Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.413
Filtrar
1.
Front Immunol ; 15: 1389194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840905

RESUMO

Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.


Assuntos
Canais de Cálcio , Endossomos , Lisossomos , Neoplasias , Canais de Potencial de Receptor Transitório , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Lisossomos/metabolismo , Lisossomos/imunologia , Endossomos/metabolismo , Endossomos/imunologia , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cálcio/metabolismo , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/imunologia , Canais de Dois Poros
2.
Nihon Yakurigaku Zasshi ; 159(3): 165-168, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692881

RESUMO

Molecular oxygen suffices the ATP production required for the survival of us aerobic organisms. But it is also true that oxygen acts as a source of reactive oxygen species that elicit a spectrum of damages in living organisms. To cope with such intrinsic ambiguity of biological activity oxygen exerts, aerobic mechanisms are equipped with an exquisite adaptive system, which sensitively detects partial pressure of oxygen within the body and controls appropriate oxygen supply to the tissues. Physiological responses to hypoxia are comprised of the acute and chronic phases, in the former of which the oxygen-sensing remains controversial particularly from mechanistic points of view. Recently, we have revealed that the prominently redox-sensitive cation channel TRPA1 plays key roles in oxygen-sensing mechanisms identified in the peripheral tissues and the central nervous system. In this review, we summarize recent development of researches on oxygen-sensing mechanisms including that in the carotid body, which has been recognized as the oxygen receptor organ central to acute oxygen-sensing. We also discuss how ubiquitously the TRPA1 contributes to the mechanisms underlying the acute phase of adaptation to hypoxia.


Assuntos
Oxigênio , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório , Canal de Cátion TRPA1/metabolismo , Humanos , Oxigênio/metabolismo , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Hipóxia/metabolismo , Canais de Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Corpo Carotídeo/metabolismo
3.
Nat Commun ; 15(1): 3682, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693121

RESUMO

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Assuntos
Dieta Hiperlipídica , Galectina 3 , Secreção de Insulina , Células Secretoras de Insulina , Animais , Humanos , Masculino , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Galectina 3/metabolismo , Galectina 3/genética , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Bratisl Lek Listy ; 125(6): 354-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757591

RESUMO

BACKGROUND: In the present study, two structurally similar alkaloids from trees of Cinchona genus, chloroquine and cinchonine, were examined for their vasorelaxant effects in a model of phenylephrine-induced smooth muscle contractions. METHODS: Potential mechanisms of action associated with endothelial vasorelaxant compounds, voltage-gated Ca2+ channels (LTCCs), and inositol triphosphate receptors were examined in isolated rat aortic rings. Also, an in silico approach was used to predict the activity of the two test compounds. RESULTS: Experimental results revealed that both chloroquine and cinchonine significantly decrease phenylephrine-induced smooth muscle contractions, although to a different extent. Evaluated mechanisms of action indicate that endothelium is not involved in the vasorelaxant action of the two tested alkaloids. On the other hand, voltage-gated Ca2+ channels were found to be the dominant way of action associated with the vasorelaxant action of chloroquine and cinchonine. Finally, IP3R is found to have only a small impact on the observed activity of the tested compounds. CONCLUSION: Molecular docking studies predicted that chloroquine possesses a significant activity toward a suitable model of LTCCs, while cinchonine does not. The results of the present study point to the fact that great caution should be paid while administering chloroquine to vulnerable patients, especially those with cardiovascular disorders (Tab. 3, Fig. 3, Ref. 28).


Assuntos
Canais de Cálcio , Cloroquina , Simulação de Acoplamento Molecular , Músculo Liso Vascular , Animais , Cloroquina/farmacologia , Ratos , Músculo Liso Vascular/efeitos dos fármacos , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Vasodilatadores/farmacologia , Tono Muscular/efeitos dos fármacos , Masculino , Ratos Wistar , Simulação por Computador , Fenilefrina/farmacologia
5.
Science ; 384(6695): 573-579, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696577

RESUMO

Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.


