mouse models of ASIC subtypes and provide insight to further probe their roles in proprioception.


Assuntos
Canais Iônicos Sensíveis a Ácido , Mecanotransdução Celular , Camundongos , Animais , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Mecanotransdução Celular/fisiologia , Propriocepção/fisiologia , Camundongos Knockout , Prótons
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166927, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37907140

RESUMO

Cytokines, particularly IL-6, play a crucial role in modulating immune responses in the central nervous system (CNS). Elevated IL-6 levels have been observed in neuroinflammatory conditions, as well as in the sera and brains of patients with neurodegenerative diseases such as Parkinson's, Huntington's, Multiple Sclerosis, and Alzheimer's. Additionally, alterations in regional brain pH have been noted in these conditions. Acid-sensing ion channels (ASICs), including ASIC1a, activated by low pH levels, are highly abundant in the CNS and have recently been associated with various neurological disorders. Our study examined the impact of IL-6 on ASIC1a channels in cell cultures, demonstrating IL-6-induced the redistribution of cytosolic ASIC1a channels to the cell membrane. This redistribution was accompanied by increased ASIC1a current amplitude upon activation, as well as elevated levels of phosphorylated CaMKII and ERK kinases. Additionally, we observed posttranslational modifications on the ASIC1a channel itself. These findings provide insight into a potential link between inflammatory processes and neurodegenerative mechanisms, highlighting ASIC1a channels as promising therapeutic targets in these conditions.


Assuntos
Interleucina-6 , Doenças Neuroinflamatórias , Humanos , Canais Iônicos Sensíveis a Ácido/genética
11.
Cell Chem Biol ; 31(5): 1000-1010.e6, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38113885

RESUMO

Acid-sensing ion channels (ASICs) are trimeric ion channels that open a cation-conducting pore in response to proton binding. Excessive ASIC activation during prolonged acidosis in conditions such as inflammation and ischemia is linked to pain and stroke. A conserved lysine in the extracellular domain (Lys211 in mASIC1a) is suggested to play a key role in ASIC function. However, the precise contributions are difficult to dissect with conventional mutagenesis, as replacement of Lys211 with naturally occurring amino acids invariably changes multiple physico-chemical parameters. Here, we study the contribution of Lys211 to mASIC1a function using tandem protein trans-splicing (tPTS) to incorporate non-canonical lysine analogs. We conduct optimization efforts to improve splicing and functionally interrogate semisynthetic mASIC1a. In combination with molecular modeling, we show that Lys211 charge and side-chain length are crucial to activation and desensitization, thus emphasizing that tPTS can enable atomic-scale interrogations of membrane proteins in live cells.


Assuntos
Canais Iônicos Sensíveis a Ácido , Lisina , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/genética , Lisina/química , Lisina/metabolismo , Humanos , Animais , Modelos Moleculares , Processamento de Proteína
12.
Toxins (Basel) ; 15(10)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37888643

RESUMO

Cancer progression is characterized by microenvironmental acidification. Tumor cells adapt to low environmental pH by activating acid-sensing trimeric ion channels of the DEG/ENaC family. The α-ENaC/ASIC1a/γ-ENaC heterotrimeric channel is a tumor-specific acid-sensing channel, and its targeting can be considered a new strategy for cancer therapy. Mambalgin-2 from the Dendroaspis polylepis venom inhibits the α-ENaC/ASIC1a/γ-ENaC heterotrimer more effectively than the homotrimeric ASIC1a channel, initially proposed as the target of mambalgin-2. Although the molecular basis of such mambalgin selectivity remained unclear. Here, we built the models of the complexes of mambalgin-2 with the α-ENaC/ASIC1a/γ-ENaC and ASIC1a channels, performed MD and predicted the difference in the binding modes. The importance of the 'head' loop region of mambalgin-2 for the interaction with the hetero-, but not with the homotrimeric channel was confirmed by site-directed mutagenesis and electrophysiology. A new mode of allosteric regulation of the ENaC channels by linking the thumb domain of the ASIC1a subunit with the palm domain of the γ-ENaC subunit was proposed. The data obtained provide new insights into the regulation of various types of acid-sensing ion channels and the development of new strategies for cancer treatment.


