Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.180
Filtrar
1.
Behav Pharmacol ; 35(7): 399-407, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39230435

RESUMO

The l -arginine ( l -Arg)/nitric oxide/cyclic GMP/potassium channel (K ATP ) pathway and opioid receptors are known to play critical roles in pain perception and the antinociceptive effects of various compounds. While there is evidence suggesting that the analgesic effects of rutin may involve nitric oxide modulation, the direct link between rutin and the l -Arg/nitric oxide/cyclic GMP/K ATP pathway in the context of pain modulation requires further investigation. The antinociceptive effect of rutin was studied in male NMRI mice using the formalin test. To investigate the role of the l -Arg/nitric oxide/cyclic GMP/K ATP pathway and opioid receptors, the mice were pretreated intraperitoneally with different substances. These substances included l -Arg (a precursor of nitric oxide), S-nitroso- N -acetylpenicillamine (SNAP, a nitric oxide donor), N(gamma)-nitro- l -arginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase), sildenafil (an inhibitor of phosphodiesterase enzyme), glibenclamide (a K ATP channel blocker), and naloxone (an opioid receptor antagonist). All pretreatments were administered 20 min before the administration of the most effective dose of rutin. Based on our investigation, it was found that rutin exhibited a dose-dependent antinociceptive effect. The administration of SNAP enhanced the analgesic effects of rutin during both the initial and secondary phases. Moreover, L-NAME, naloxone, and glibenclamide reduced the analgesic effects of rutin in both the primary and secondary phases. In conclusion, rutin holds significant value as a flavonoid with analgesic properties, and its analgesic effect is directly mediated through the nitric oxide/cyclic GMP/K ATP channel pathway.


Assuntos
Analgésicos , Arginina , GMP Cíclico , Canais KATP , NG-Nitroarginina Metil Éster , Óxido Nítrico , Receptores Opioides , Rutina , Transdução de Sinais , Animais , Masculino , Camundongos , Arginina/farmacologia , Óxido Nítrico/metabolismo , Rutina/farmacologia , Analgésicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptores Opioides/metabolismo , Receptores Opioides/efeitos dos fármacos , Canais KATP/metabolismo , GMP Cíclico/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Glibureto/farmacologia , Citrato de Sildenafila/farmacologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Naloxona/farmacologia , Sulfonas/farmacologia , Piperazinas/farmacologia , Purinas/farmacologia , S-Nitroso-N-Acetilpenicilamina/farmacologia , Dor/tratamento farmacológico , Dor/metabolismo , Antagonistas de Entorpecentes/farmacologia , Relação Dose-Resposta a Droga , Doadores de Óxido Nítrico/farmacologia
2.
Pharmacol Rep ; 76(5): 1067-1078, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39179890

RESUMO

BACKGROUND: Recently, we demonstrated that nicorandil inhibits mechanical allodynia induced by paclitaxel. In the present study, we evaluated the effect induced by nicorandil in a model of neuropathic pain induced by chronic constriction injury (CCI) in mice. We also investigated putative mechanisms underlying such an effect. METHODS: CCI was induced by three ligatures of the left sciatic nerve. Mechanical allodynia was evaluated by measuring the paw withdrawal threshold with an electronic von Frey apparatus. Concentrations of cytokines and myeloperoxidase activity were determined in the paw tissue, sciatic nerve, and dorsal root ganglia (DRG). RESULTS: Oral administration of two doses of nicorandil (150 mg/kg po), but not equimolar doses of nicotinamide or nicotinic acid, attenuated mechanical allodynia induced by CCI. Nicorandil activity was reduced by previous administration of glibenclamide (40 mg/kg) or naltrexone (5 mg/kg or 10 mg/kg). Two doses of nicorandil (150 mg/kg, po) reduced tumor necrosis factor-α, interleukin-1ß and interleukin-6, but not CXCL-1, concentrations in the paw tissue of CCI mice. Two doses of nicorandil (150 mg/kg, po) reduced concentrations of all these mediators in the sciatic nerve and DRG. Two doses of nicorandil (150 mg/kg, po) also reduced the myeloperoxidase activity in the paw tissue, sciatic nerve, and DRG. CONCLUSIONS: Nicorandil exhibits antiallodynic activity in a model of neuropathic pain induced by CCI. Inhibition of cytokines production and reduction of neutrophils recruitment in paw tissue, sciatic nerve, and DRG as well as activation of ATP-dependent potassium channels and opioidergic pathways, underlie nicorandil antiallodynic activity.