Assuntos
Canais de Cálcio , Habenula , Neurogênese , Neurônios , Via de Sinalização Wnt , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Habenula/metabolismo , Habenula/embriologia , Mutação com Perda de Função , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Neurônios/metabolismo , Receptores Wnt/metabolismo , Receptores Wnt/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Canais de Cálcio/genética , Canais de Cálcio/metabolismo
6.
Science ; 384(6699): eadd6260, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38815015

RESUMO

Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-ß and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-ß and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Cálcio , Modelos Animais de Doenças , Homeostase , Fármacos Neuroprotetores , Septinas , Proteínas tau , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Septinas/metabolismo , Camundongos , Cálcio/metabolismo , Proteínas tau/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/efeitos dos fármacos
8.
BMC Oral Health ; 24(1): 552, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735923

RESUMO

Patients who suffer from myofascial orofacial pain could affect their quality of life deeply. The pathogenesis of pain is still unclear. Our objective was to assess Whether Voltage-gated calcium channel α2δ-1(Cavα2δ-1) is related to myofascial orofacial pain. Rats were divided into the masseter tendon ligation group and the sham group. Compared with the sham group, the mechanical pain threshold of the masseter tendon ligation group was reduced on the 4th, 7th, 10th and 14th day after operation(P < 0.05). On the 14th day after operation, Cavα2δ-1 mRNA expression levels in trigeminal ganglion (TG) and the trigeminal spinal subnucleus caudalis and C1-C2 spinal cervical dorsal horn (Vc/C2) of the masseter tendon ligation group were increased (PTG=0.021, PVc/C2=0.012). Rats were divided into three groups. On the 4th day after ligating the superficial tendon of the left masseter muscle of the rats, 10 ul Cavα2δ-1 antisense oligonucleotide, 10 ul Cavα2δ-1 mismatched oligonucleotides and 10 ul normal saline was separately injected into the left masseter muscle of rats in Cavα2δ-1 antisense oligonucleotide group, Cavα2δ-1 mismatched oligonucleotides group and normal saline control group twice a day for 4 days. The mechanical pain threshold of the Cavα2δ-1 antisense oligonucleotides group was higher than Cavα2δ-1 mismatched oligonucleotides group on the 7th and 10th day after operation (P < 0.01). After PC12 cells were treated with lipopolysaccharide, Cavα2δ-1 mRNA expression level increased (P < 0.001). Cavα2δ-1 may be involved in the occurrence and development in myofascial orofacial pain.


Assuntos
Canais de Cálcio , Músculo Masseter , Ratos Sprague-Dawley , Gânglio Trigeminal , Animais , Ratos , Músculo Masseter/metabolismo , Masculino , Canais de Cálcio/metabolismo , Gânglio Trigeminal/metabolismo , Limiar da Dor , Dor Facial/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Síndromes da Dor Miofascial , RNA Mensageiro/metabolismo , Canais de Cálcio Tipo L
9.
J Histochem Cytochem ; 72(5): 275-287, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38725415

RESUMO

The TRPA1 ion channel is a sensitive detector of reactive chemicals, found primarily on sensory neurons. The phenotype exhibited by mice lacking TRPA1 suggests its potential as a target for pharmacological intervention. Antibody-based detection for distribution analysis is a standard technique. In the case of TRPA1, however, there is no antibody with a plausible validation in knockout animals or functional studies, but many that have failed in this regard. To this end we employed the single molecule in situ hybridization technique RNAscope on sensory neurons immediately after detection of calcium responses to the TRPA1 agonist allyl isothiocyanate. There is a clearly positive correlation between TRPA1 calcium imaging and RNAscope detection (R = 0.43), although less than what might have been expected. Thus, the technique of choice should be carefully considered to suit the research question. The marginal correlation between TRPV1 RNAscope and the specific agonist capsaicin indicates that such validation is advisable for every RNAscope target. Given the recent description of a long-awaited TRPA1 reporter mouse, TRPA1 RNAscope detection might still have its use cases, for detection of RNA at particular sites, for example, defined structurally or by other molecular markers.