Assuntos
Canais Epiteliais de Sódio , Neoplasias , Animais , Canais Epiteliais de Sódio/genética , Canais Iônicos Sensíveis a Ácido/genética , Xenopus laevis/metabolismo , Neoplasias/tratamento farmacológico
13.
Protein Sci ; 32(11): e4800, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805833

RESUMO

Acid-sensing ion channels (ASICs) are important players in detecting extracellular acidification throughout the brain and body. ASICs have large extracellular domains containing two regions replete with acidic residues: the acidic pocket, and the palm domain. In the resting state, the acidic pocket is in an expanded conformation but collapses in low pH conditions as the acidic side chains are neutralized. Thus, extracellular acidification has been hypothesized to collapse the acidic pocket that, in turn, ultimately drives channel activation. However, several observations run counter to this idea. To explore how collapse or mobility of the acidic pocket is linked to channel gating, we employed two distinct tools. First, we incorporated the photocrosslinkable noncanonical amino acids (ncAAs) 4-azido-L-phenylalanine (AzF) or 4-benzoyl-L-phenylalanine (BzF) into several positions in the acidic pocket. At both E315 and Y318, AzF incorporation followed by UV irradiation led to right shifts in pH response curves and accelerations of desensitization and deactivation, consistent with restrictions of acidic pocket mobility destabilizing the open state. Second, we reasoned that because Cl- ions are found in the open and desensitized structures but absent in the resting state structures, Cl- substitution would provide insight into how stability of the pocket is linked to gating. Anion substitution resulted in faster deactivation and desensitization, consistent with the acidic pocket regulating the stability of the open state. Taken together, our data support a model where acidic pocket collapse is not essential for channel activation. Rather, collapse of the acidic pocket influences the stability of the open state of the pore.


Assuntos
Canais Iônicos Sensíveis a Ácido , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Conformação Molecular , Concentração de Íons de Hidrogênio
14.
Commun Biol ; 6(1): 951, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723223

RESUMO

ASIC channels are bilaterian proton-gated sodium channels belonging to the large and functionally-diverse Deg/ENaC family that also includes peptide- and mechanically-gated channels. Here, we report that the non-bilaterian invertebrate Trichoplax adhaerens possesses a proton-activated Deg/ENaC channel, TadNaC2, with a unique combination of biophysical features including tachyphylaxis like ASIC1a, reduced proton sensitivity like ASIC2a, biphasic macroscopic currents like ASIC3, as well as low sensitivity to the Deg/ENaC channel blocker amiloride and Ca2+ ions. Structural modeling and mutation analyses reveal that TadNaC2 proton gating is different from ASIC channels, lacking key molecular determinants, and involving unique residues within the palm and finger regions. Phylogenetic analysis reveals that a monophyletic clade of T. adhaerens Deg/ENaC channels, which includes TadNaC2, is phylogenetically distinct from ASIC channels, instead forming a clade with BASIC channels. Altogether, this work suggests that ASIC-like channels evolved independently in T. adhaerens and its phylum Placozoa. Our phylogenetic analysis also identifies several clades of uncharacterized metazoan Deg/ENaC channels, and provides phylogenetic evidence for the existence of Deg/ENaC channels outside of Metazoa, present in the gene data of select unicellular heterokont and filasterea-related species.


Assuntos
Placozoa , Animais , Placozoa/genética , Filogenia , Prótons , Canais Iônicos Sensíveis a Ácido/genética , Amilorida
15.
Commun Biol ; 6(1): 857, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591947

RESUMO

The body temperature of mice is higher at night than during the day. We show here that global deletion of acid-sensing ion channel 1a (ASIC1a) results in lower body temperature during a part of the night. ASICs are pH sensors that modulate neuronal activity. The deletion of ASIC1a decreased the voluntary activity at night of mice that had access to a running wheel but did not affect their spontaneous activity. Daily rhythms of thyrotropin-releasing hormone mRNA in the hypothalamus and of thyroid-stimulating hormone ß mRNA in the pituitary, and of prolactin mRNA in the hypothalamus and pituitary were suppressed in ASIC1a-/- mice. The serum thyroid hormone levels were however not significantly changed by ASIC1a deletion. Our findings indicate that ASIC1a regulates activity and signaling in the hypothalamus and pituitary. This likely leads to the observed changes in body temperature by affecting the metabolism or energy expenditure.


Assuntos
Canais Iônicos Sensíveis a Ácido , Temperatura Corporal , Animais , Camundongos , Canais Iônicos Sensíveis a Ácido/genética , Metabolismo Energético/genética , Hipotálamo , RNA Mensageiro
16.
J Mol Med (Berl) ; 101(7): 877-890, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246982