Assuntos
Citocinas , Modelos Animais de Doenças , Gânglios Espinais , Hiperalgesia , Canais KATP , Neuralgia , Nicorandil , Nervo Isquiático , Animais , Nicorandil/farmacologia , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Camundongos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Masculino , Citocinas/metabolismo , Canais KATP/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Glibureto/farmacologia , Naltrexona/farmacologia , Naltrexona/análogos & derivados , Peroxidase/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Analgésicos/farmacologia
3.
JCI Insight ; 9(17)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088268

RESUMO

Cantú syndrome is a multisystem disorder caused by gain-of-function (GOF) mutations in KCNJ8 and ABCC9, the genes encoding the pore-forming inward rectifier Kir6.1 and regulatory sulfonylurea receptor SUR2B subunits, respectively, of vascular ATP-sensitive K+ (KATP) channels. In this study, we investigated changes in the vascular endothelium in mice in which Cantú syndrome-associated Kcnj8 or Abcc9 mutations were knocked in to the endogenous loci. We found that endothelium-dependent dilation was impaired in small mesenteric arteries from Cantú mice. Loss of endothelium-dependent vasodilation led to increased vasoconstriction in response to intraluminal pressure or treatment with the adrenergic receptor agonist phenylephrine. We also found that either KATP GOF or acute activation of KATP channels with pinacidil increased the amplitude and frequency of wave-like Ca2+ events generated in the endothelium in response to the vasodilator agonist carbachol. Increased cytosolic Ca2+ signaling activity in arterial endothelial cells from Cantú mice was associated with elevated mitochondrial [Ca2+] and enhanced reactive oxygen species (ROS) and peroxynitrite levels. Scavenging intracellular or mitochondrial ROS restored endothelium-dependent vasodilation in the arteries of mice with KATP GOF mutations. We conclude that mitochondrial Ca2+ overload and ROS generation, which subsequently leads to nitric oxide consumption and peroxynitrite formation, cause endothelial dysfunction in mice with Cantú syndrome.


Assuntos
Endotélio Vascular , Hipertricose , Mitocôndrias , Osteocondrodisplasias , Ácido Peroxinitroso , Espécies Reativas de Oxigênio , Vasodilatação , Animais , Camundongos , Hipertricose/genética , Hipertricose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Ácido Peroxinitroso/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Mitocôndrias/metabolismo , Vasodilatação/genética , Receptores de Sulfonilureias/metabolismo , Receptores de Sulfonilureias/genética , Cálcio/metabolismo , Masculino , Vasoconstrição , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Canais KATP/metabolismo , Canais KATP/genética , Humanos , Modelos Animais de Doenças , Mutação com Ganho de Função , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/genética
4.
Function (Oxf) ; 5(5)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39075985

RESUMO

Lymphatic dysfunction is an underlying component of multiple metabolic diseases, including diabetes, obesity, and metabolic syndrome. We investigated the roles of KATP channels in lymphatic contractile dysfunction in response to acute metabolic stress induced by inhibition of the mitochondrial electron transport chain. Ex vivo popliteal lymphatic vessels from mice were exposed to the electron transport chain inhibitors antimycin A and rotenone, or the oxidative phosphorylation inhibitor/protonophore, CCCP. Each inhibitor led to a significant reduction in the frequency of spontaneous lymphatic contractions and calculated pump flow, without a significant change in contraction amplitude. Contraction frequency was restored by the KATP channel inhibitor, glibenclamide. Lymphatic vessels from mice with global Kir6.1 deficiency or expressing a smooth muscle-specific dominant negative Kir6.1 channel were resistant to inhibition. Antimycin A inhibited the spontaneous action potentials generated in lymphatic muscle and this effect was reversed by glibenclamide, confirming the role of KATP channels. Antimycin A, but not rotenone or CCCP, increased dihydrorhodamine fluorescence in lymphatic muscle, indicating ROS production. Pretreatment with tiron or catalase prevented the effect of antimycin A on wild-type lymphatic vessels, consistent with its action being mediated by ROS. Our results support the conclusion that KATP channels in lymphatic muscle can be directly activated by reduced mitochondrial ATP production or ROS generation, consequent to acute metabolic stress, leading to contractile dysfunction through inhibition of the ionic pacemaker controlling spontaneous lymphatic contractions. We propose that a similar activation of KATP channels contributes to lymphatic dysfunction in metabolic disease.


Assuntos
Canais KATP , Vasos Linfáticos , Contração Muscular , Estresse Fisiológico , Animais , Canais KATP/metabolismo , Camundongos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Estresse Fisiológico/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Glibureto/farmacologia , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Antimicina A/farmacologia , Masculino
5.
Neurochem Int ; 179: 105810, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39069080