Assuntos
Cálcio , Isotiocianatos , Canal de Cátion TRPA1 , Animais , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Isotiocianatos/farmacologia , Camundongos , Cálcio/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/agonistas , Capsaicina/farmacologia , Hibridização In Situ , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/agonistas , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Masculino
10.
Nature ; 629(8014): 1118-1125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778102

RESUMO

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Assuntos
Arabidopsis , Sinalização do Cálcio , Cálcio , Germinação , Concentração Osmolar , Pólen , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Germinação/genética , Mutação , Pólen/genética , Pólen/metabolismo , Água/metabolismo , Células HEK293 , Humanos , Desidratação
11.
Biomater Adv ; 161: 213858, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692179

RESUMO

Nano hydroxyapatite (nHA) has been acknowledged for its inhibition efficiency on tumor cells and its excellent biocompatibility for normal tissue and cells. However, the low inhibitory efficiency of tumor cells and the ambiguous inhibitory mechanism limited its further application. In this work, four kinds of nHA with different sizes was prepared, and the one with the highest inhibition efficiency on 4T1 cells was screened as a substrate for developing the nanoparticles coated with polydopamine (PDA) coating, which was named nHA-PDA. Both in vivo and in vitro experiments were employed, and the results showed significantly higher inhibitory activity against 4T1 cells and 4T1-bared tumors by nHA-PDA. Further investigation revealed that the oxidative stress induced by PDA results in a large Reactive Oxygen Species (ROS) accumulation, thus triggering the mitochondria-dependent apoptosis pathway ROS-JNK/MAPK and inducing the cascade reaction of inhibiting the anti-apoptosis protein-Bcl-2 expression and activating the expression of the critical genes in apoptosis signaling pathway (caspase 3 and caspase 9). Besides, the significant increase of intracellular [Ca2+] may also be an essential reason for the damage of mitochondria, eventually leading to apoptosis.


Assuntos
Antineoplásicos , Apoptose , Durapatita , Indóis , Mitocôndrias , Nanopartículas , Polímeros , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Durapatita/farmacologia , Durapatita/química , Indóis/farmacologia , Indóis/química , Polímeros/farmacologia , Polímeros/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos , Canais de Cálcio/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Cálcio/metabolismo
12.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38749701

RESUMO

The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy (TLE) in hippocampal tissue from wild-type (WT) and α2δ-2 knock-out (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos and ΔFosB expressions within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 h after handling-associated convulsions, KO mice had fewer c-fos-positive cells but dramatically increased ΔFosB expression in the dentate gyrus compared with WT mice. After administration of a subthreshold pentylenetetrazol dose, however, KO mice dentate had significantly more c-fos expression compared with WT mice. Other histopathological markers of TLE in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar between WT and KO mice, apart from a small but statistically significant increase in hilar mossy cell density, opposite to what is typically found in mice with TLE. This suggests that the differences in seizure-associated dentate gyrus function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.


Assuntos
Hipocampo , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fos , Convulsões , Animais , Convulsões/metabolismo , Convulsões/genética , Convulsões/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Masculino , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Camundongos Endogâmicos C57BL , Pentilenotetrazol , Camundongos , Modelos Animais de Doenças , Neurônios/metabolismo , Neurônios/patologia , Convulsivantes/toxicidade
13.
Physiol Rep ; 12(9): e16043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38724885

RESUMO

The epithelial cells that line the kidneys and lower urinary tract are exposed to mechanical forces including shear stress and wall tension; however, the mechanosensors that detect and respond to these stimuli remain obscure. Candidates include the OSCA/TMEM63 family of ion channels, which can function as mechanosensors and osmosensors. Using Tmem63bHA-fl/HA-fl reporter mice, we assessed the localization of HA-tagged-TMEM63B within the urinary tract by immunofluorescence coupled with confocal microscopy. In the kidneys, HA-TMEM63B was expressed by proximal tubule epithelial cells, by the intercalated cells of the collecting duct, and by the epithelial cells lining the thick ascending limb of the medulla. In the urinary tract, HA-TMEM63B was expressed by the urothelium lining the renal pelvis, ureters, bladder, and urethra. HA-TMEM63B was also expressed in closely allied organs including the epithelial cells lining the seminal vesicles, vas deferens, and lateral prostate glands of male mice and the vaginal epithelium of female mice. Our studies reveal that TMEM63B is expressed by subsets of kidney and lower urinary tract epithelial cells, which we hypothesize are sites of TMEM63B mechanosensation or osmosensation, or both.