RESUMO

Ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury (AKI), and there is no effective therapy. Microenvironmental acidification is generally observed in ischemic tissues. Acid-sensing ion channel 1a (ASIC1a) can be activated by a decrease in extracellular pH which mediates neuronal IRI. Our previous study demonstrated that, ASIC1a inhibition alleviates renal IRI. However, the underlying mechanisms have not been fully elucidated. In this study, we determined that renal tubule-specific deletion of ASIC1a in mice (ASIC1afl/fl/CDH16cre) attenuated renal IRI, and reduced the expression of NLRP3, ASC, cleaved-caspase-1, GSDMD-N, and IL-1ß. Consistent with these in vivo results, inhibition of ASIC1a by the specific inhibitor PcTx-1 protected HK-2 cells from hypoxia/reoxygenation (H/R) injury, and suppressed H/R-induced NLRP3 inflammasome activation. Mechanistically, the activation of ASIC1a by either IRI or H/R induced the phosphorylation of NF-κB p65, which translocates to the nucleus and promotes the transcription of NLRP3 and pro-IL-1ß. Blocking NF-κB by treatment with BAY 11-7082 validated the roles of H/R and acidosis in NLRP3 inflammasome activation. This further confirmed that ASIC1a promotes NLRP3 inflammasome activation, which requires the NF-κB pathway. In conclusion, our study suggests that ASIC1a contributes to renal IRI by affecting the NF-κB/NLRP3 inflammasome pathway. Therefore, ASIC1a may be a potential therapeutic target for AKI. KEY MESSAGES: Knockout of ASIC1a attenuated renal ischemia-reperfusion injury. ASIC1a promoted the NF-κB pathway and NLRP3 inflammasome activation. Inhibition of the NF-κB mitigated the NLRP3 inflammasome activation induced by ASIC1a.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Animais , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Camundongos Knockout , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo
17.
J Pain ; 24(8): 1493-1505, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37054767

RESUMO

Therapeutic ultrasound (tUS) is widely used in chronic muscle pain control. However, its analgesic molecular mechanism is still not known. Our objective is to reveal the mechanism of the tUS-induced analgesia in mouse models of fibromyalgia. We applied tUS in mice that have developed chronic hyperalgesia induced by intramuscular acidification and determined the tUS frequency at 3 MHz, dosage at 1 W/cm2 (measured output as 6.3 mW/cm2) and 100% duty cycle for 3 minutes having the best analgesic effect. Pharmacological and genetic approaches were used to probe the molecular determinants involved in tUS-mediated analgesia. A second mouse model of fibromyalgia induced by intermittent cold stress was further used to validate the mechanism underlying the tUS-mediated analgesia. The tUS-mediated analgesia was abolished by a pretreatment of NK1 receptor antagonist-RP-67580 or knockout of substance P (Tac1-/-). Besides, the tUS-mediated analgesia was abolished by ASIC3-selective antagonist APETx2 but not TRPV1-selective antagonist capsazepine, suggesting a role for ASIC3. Moreover, the tUS-mediated analgesia was attenuated by ASIC3-selective nonsteroid anti-inflammation drugs (NSAIDs)-aspirin and diclofenac but not by ASIC1a-selective ibuprofen. We next validated the antinociceptive role of substance P signaling in the model induced by intermittent cold stress, in which tUS-mediated analgesia was abolished in mice lacking substance P, NK1R, Asic1a, Asic2b, or Asic3 gene. tUS treatment could activate ASIC3-containing channels in muscle afferents to release substance P intramuscularly and exert an analgesic effect in mouse models of fibromyalgia. NSAIDs should be cautiously used or avoided in the tUS treatment. PERSPECTIVE: Therapeutic ultrasound showed analgesic effects against chronic mechanical hyperalgesia in the mouse model of fibromyalgia through the signaling pathways involving substance P and ASIC3-containing ion channels in muscle afferents. NSAIDs should be cautiously used during tUS treatment.


Assuntos
Analgesia , Fibromialgia , Terapia por Ultrassom , Camundongos , Animais , Fibromialgia/tratamento farmacológico , Substância P , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Dor , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Anti-Inflamatórios não Esteroides/efeitos adversos
18.
Endocrinology ; 164(4)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36763043

RESUMO

Pheochromocytomas (PCC) and paragangliomas (PGL) are rare neuroendocrine tumors with limited curative treatment options outside of surgical resection. Patients with mutations in succinate dehydrogenase subunit B (SDHB) are at an increased risk of malignant and aggressive disease. As cation channels are associated with tumorigenesis, we studied the expression and activity of cation channels from the Degenerin superfamily in a progenitor cell line derived from a human PCC. hPheo1 wild-type (WT) and SDHB knockdown (KD) cells were studied to investigate whether epithelial sodium channels (ENaC) and acid-sensing ion channels (ASIC) are regulated by the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). First, we performed targeted metabolomic studies and quantified changes in glycolysis pathway intermediates and citric acid cycle intermediates using hPheo1 WT cells and SDHB KD cells. Next, we performed protein biochemistry and electrophysiology studies to characterize the protein expression and activity, respectively, of these ion channels. Our western blot experiments show both ENaC alpha and ASIC1/2 are expressed in both hPheo1 WT and SDHB KD cells, with lower levels of a cleaved 60 kDa form of ENaC in SDHB KD cells. Single-channel patch clamp studies corroborate these results and further indicate channel activity is decreased in SDHB KD cells. Additional experiments showed a more significant decreased membrane potential in SDHB KD cells, which were sensitive to amiloride compared to WT cells. We provide evidence for the differential expression and activity of ENaC and ASIC hybrid channels in hPheo1 WT and SDHB KD cells, providing an important area of investigation in understanding SDHB-related disease.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Humanos , Canais Epiteliais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Cátions/metabolismo , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
19.
Elife ; 122023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36821351

RESUMO

Nervous systems are endowed with rapid chemosensation and intercellular signaling by ligand-gated ion channels (LGICs). While a complex, bilaterally symmetrical nervous system is a major innovation of bilaterian animals, the employment of specific LGICs during early bilaterian evolution is poorly understood. We therefore questioned bilaterian animals' employment of acid-sensing ion channels (ASICs), LGICs that mediate fast excitatory responses to decreases in extracellular pH in vertebrate neurons. Our phylogenetic analysis identified an earlier emergence of ASICs from the overarching DEG/ENaC (degenerin/epithelial sodium channel) superfamily than previously thought and suggests that ASICs were a bilaterian innovation. Our broad examination of ASIC gene expression and biophysical function in each major bilaterian lineage of Xenacoelomorpha, Protostomia, and Deuterostomia suggests that the earliest bilaterian ASICs were probably expressed in the periphery, before being incorporated into the brain as it emerged independently in certain deuterostomes and xenacoelomorphs. The loss of certain peripheral cells from Ecdysozoa after they separated from other protostomes likely explains their loss of ASICs, and thus the absence of ASICs from model organisms Drosophila and Caenorhabditis elegans. Thus, our use of diverse bilaterians in the investigation of LGIC expression and function offers a unique hypothesis on the employment of LGICs in early bilaterian evolution.


Most animals on Earth, from worms to chimpanzees, belong to a group known as the bilaterians. Despite their rich variety of shapes and lifestyles, all these creatures share similarities ­ in particular, a complex nervous system where neurons can quickly relay electric signals. This is made possible by a class of proteins, known as ligand-gated ion channels, which are studded through the membrane of cells. There, they help neurons efficiently communicate with each other by converting external chemical information into internal electrical signals. Yet despite their importance, how and when these proteins have evolved remains poorly understood. Marti-Solans et al. decided to explore this question by focusing on acid-sensing ion channels, a family which often forms the linchpin of bilaterian neural networks. They examined when these proteins first evolved (that is, in which putative ancestral animals) and where in the body. To do so, they combed through genetic data from all major bilaterian lineages as well as from non-biletarian groups; this included previously unexplored datasets that give insight into the type of cells in which a particular gene is active. The analyses revealed that the channels are specific to bilaterians, but that they appeared earlier than previously thought, being present in the very first members of this group. However, at this stage, the proteins were mainly located in cells at the periphery of the body rather than in those from emerging neural circuits. This suggests that the channels were co-opted by nerve cells later on, when the nervous systems became more complex. The proteins being initially located in cells at the outer edge of the body could also explain why they are absent in bilaterian creatures such as fruit flies and nematode worms; these animals all belong to a lineage where growth takes place by shedding their external layers. Acid-sensing ion channels are an important group of potential drug targets, often being implicated in pain and diseases of the nervous system. The work of Marti-Solans et al. offers an insight into the diversity of roles these proteins can play in the body, demonstrating once again how evolution can repurpose the same biophysical functions to serve a range of needs inside an organism.


Assuntos
Canais Iônicos Sensíveis a Ácido , Canais Epiteliais de Sódio , Animais , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Filogenia , Canais Epiteliais de Sódio/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Caenorhabditis elegans/metabolismo , Drosophila/metabolismo
20.
Physiol Res ; 72(1): 49-57, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36545882

RESUMO

The acidic tumor microenvironment (TME) of pancreatic cancer affects the physiological function of pancreatic stellate cells (PSCs), which in turn promotes cancer progression. Acid-sensing ion channel 1a (ASIC1a) is responsible for acidosis-related physiopathological processes. In this study, we investigated the effect of acid exposure on the activation and autophagy of PSCs, and the role of ASIC1a in these events. The results showed that acidic medium upregulated the expression of ASIC1a, induced PSCs activation and autophagy, which can be suppressed by inhibiting ASIC1a using PcTx1 or ASIC1a knockdown, suggesting that ASIC1a involves these two processes. In addition, the acid-induced activation of PSCs was impaired after the application of autophagy inhibitor alone or in combination with ASIC1a siRNA, meaning a connection between autophagy and activation. Collectively, our study provides evidence for the involvement of ASIC1a in the acid-caused PSCs activation, which may be associated with autophagy induction.


Assuntos
Canais Iônicos Sensíveis a Ácido , Células Estreladas do Pâncreas , Animais , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Autofagia , Células Estreladas do Pâncreas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...