RESUMO

The absent in melanoma 2 (AIM2) inflammasome contributes to ischemic brain injury by inducing cell pyroptosis and inflammatory responses. Our research group has previously demonstrated that ATP-sensitive potassium channels (KATP channels) openers can modulate neuronal synaptic plasticity post-ischemic stroke for neuroprotection. However, the specific mechanisms of KATP channels in the inflammatory response following ischemic stroke remain unclear. Here, we assessed cellular damage by observing changes in BV-2 morphology and viability. 2,3,5-Triphenyl tetrazolium chloride (TTC) staining, mNSS scoring, Nissl staining, and TdT-mediated dUTP nick end labeling (TUNEL) staining were used to evaluate behavioral deficits, brain injury severity, and neuronal damage in mice subjected to middle cerebral artery occlusion (MCAO). Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were used to measure cell pyroptosis and nuclear factor-kappaB (NF-κB) activation in vivo and in vitro. We observed that AIM2 protein expression was upregulated and localized within the cytoplasm of BV-2 cells. Notably, low-dose Nicorandil treatment reduced inflammatory cytokine secretion and pyroptosis-related protein expression, including AIM2, cleaved cysteinyl aspartate-specific protease-1 (cleaved caspase-1), and Gasdermin D N-terminal (GSDMD-NT). Further investigations revealed that the KATP channel inhibitor 5-HD upregulated p-NF-κB p65, NF-κB p65, and p-IκBα expression, reversing Nicorandil's neuroprotective effect in vivo. In summary, our results suggest that Nicorandil may serve as a potential therapeutic option for ischemic stroke. Targeting AIM2 and NF-κB represents effective strategies for inhibiting neuroinflammation.


Assuntos
AVC Isquêmico , Canais KATP , Camundongos Endogâmicos C57BL , NF-kappa B , Doenças Neuroinflamatórias , Nicorandil , Animais , Nicorandil/farmacologia , Camundongos , AVC Isquêmico/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Masculino , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Canais KATP/metabolismo , Canais KATP/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/antagonistas & inibidores , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia
6.
Function (Oxf) ; 5(5)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984978

RESUMO

Cantú syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by gain-of-function (GoF) variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (KATP) channels and is characterized by low systemic vascular resistance, as well as tortuous, dilated, vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with both hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell autonomously within vascular smooth muscle cells (VSMCs) or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Whole-cell voltage clamp of isolated aortic and mesenteric arterial VSMCs isolated from wild-type (WT) and Kir6.1[V65M] (CS) mice revealed no clear differences in voltage-gated K+ (Kv) or Ca2+ currents. Kv and Ca2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. While pinacidil-sensitive KATP currents in control hiPSC-VSMCs were similar to those in WT mouse VSMCs, they were considerably larger in CS hiPSC-VSMCs. Under current-clamp conditions, CS hiPSC-VSMCs were also hyperpolarized, consistent with increased basal K conductance and providing an explanation for decreased tone and decreased vascular resistance in CS. Increased compliance was observed in isolated CS mouse aortae and was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs and suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular KATP GoF. The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. Results in hiPSC-VSMCs derived from CS patient cells suggest that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by KATP overactivity within VSMCs .


Assuntos
Hipertricose , Células-Tronco Pluripotentes Induzidas , Canais KATP , Músculo Liso Vascular , Miócitos de Músculo Liso , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Músculo Liso Vascular/metabolismo , Hipertricose/genética , Hipertricose/metabolismo , Hipertricose/fisiopatologia , Hipertricose/patologia , Animais , Camundongos , Miócitos de Músculo Liso/metabolismo , Canais KATP/genética , Canais KATP/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Osteocondrodisplasias/fisiopatologia , Mutação , Diferenciação Celular/genética , Técnicas de Patch-Clamp , Cardiomegalia , Receptores de Sulfonilureias
7.
Biomed Pharmacother ; 177: 116986, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906017

RESUMO

AIM: Apigenin, a natural bioflavonoid, is reported as an anti-diabetic agent since it possesses the ability to inhibit α-glucosidase activity, cause stimulation of insulin action and secretion, manage ROS, and prevent diabetes complications. Apigenin was identified as a new insulin secretagogue that enhances glucose-stimulated insulin secretion and seems like a better antidiabetic drug candidate. Here we explored the insulinotropic mechanism(s) of apigenin in vitro in mice islets and in vivo in diabetic rats. METHODS: Size-matched pancreatic islets were divided into groups and incubated in the presence or absence of apigenin and agonists or antagonists of major insulin signaling pathways. The secreted insulin was measured by ELISA. The intracellular cAMP was estimated by cAMP acetylation assay. The acute and chronic effects of apigenin were evaluated in diabetic rats. RESULTS: apigenin dose-dependently enhanced insulin secretion in isolated mice islets, and its insulinotropic effect was exerted at high glucose concentrations distinctly different from glibenclamide. Furthermore, apigenin amplified glucose-induced insulin secretion in depolarized and glibenclamide-treated islets. Apigenin showed no effect on intracellular cAMP concentration; however, an additive effect was observed by apigenin in both forskolin and IBMX-induced insulin secretion. Interestingly, H89, a PKA inhibitor, and U0126, a MEK kinase inhibitor, significantly inhibited apigenin-induced insulin secretion; however, no significant effect was observed by using ESI-05, an epac2 inhibitor. Apigenin improved glucose tolerance and increased glucose-stimulated plasma insulin levels in diabetic rats. Apigenin also lowered blood glucose in diabetic rats upon chronic treatment. CONCLUSION: Apigenin exerts glucose-stimulated insulin secretion by modulating the PKA-MEK kinase signaling cascade independent of K-ATP channels.