Assuntos
Canais de Cálcio , Sistema Urinário , Animais , Feminino , Masculino , Camundongos , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Células Epiteliais/metabolismo , Mecanotransdução Celular/fisiologia , Camundongos Endogâmicos C57BL , Sistema Urinário/metabolismo , Urotélio/metabolismo , Urotélio/citologia
14.
Sci Rep ; 14(1): 11720, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778154

RESUMO

We studied the inhibitory actions of docosahexaenoic acid (DHA) on the contractions induced by carbachol (CCh), angiotensin II (Ang II), and bradykinin (BK) in guinea pig (GP) gastric fundus smooth muscle (GFSM), particularly focusing on the possible inhibition of store-operated Ca2+ channels (SOCCs). DHA significantly suppressed the contractions induced by CCh, Ang II, and BK; the inhibition of BK-induced contractions was the strongest. Although all contractions were greatly dependent on external Ca2+, more than 80% of BK-induced contractions remained even in the presence of verapamil, a voltage-dependent Ca2+ channel inhibitor. BK-induced contractions in the presence of verapamil were not suppressed by LOE-908 (a receptor-operated Ca2+ channel (ROCC) inhibitor) but were suppressed by SKF-96365 (an SOCC and ROCC inhibitor). BK-induced contractions in the presence of verapamil plus LOE-908 were strongly inhibited by DHA. Furthermore, DHA inhibited GFSM contractions induced by cyclopiazonic acid (CPA) in the presence of verapamil plus LOE-908 and inhibited the intracellular Ca2+ increase due to Ca2+ addition in CPA-treated 293T cells. These findings indicate that Ca2+ influx through SOCCs plays a crucial role in BK-induced contraction in GP GFSM and that this inhibition by DHA is a new mechanism by which this fatty acid inhibits GFSM contractions.


Assuntos
Angiotensina II , Bradicinina , Carbacol , Ácidos Docosa-Hexaenoicos , Fundo Gástrico , Contração Muscular , Músculo Liso , Animais , Cobaias , Ácidos Docosa-Hexaenoicos/farmacologia , Bradicinina/farmacologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Músculo Liso/metabolismo , Carbacol/farmacologia , Contração Muscular/efeitos dos fármacos , Angiotensina II/farmacologia , Fundo Gástrico/efeitos dos fármacos , Fundo Gástrico/fisiologia , Fundo Gástrico/metabolismo , Verapamil/farmacologia , Cálcio/metabolismo , Masculino , Humanos , Canais de Cálcio/metabolismo , Células HEK293 , Bloqueadores dos Canais de Cálcio/farmacologia , Imidazóis/farmacologia
15.
ACS Nano ; 18(21): 13885-13898, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38757565

RESUMO

Severe acute pancreatitis (SAP), characterized by pancreatic acinar cell death, currently lacks effective targeted therapies. Ellagic acid (EA), rich in pomegranate, shows promising anti-inflammatory and antioxidant effects in SAP treatment. However, the roles of other forms of EA, such as plant extracellular vesicles (EVs) extracted from pomegranate, and Urolithin A (UA), converted from EA through gut microbiota metabolism in vivo, have not been definitively elucidated. Our research aimed to compare the effects of pomegranate-derived EVs (P-EVs) and UA in the treatment of SAP to screen an effective formulation and to explore its mechanisms in protecting acinar cells in SAP. By comparing the protective effects of P-EVs and UA on injured acinar cells, UA showed superior therapeutic effects than P-EVs. Subsequently, we further discussed the mechanism of UA in alleviating SAP inflammation. In vivo animal experiments found that UA could not only improve the inflammatory environment of pancreatic tissue and peripheral blood circulation in SAP mice but also revealed that the mechanism of UA in improving SAP might be related to mitochondria and endoplasmic reticulum (ER) through the results including pancreatic tissue transcriptomics and transmission electron microscopy. Further research found that UA could regulate ER-mitochondrial calcium channels and reduce pancreatic tissue necroptosis. In vitro experiments of mouse pancreatic organoids and acinar cells also confirmed that UA could improve pancreatic inflammation by regulating the ER-mitochondrial calcium channel and necroptosis pathway proteins. This study not only explored the therapeutic effect of plant EVs on SAP but also revealed that UA could alleviate SAP by regulating ER-mitochondrial calcium channel and reducing acinar cell necroptosis, providing insights into the pathogenesis and potential treatment of SAP.