Assuntos
Apigenina , Proteínas Quinases Dependentes de AMP Cíclico , Diabetes Mellitus Experimental , Glucose , Secreção de Insulina , Insulina , Animais , Apigenina/farmacologia , Secreção de Insulina/efeitos dos fármacos , Masculino , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Insulina/sangue , Camundongos , Ratos , Transdução de Sinais/efeitos dos fármacos , Canais KATP/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , AMP Cíclico/metabolismo , Hipoglicemiantes/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos C57BL , Ratos Wistar , Glicemia/metabolismo , Glicemia/efeitos dos fármacos
8.
Biomolecules ; 14(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38927075

RESUMO

Atherosclerosis (AS) has become the leading cause of cardiovascular disease worldwide. Our previous study had observed that Nippostrongylus brasiliensis (Nb) infection or its derived products could inhibit AS development by inducing an anti-inflammatory response. We performed a metabolic analysis to screen Nb-derived metabolites with anti-inflammation activity and evaluated the AS-prevention effect. We observed that the metabolite uridine had higher expression levels in mice infected with the Nb and ES (excretory-secretory) products and could be selected as a key metabolite. ES and uridine interventions could reduce the pro-inflammatory responses and increase the anti-inflammatory responses in vitro and in vivo. The apolipoprotein E gene knockout (ApoE-/-) mice were fed with a high-fat diet for the AS modeling. Following the in vivo intervention, ES products or uridine significantly reduced serum and liver lipid levels, alleviated the formation of atherosclerosis, and reduced the pro-inflammatory responses in serum or plaques, while the anti-inflammatory responses showed opposite trends. After blocking with 5-HD (5-hydroxydecanoate sodium) in vitro, the mRNA levels of M2 markers were significantly reduced. When blocked with 5-HD in vivo, the degree of atherosclerosis was worsened, the pro-inflammatory responses were increased compared to the uridine group, while the anti-inflammatory responses decreased accordingly. Uridine, a key metabolite from Nippostrongylus brasiliensis, showed anti-inflammatory and anti-atherosclerotic effects in vitro and in vivo, which depend on the activation of the mitochondrial ATP-sensitive potassium channel.


Assuntos
Anti-Inflamatórios , Aterosclerose , Nippostrongylus , Uridina , Animais , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/genética , Modelos Animais de Doenças , Canais KATP/metabolismo , Canais KATP/genética , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Uridina/farmacologia
9.
Methods Mol Biol ; 2796: 191-210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38856903

RESUMO

ATP-sensitive potassium (KATP) channels function as metabolic sensors that link cell membrane excitability to the cellular energy status by controlling potassium ion (K+) flow across the cell membrane according to intracellular ATP and ADP concentrations. As such, KATP channels influence a broad spectrum of physiological processes, including insulin secretion and cardiovascular functions. KATP channels are hetero-octamers, consisting of four inward rectifier potassium channel subunits, Kir6.1 or Kir6.2, and four sulfonylurea receptors (SURs), SUR1, SUR2A, or SUR2B. Different Kir6 and SUR isoforms assemble into KATP channel subtypes with distinct tissue distributions and physiological functions. Mutations in the genes encoding KATP channel subunits underlie various human diseases. Targeted treatment for these diseases requires subtype-specific KATP channel modulators. Rubidium ions (Rb+) also pass through KATP channels, and Rb+ efflux assays can be used to assess KATP channel function and activity. Flame atomic absorption spectroscopy (Flame-AAS) combined with microsampling can measure Rb+ in small volume, which provides an efficient tool to screen for compounds that alter KATP channel activity in Rb+ efflux assays. In this chapter, we describe a detailed protocol for Rb+ efflux assays designed to identify new KATP channel modulators with potential therapeutic utilities.


Assuntos
Canais KATP , Rubídio , Canais KATP/metabolismo , Canais KATP/genética , Humanos , Rubídio/metabolismo , Receptores de Sulfonilureias/metabolismo , Receptores de Sulfonilureias/genética , Animais , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética
10.
Nutr Diabetes ; 14(1): 43, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862477

RESUMO

BACKGROUND: We previously reported that, among all the naturally occurring amino acids, L-valine is the most powerful luminal stimulator of glucagon-like peptide 1 (GLP-1) release from the upper part of the rat small intestine. This makes L-valine an interesting target for nutritional-based modulation of GLP-1 secretion. However, the molecular mechanism of L-valine-induced secretion remains unknown. METHODS: We aimed to investigate the effect of orally given L-valine in mice and to identify the molecular details of L-valine stimulated GLP-1 release using the isolated perfused rat small intestine and GLUTag cells. In addition, the effect of L-valine on hormone secretion from the distal intestine was investigated using a perfused rat colon. RESULTS: Orally given L-valine (1 g/kg) increased plasma levels of active GLP-1 comparably to orally given glucose (2 g/kg) in male mice, supporting that L-valine is a powerful stimulator of GLP-1 release in vivo (P > 0.05). Luminal L-valine (50 mM) strongly stimulated GLP-1 release from the perfused rat small intestine (P < 0.0001), and inhibition of voltage-gated Ca2+-channels with nifedipine (10 µM) inhibited the GLP-1 response (P < 0.01). Depletion of luminal Na+ did not affect L-valine-induced GLP-1 secretion (P > 0.05), suggesting that co-transport of L-valine and Na+ is not important for the depolarization necessary to activate the voltage-gated Ca2+-channels. Administration of the KATP-channel opener diazoxide (250 µM) completely blocked the L-valine induced GLP-1 response (P < 0.05), suggesting that L-valine induced depolarization arises from metabolism and opening of KATP-channels. Similar to the perfused rat small intestine, L-valine tended to stimulate peptide tyrosine-tyrosine (PYY) and GLP-1 release from the perfused rat colon. CONCLUSIONS: L-valine is a powerful stimulator of GLP-1 release in rodents. We propose that intracellular metabolism of L-valine leading to closure of KATP-channels and opening of voltage-gated Ca2+-channels are involved in L-valine induced GLP-1 secretion.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Intestino Delgado , Canais KATP , Valina , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Masculino , Valina/farmacologia , Ratos , Camundongos , Intestino Delgado/metabolismo , Intestino Delgado/efeitos dos fármacos , Canais KATP/metabolismo , Canais de Cálcio/metabolismo , Colo/metabolismo , Colo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ratos Wistar
11.
Proc Natl Acad Sci U S A ; 121(25): e2318535121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865270

RESUMO

The heart beats approximately 100,000 times per day in humans, imposing substantial energetic demands on cardiac muscle. Adenosine triphosphate (ATP) is an essential energy source for normal function of cardiac muscle during each beat, as it powers ion transport, intracellular Ca2+ handling, and actin-myosin cross-bridge cycling. Despite this, the impact of excitation-contraction coupling on the intracellular ATP concentration ([ATP]i) in myocytes is poorly understood. Here, we conducted real-time measurements of [ATP]i in ventricular myocytes using a genetically encoded ATP fluorescent reporter. Our data reveal rapid beat-to-beat variations in [ATP]i. Notably, diastolic [ATP]i was <1 mM, which is eightfold to 10-fold lower than previously estimated. Accordingly, ATP-sensitive K+ (KATP) channels were active at physiological [ATP]i. Cells exhibited two distinct types of ATP fluctuations during an action potential: net increases (Mode 1) or decreases (Mode 2) in [ATP]i. Mode 1 [ATP]i increases necessitated Ca2+ entry and release from the sarcoplasmic reticulum (SR) and were associated with increases in mitochondrial Ca2+. By contrast, decreases in mitochondrial Ca2+ accompanied Mode 2 [ATP]i decreases. Down-regulation of the protein mitofusin 2 reduced the magnitude of [ATP]i fluctuations, indicating that SR-mitochondrial coupling plays a crucial role in the dynamic control of ATP levels. Activation of ß-adrenergic receptors decreased [ATP]i, underscoring the energetic impact of this signaling pathway. Finally, our work suggests that cross-bridge cycling is the largest consumer of ATP in a ventricular myocyte during an action potential. These findings provide insights into the energetic demands of EC coupling and highlight the dynamic nature of ATP concentrations in cardiac muscle.


Assuntos
Trifosfato de Adenosina , Cálcio , Acoplamento Excitação-Contração , Ventrículos do Coração , Miócitos Cardíacos , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/metabolismo , Acoplamento Excitação-Contração/fisiologia , Animais , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/citologia , Potenciais de Ação/fisiologia , Retículo Sarcoplasmático/metabolismo , Frequência Cardíaca/fisiologia , Humanos , Canais KATP/metabolismo , Contração Miocárdica/fisiologia , Camundongos
12.
Br J Pharmacol ; 181(18): 3380-3400, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38763521

RESUMO

BACKGROUND AND PURPOSE: The canonical Kir6.2/SUR2A ventricular KATP channel is highly ATP-sensitive and remains closed under normal physiological conditions. These channels activate only when prolonged metabolic compromise causes significant ATP depletion and then shortens the action potential to reduce contractile activity. Pharmacological activation of KATP channels is cardioprotective, but physiologically, it is difficult to understand how these channels protect the heart if they only open under extreme metabolic stress. The presence of a second KATP channel population could help explain this. Here, we characterise the biophysical and pharmacological behaviours of a constitutively active Kir6.1-containing KATP channel in ventricular cardiomyocytes. EXPERIMENTAL APPROACH: Patch-clamp recordings from rat ventricular myocytes in combination with well-defined pharmacological modulators was used to characterise these newly identified K+ channels. Action potential recording, calcium (Fluo-4) fluorescence measurements and video edge detection of contractile function were used to assess functional consequences of channel modulation. KEY RESULTS: Our data show a ventricular K+ conductance whose biophysical characteristics and response to pharmacological modulation were consistent with Kir6.1-containing channels. These Kir6.1-containing channels lack the ATP-sensitivity of the canonical channels and are constitutively active. CONCLUSION AND IMPLICATIONS: We conclude there are two functionally distinct populations of ventricular KATP channels: constitutively active Kir6.1-containing channels that play an important role in fine-tuning the action potential and Kir6.2/SUR2A channels that activate with prolonged ischaemia to impart late-stage protection against catastrophic ATP depletion. Further research is required to determine whether Kir6.1 is an overlooked target in Comprehensive in vitro Proarrhythmia Assay (CiPA) cardiac safety screens.


Assuntos
Ventrículos do Coração , Canais KATP , Miócitos Cardíacos , Sarcolema , Animais , Canais KATP/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Sarcolema/metabolismo , Sarcolema/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Masculino , Ratos , Potenciais de Ação/efeitos dos fármacos , Ratos Sprague-Dawley , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Técnicas de Patch-Clamp
13.
Diabetes ; 73(8): 1244-1254, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776417

RESUMO

During diabetes progression, ß-cell dysfunction due to loss of potassium channels sensitive to ATP, known as KATP channels, occurs, contributing to hyperglycemia. The aim of this study was to investigate if KATP channel expression or activity in the nervous system was altered in a high-fat diet (HFD)-fed mouse model of diet-induced obesity. Expression of two KATP channel subunits, Kcnj11 (Kir6.2) and Abcc8 (SUR1), were decreased in the peripheral and central nervous system of mice fed HFD, which was significantly correlated with mechanical paw-withdrawal thresholds. HFD mice had decreased antinociception to systemic morphine compared with control diet (CON) mice, which was expected because KATP channels are downstream targets of opioid receptors. Mechanical hypersensitivity in HFD mice was exacerbated after systemic treatment with glyburide or nateglinide, KATP channel antagonists clinically used to control blood glucose levels. Upregulation of SUR1 and Kir6.2, through an adenovirus delivered intrathecally, increased morphine antinociception in HFD mice. These data present a potential link between KATP channel function and neuropathy during early stages of diabetes. There is a need for increased knowledge of how diabetes affects structural and molecular changes in the nervous system, including ion channels, to lead to the progression of chronic pain and sensory issues.


Assuntos
Dieta Hiperlipídica , Canais KATP , Obesidade , Canais de Potássio Corretores do Fluxo de Internalização , Receptores de Sulfonilureias , Animais , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Canais KATP/metabolismo , Canais KATP/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Masculino , Receptores de Sulfonilureias/metabolismo , Receptores de Sulfonilureias/genética , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Analgésicos Opioides/farmacologia , Glibureto/farmacologia , Modelos Animais de Doenças
14.
Cephalalgia ; 44(5): 3331024241248211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38729773

RESUMO

OBJECTIVE: To investigate the role of NN414, a selective KATP channel opener for the Kir6.2/SUR1 channel subtype found in neurons and ß-pancreatic cells, in inducing migraine attacks in individuals with migraine without aura. METHODS: Thirteen participants were randomly allocated to receive NN414 and placebo on two days separated by at least one week. The primary endpoint was the difference in the incidence of migraine attacks after NN414 compared with placebo. The secondary endpoints were the difference in the area under the curve for headache intensity scores, middle cerebral artery blood flow velocity (VMCA), superficial temporal artery diameter, heart rate and mean arterial pressure. RESULTS: Twelve participants completed the study, with two (16.6%) reporting migraine attacks after NN414 compared to one (8.3%) after placebo (p = 0.53). The area under the curve for headache intensity, VMCA, superficial temporal artery diameter, heart rate and mean arterial pressure did not differ between NN414 and placebo (p > 0.05, all comparisons). CONCLUSION: The lack of migraine induction upon activation of the Kir6.2/SUR1 channel subtype suggests it may not contribute to migraine pathogenesis. Our findings point to KATP channel blockers that target the Kir6.1/SUR2B subtype, found in cerebral vasculature, as potential candidates for innovative antimigraine treatments.Registration number: NCT04744129.


Assuntos
Canais KATP , Transtornos de Enxaqueca , Humanos , Feminino , Adulto , Masculino , Canais KATP/metabolismo , Método Duplo-Cego , Transtornos de Enxaqueca/metabolismo , Adulto Jovem , Pessoa de Meia-Idade , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Piridinas/farmacologia , Piperidinas
15.
Math Biosci ; 374: 109224, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821258

RESUMO

Gain of function mutations in the pore forming Kir6 subunits of the ATP sensitive K+ channels (K(ATP) channels) of pancreatic ß-cells are the major cause of neonatal diabetes in humans. In this study, we show that in insulin secreting mouse ß-cell lines, gain of function mutations in Kir6.1 result in a significant connexin36 (Cx36) overexpression, which form gap junctional connections and mediate electrical coupling between ß-cells within pancreatic islets. Using computational modeling, we show that upregulation in Cx36 might play a functional role in the impairment of glucose stimulated Ca2+ oscillations in a cluster of ß-cells with Kir6.1 gain of function mutations in their K(ATP) channels (GoF-K(ATP) channels). Our results show that without an increase in Cx36 expression, a gain of function mutation in Kir6.1 might not be sufficient to diminish glucose stimulated Ca2+ oscillations in a ß-cell cluster. We also show that a reduced Cx36 expression, which leads to loss of coordination in a wild-type ß-cell cluster, restores coordinated Ca2+ oscillations in a ß-cell cluster with GoF-K(ATP) channels. Our results indicate that in a heterogenous ß-cell cluster with GoF-K(ATP) channels, there is an inverted u-shaped nonmonotonic relation between the cluster activity and Cx36 expression. These results show that in a neonatal diabetic ß-cell model, gain of function mutations in the Kir6.1 cause Cx36 overexpression, which aggravates the impairment of glucose stimulated Ca2+ oscillations.


Assuntos
Células Secretoras de Insulina , Canais KATP , Regulação para Cima , Células Secretoras de Insulina/metabolismo , Animais , Camundongos , Canais KATP/genética , Canais KATP/metabolismo , Conexinas/genética , Conexinas/metabolismo , Mutação com Ganho de Função , Proteína delta-2 de Junções Comunicantes , Sinalização do Cálcio , Modelos Biológicos , Cálcio/metabolismo , Humanos
16.
Artigo em Inglês | MEDLINE | ID: mdl-38765503

RESUMO

Objective: Potassium channels have an important role in the vascular adaptation during pregnancy and a reduction in the expression of adenosine triphosphate-sensitive potassium channels (Katp) has been linked to preeclampsia. Activation of Katp induces vasodilation; however, no previous study has been conducted to evaluate the effects of the inhibition of these channels in the contractility of preeclamptic arteries. Glibenclamide is an oral antihyperglycemic agent that inhibits Katp and has been widely used in vascular studies. Methods: To investigate the effects of the inhibition of Katp, umbilical arteries of preeclamptic women and women with healthy pregnancies were assessed by vascular contractility experiments, in the presence or absence of glibenclamide. The umbilical arteries were challenged with cumulative concentrations of potassium chloride (KCl) and serotonin. Results: There were no differences between the groups concerning the maternal age and gestational age of the patients. The percentage of smokers, caucasians and primiparae per group was also similar. On the other hand, blood pressure parameters were elevated in the preeclamptic group. In addition, the preeclamptic group presented a significantly higher body mass index. The newborns of both groups presented similar APGAR scores and weights. Conclusion: In the presence of glibenclamide, there was an increase in the KCl-induced contractions only in vessels from the PE group, showing a possible involvement of these channels in the disorder.


Assuntos
Glibureto , Pré-Eclâmpsia , Artérias Umbilicais , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/fisiopatologia , Artérias Umbilicais/fisiopatologia , Adulto , Glibureto/farmacologia , Vasoconstrição/efeitos dos fármacos , Adulto Jovem , Canais KATP/metabolismo , Cloreto de Potássio/farmacologia
17.
Diabetes ; 73(6): 856-863, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768366

RESUMO

An agreed-upon consensus model of glucose-stimulated insulin secretion from healthy ß-cells is essential for understanding diabetes pathophysiology. Since the discovery of the KATP channel in 1984, an oxidative phosphorylation (OxPhos)-driven rise in ATP has been assumed to close KATP channels to initiate insulin secretion. This model lacks any evidence, genetic or otherwise, that mitochondria possess the bioenergetics to raise the ATP/ADP ratio to the triggering threshold, and conflicts with genetic evidence demonstrating that OxPhos is dispensable for insulin secretion. It also conflates the stoichiometric yield of OxPhos with thermodynamics, and overestimates OxPhos by failing to account for established features of ß-cell metabolism, such as leak, anaplerosis, cataplerosis, and NADPH production that subtract from the efficiency of mitochondrial ATP production. We have proposed an alternative model, based on the spatial and bioenergetic specializations of ß-cell metabolism, in which glycolysis initiates insulin secretion. The evidence for this model includes that 1) glycolysis has high control strength over insulin secretion; 2) glycolysis is active at the correct time to explain KATP channel closure; 3) plasma membrane-associated glycolytic enzymes control KATP channels; 4) pyruvate kinase has favorable bioenergetics, relative to OxPhos, for raising ATP/ADP; and 5) OxPhos stalls before membrane depolarization and increases after. Although several key experiments remain to evaluate this model, the 1984 model is based purely on circumstantial evidence and must be rescued by causal, mechanistic experiments if it is to endure.


Assuntos
Glucose , Secreção de Insulina , Células Secretoras de Insulina , Insulina , Canais KATP , Fosforilação Oxidativa , Células Secretoras de Insulina/metabolismo , Humanos , Glucose/metabolismo , Canais KATP/metabolismo , Canais KATP/genética , Secreção de Insulina/fisiologia , Animais , Insulina/metabolismo , Glicólise/fisiologia , Modelos Biológicos , Trifosfato de Adenosina/metabolismo
18.
Diabetes ; 73(6): 849-855, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768365

RESUMO

The canonical model of glucose-induced increase in insulin secretion involves the metabolism of glucose via glycolysis and the citrate cycle, resulting in increased ATP synthesis by the respiratory chain and the closure of ATP-sensitive K+ (KATP) channels. The resulting plasma membrane depolarization, followed by Ca2+ influx through L-type Ca2+ channels, then induces insulin granule fusion. Merrins and colleagues have recently proposed an alternative model whereby KATP channels are controlled by pyruvate kinase, using glycolytic and mitochondrial phosphoenolpyruvate (PEP) to generate microdomains of high ATP/ADP immediately adjacent to KATP channels. This model presents several challenges. First, how mitochondrially generated PEP, but not ATP produced abundantly by the mitochondrial F1F0-ATP synthase, can gain access to the proposed microdomains is unclear. Second, ATP/ADP fluctuations imaged immediately beneath the plasma membrane closely resemble those in the bulk cytosol. Third, ADP privation of the respiratory chain at high glucose, suggested to drive alternating, phased-locked generation by mitochondria of ATP or PEP, has yet to be directly demonstrated. Finally, the approaches used to explore these questions may be complicated by off-target effects. We suggest instead that Ca2+ changes, well known to affect both ATP generation and consumption, likely drive cytosolic ATP/ADP oscillations that in turn regulate KATP channels and membrane potential. Thus, it remains to be demonstrated that a new model is required to replace the existing, mitochondrial bioenergetics-based model.


Assuntos
Glucose , Células Secretoras de Insulina , Canais KATP , Células Secretoras de Insulina/metabolismo , Canais KATP/metabolismo , Glucose/metabolismo , Humanos , Animais , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Insulina/metabolismo , Difosfato de Adenosina/metabolismo , Modelos Biológicos , Secreção de Insulina/fisiologia
19.
J Bioenerg Biomembr ; 56(4): 347-360, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38689156

RESUMO

Inward rectifying potassium channels sensitive to ATP levels (KATP) have been the subject of investigation for several decades. Modulators of KATP channels are well-established treatments for metabolic as well as cardiovascular diseases. Experimental studies have also shown the potential of KATP modulation in neurodegenerative disorders. However, to date, data regarding the effects of KATP antagonists/agonists in experiments related to neurodegeneration remain inconsistent. The main source of confusion in evaluating available data seems to be the choice of experimental models. The present study aims to provide a comprehensive understanding of the effects of both opening and blocking KATP channels in two forms of SH-SY5Y cells. Our results offer valuable insights into the significance of metabolic differences between differentiated and non-differentiated SH-SY5Y cells, particularly in the context of glibenclamide and diazoxide effects under normal conditions and during the initiation of pathological events simulating Parkinson's disease in vitro. We emphasize the analysis of mitochondrial functions and changes in mitochondrial network morphology. The heightened protein expression of KATP channels identified in non-differentiated SH-SY5Y cells seems to be a platform for a more significant impact of KATP modulators in this cell type. The efficiency of rotenone treatment in inducing morphological changes in the mitochondrial network depends on the differentiation status of SH-SY5Y cells.


Assuntos
Diferenciação Celular , Canais KATP , Mitocôndrias , Humanos , Canais KATP/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Linhagem Celular Tumoral , Diazóxido/farmacologia
20.
J Physiol Sci ; 74(1): 26, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654149

RESUMO

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer. Exogenous application of ATP (10-100 µM) evoked relaxation of the esophageal smooth muscle in a longitudinal direction under the condition of carbachol (1 µM) -induced precontraction. Pretreatment with a non-selective P2 receptor antagonist, suramin (500 µM), and a P2Y receptor antagonist, cibacron blue F3GA (200 µM), inhibited the ATP (100 µM) -induced relaxation, but a P2X receptor antagonist, pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (50 µM), did not affect it. A blocker of ATP-dependent potassium channels (KATP channels), glibenclamide (200 µM), inhibited the ATP-induced relaxation and application of an opener of KATP channels, nicorandil (50 µM), produced relaxation. The findings suggest that ATP is involved in inhibitory regulation of the longitudinal smooth muscle in the muscularis mucosae of the rat esophagus via activation of P2Y receptors and then opening of KATP channels.


Assuntos
Trifosfato de Adenosina , Esôfago , Canais KATP , Músculo Liso , Receptores Purinérgicos P2Y , Animais , Ratos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Músculo Liso/metabolismo , Masculino , Receptores Purinérgicos P2Y/metabolismo , Esôfago/efeitos dos fármacos , Esôfago/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Canais KATP/metabolismo , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Ratos Wistar , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...