Assuntos
Cumarínicos , Retículo Endoplasmático , Mitocôndrias , Pancreatite , Animais , Cumarínicos/farmacologia , Cumarínicos/química , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Pancreatite/patologia , Camundongos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Canais de Cálcio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Punica granatum/química , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química
16.
Chem Senses ; 492024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761122

RESUMO

Taste receptor cells are morphologically classified as types II and III. Type II cells form a unique type of synapses referred to as channel synapses where calcium homeostasis modulator 1 (CALHM1) together with CALHM3 forms voltage-gated channels that release the neurotransmitter, adenosine triphosphate (ATP). To validate the proposed structural model of channel synapses, the ultrastructural localization of CALHM1 in type II cells of both fungiform and circumvallate taste buds was examined. A monoclonal antibody against CALHM1 was developed and its localization was evaluated via immunofluorescence and immunoelectron microscopy using the immunogold-silver labeling technique. CALHM1 was detected as puncta using immunofluorescence and along the presynaptic membrane of channel synapses facing atypical mitochondria, which provide ATP, by immunoelectron microscopy. In addition, it was detected along the plasma membrane lined by subsurface cisternae at sites apposed to afferent nerve fibers. Our results support the validity of a previously proposed structural model for channel synapses and provide insights into the function of subsurface cisternae whose function in taste receptor cells is unknown. We also examined the localization of CALHM1 in hybrid synapses of type III cells, which are conventional chemical synapses accompanied by mitochondria similar to atypical mitochondria of channel synapses. CALHM1 was not detected in the six hybrid synapses examined using immunoelectron microscopy. We further performed double immunolabeling for CALHM1 and Bassoon, which is detected as puncta corresponding to conventional vesicular synapses in type III cells. Our observations suggest that at least some, and probably most, hybrid synapses are not accompanied by CALHM1.


Assuntos
Canais de Cálcio , Papilas Gustativas , Animais , Papilas Gustativas/metabolismo , Papilas Gustativas/ultraestrutura , Camundongos , Canais de Cálcio/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Microscopia Imunoeletrônica , Camundongos Endogâmicos C57BL , Anticorpos Monoclonais/metabolismo
17.
Channels (Austin) ; 18(1): 2341077, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38601983

RESUMO

Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Transdução de Sinais , Acoplamento Excitação-Contração , Íons/metabolismo , Sinalização do Cálcio/fisiologia , Canais de Cálcio Tipo L/metabolismo
19.
Eur J Med Chem ; 270: 116379, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588625

RESUMO

TRPV6, a Ca2+-selective member of the transient receptor potential vanilloid (TRPV) family, plays a key role in extracellular calcium transport, calcium ion reuptake, and maintenance of a local low calcium environment. An increasing number of studies have shown that TRPV6 is involved in the regulation of various diseases. Notably, overexpression of TRPV6 is closely related to the occurrence of various cancers. Research confirmed that knocking down TRPV6 could effectively reduce the proliferation and invasiveness of tumors by mainly mediating the calcium signaling pathway. Hence, TRPV6 has become a promising new drug target for numerous tumor treatments. However, the development of TRPV6 inhibitors is still in the early stage, and the existing TRPV6 inhibitors have poor selectivity and off-target effects. In this review, we focus on summarizing and describing the structure characters, and mechanisms of existing TRPV6 inhibitors to provide new ideas and directions for the development of novel TRPV6 inhibitors.


Assuntos
Cálcio , Neoplasias , Humanos , Cálcio/metabolismo , Transporte Biológico , Transporte de Íons , Neoplasias/tratamento farmacológico , Canais de Cátion TRPV/metabolismo , Canais de Cálcio/metabolismo
20.
J Physiol ; 602(8): 1623-1636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598430

RESUMO

Two-pore channels and TRP mucolipins are ubiquitous endo-lysosomal cation channels of pathophysiological relevance. Both are Ca2+-permeable and regulated by phosphoinositides, principally PI(3,5)P2. Accumulating evidence has uncovered synergistic channel activation by PI(3,5)P2 and endogenous metabolites such as the Ca2+ mobilizing messenger NAADP, synthetic agonists including approved drugs and physical cues such as voltage and osmotic pressure. Here, we provide an overview of this coordination.


Assuntos
Canais de Cálcio , Canais de Potencial de Receptor Transitório , Canais de Cálcio/metabolismo , Canais de Dois Poros , Cálcio/metabolismo , Lisossomos/metabolismo , NADP/metabolismo , Pressão Osmótica , Canais de Potencial de Receptor Transitório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA