Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 714
Filtrar
1.
Elife ; 132024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373641

RESUMO

Polycystin-1 (PC1) is the protein product of the PKD1 gene whose mutation causes autosomal dominant Polycystic Kidney Disease (ADPKD). PC1 is an atypical G protein-coupled receptor (GPCR) with an autocatalytic GAIN domain that cleaves PC1 into extracellular N-terminal and membrane-embedded C-terminal (CTF) fragments. Recently, activation of PC1 CTF signaling was shown to be regulated by a stalk tethered agonist (TA), resembling the mechanism observed for adhesion GPCRs. Here, synthetic peptides of the first 9- (p9), 17- (p17), and 21-residues (p21) of the PC1 stalk TA were shown to re-activate signaling by a stalkless CTF mutant in human cell culture assays. Novel Peptide Gaussian accelerated molecular dynamics (Pep-GaMD) simulations elucidated binding conformations of p9, p17, and p21 and revealed multiple specific binding regions to the stalkless CTF. Peptide agonists binding to the TOP domain of PC1 induced close TOP-putative pore loop interactions, a characteristic feature of stalk TA-mediated PC1 CTF activation. Additional sequence coevolution analyses showed the peptide binding regions were consistent with covarying residue pairs identified between the TOP domain and the stalk TA. These insights into the structural dynamic mechanism of PC1 activation by TA peptide agonists provide an in-depth understanding that will facilitate the development of therapeutics targeting PC1 for ADPKD treatment.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Ligação Proteica , Transdução de Sinais , Canais de Cátion TRPP , Humanos , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/química , Canais de Cátion TRPP/genética , Peptídeos/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/tratamento farmacológico , Conformação Proteica
2.
Cell Signal ; 123: 111351, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39159908

RESUMO

In autosomal dominant polycystic kidney disease (ADPKD) there is cyst growth in the kidneys that leads to chronic kidney disease often requiring dialysis or kidney transplantation. There is enhanced aerobic glycolysis (Warburg effect) in the cyst lining epithelial cells that contributes to cyst growth. The glucose mimetic, 2-Deoxy-d-glucose (2-DG) inhibits glycolysis. The effect of early and late administration of 2-DG on cyst growth and kidney function was determined in Pkd1RC/RC mice, a hypomorphic PKD model orthologous to human disease. Early administration of 2-DG resulted in decreased kidney weight, cyst index, cyst number and cyst size, but no change in kidney function. 2-DG decreased proliferation. a major mediator of cyst growth, of cells lining the cyst. Late administration of 2-DG did not have an effect on cyst growth or kidney function. To determine mechanisms of decreased proliferation, an array of mTOR and autophagy proteins was measured in the kidney. 2-DG suppressed autophagic flux in Pkd1RC/RC kidneys and decreased autophagy proteins, ATG3, ATG5 and ATG12-5. 2-DG had no effect on p-mTOR or p-S6 (mTORC1) and decreased p-AMPK. 2-DG decreased p-4E-BP1, p-c-Myc and p-ERK that are known to promote proliferation and cyst growth in PKD. 2-DG decreased p-AKTS473, a marker of mTORC2. So the role of mTORC2 in cyst growth was determined. Knockout of Rictor (mTORC2) in Pkd1 knockout mice did not change the PKD phenotype. In summary, 2-DG decreases proliferation in cells lining the cyst and decreases cyst growth by decreasing proteins that are known to promote proliferation. In conclusion, the present study reinforces the therapeutic potential of 2-DG for use in patients with ADPKD.


Assuntos
Proliferação de Células , Desoxiglucose , Modelos Animais de Doenças , Rim , Rim Policístico Autossômico Dominante , Animais , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/tratamento farmacológico , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Camundongos , Proliferação de Células/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Rim/efeitos dos fármacos , Canais de Cátion TRPP/metabolismo , Autofagia/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
3.
Sci Signal ; 17(851): eads6258, 2024 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190706

RESUMO

Proliferation of somatic clones deficient in PKD1 prevents fatty liver disease without resulting in tumors.


Assuntos
Fígado , Canais de Cátion TRPP , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Animais , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia
4.
J Biol Chem ; 300(8): 107574, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009345

RESUMO

Polycystin-2 (PC2) is mutated in ∼15% of patients with autosomal dominant polycystic kidney disease (ADPKD). PC2 belongs to the family of transient receptor potential (TRP) channels and can function as a homotetramer. We investigated whether three disease-associated mutations (F629S, C632R, or R638C) localized in the channel's pore loop alter ion channel properties of human PC2 expressed in Xenopus laevis oocytes. Expression of wild-type (WT) PC2 typically resulted in small but measurable Na+ inward currents in the absence of extracellular divalent cations. These currents were no longer observed when individual pore mutations were introduced in WT PC2. Similarly, Na+ inward currents mediated by the F604P gain-of-function (GOF) PC2 construct (PC2 F604P) were abolished by each of the three pore mutations. In contrast, when the mutations were introduced in another GOF construct, PC2 L677A N681A, only C632R had a complete loss-of-function effect, whereas significant residual Na+ inward currents were observed with F629S (∼15%) and R638C (∼30%). Importantly, the R638C mutation also abolished the Ca2+ permeability of PC2 L677A N681A and altered its monovalent cation selectivity. To elucidate the molecular mechanisms by which the R638C mutation affects channel function, molecular dynamics (MD) simulations were used in combination with functional experiments and site-directed mutagenesis. Our findings suggest that R638C stabilizes ionic interactions between Na+ ions and the selectivity filter residue D643. This probably explains the reduced monovalent cation conductance of the mutant channel. In summary, our data support the concept that altered ion channel properties of PC2 contribute to the pathogenesis of ADPKD.


Assuntos
Mutação de Sentido Incorreto , Canais de Cátion TRPP , Xenopus laevis , Animais , Humanos , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/química , Sódio/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Oócitos/metabolismo
5.
Nat Commun ; 15(1): 6468, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085216

RESUMO

Polycystin-1 (PC-1) and PC-2 form a heteromeric ion channel complex that is abundantly expressed in primary cilia of renal epithelial cells. This complex functions as a non-selective cation channel, and mutations within the polycystin complex cause autosomal dominant polycystic kidney disease (ADPKD). The spatial and temporal regulation of the polycystin complex within the ciliary membrane remains poorly understood. Using both whole-cell and ciliary patch-clamp recordings, we identify a cilia-enriched oxysterol, 7ß,27-dihydroxycholesterol (DHC), that serves as a necessary activator of the polycystin complex. We further identify an oxysterol-binding pocket within PC-2 and showed that mutations within this binding pocket disrupt 7ß,27-DHC-dependent polycystin activation. Pharmacologic and genetic inhibition of oxysterol synthesis reduces channel activity in primary cilia. In summary, our findings reveal a regulator of the polycystin complex. This oxysterol-binding pocket in PC-2 may provide a specific target for potential ADPKD therapeutics.


Assuntos
Cílios , Canais de Cátion TRPP , Cílios/metabolismo , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética , Animais , Humanos , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Oxisteróis/metabolismo , Técnicas de Patch-Clamp , Células HEK293 , Mutação , Rim/metabolismo , Camundongos , Sítios de Ligação
6.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000280

RESUMO

Multiple alterations of cellular metabolism have been documented in experimental studies of autosomal dominant polycystic kidney disease (ADPKD) and are thought to contribute to its pathogenesis. To elucidate the molecular pathways and transcriptional regulators associated with the metabolic changes of renal cysts in ADPKD, we compared global gene expression data from human PKD1 renal cysts, minimally cystic tissues (MCT) from the same patients, and healthy human kidney cortical tissue samples. We found gene expression profiles of PKD1 renal cysts were consistent with the Warburg effect with gene pathway changes favoring increased cellular glucose uptake and lactate production, instead of pyruvate oxidation. Additionally, mitochondrial energy metabolism was globally depressed, associated with downregulation of gene pathways related to fatty acid oxidation (FAO), branched-chain amino acid (BCAA) degradation, the Krebs cycle, and oxidative phosphorylation (OXPHOS) in renal cysts. Activation of mTORC1 and its two target proto-oncogenes, HIF-1α and MYC, was predicted to drive the expression of multiple genes involved in the observed metabolic reprogramming (e.g., GLUT3, HK1/HK2, ALDOA, ENO2, PKM, LDHA/LDHB, MCT4, PDHA1, PDK1/3, MPC1/2, CPT2, BCAT1, NAMPT); indeed, their predicted expression patterns were confirmed by our data. Conversely, we found AMPK inhibition was predicted in renal cysts. AMPK inhibition was associated with decreased expression of PGC-1α, a transcriptional coactivator for transcription factors PPARα, ERRα, and ERRγ, all of which play a critical role in regulating oxidative metabolism and mitochondrial biogenesis. These data provide a comprehensive map of metabolic pathway reprogramming in ADPKD and highlight nodes of regulation that may serve as targets for therapeutic intervention.


Assuntos
Metabolismo Energético , Rim Policístico Autossômico Dominante , Biologia de Sistemas , Humanos , Biologia de Sistemas/métodos , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fosforilação Oxidativa , Regulação da Expressão Gênica
7.
Sci Rep ; 14(1): 15140, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956234

RESUMO

Rapamycin slows cystogenesis in murine models of polycystic kidney disease (PKD) but failed in clinical trials, potentially due to insufficient drug dosing. To improve drug efficiency without increasing dose, kidney-specific drug delivery may be used. Mesoscale nanoparticles (MNP) selectively target the proximal tubules in rodents. We explored whether MNPs can target cystic kidney tubules and whether rapamycin-encapsulated-MNPs (RapaMNPs) can slow cyst growth in Pkd1 knockout (KO) mice. MNP was intravenously administered in adult Pkd1KO mice. Serum and organs were harvested after 8, 24, 48 or 72 h to measure MNP localization, mTOR levels, and rapamycin concentration. Pkd1KO mice were then injected bi-weekly for 6 weeks with RapaMNP, rapamycin, or vehicle to determine drug efficacy on kidney cyst growth. Single MNP injections lead to kidney-preferential accumulation over other organs, specifically in tubules and cysts. Likewise, one RapaMNP injection resulted in higher drug delivery to the kidney compared to the liver, and displayed sustained mTOR inhibition. Bi-weekly injections with RapaMNP, rapamycin or vehicle for 6 weeks resulted in inconsistent mTOR inhibition and little change in cyst index, however. MNPs serve as an effective short-term, kidney-specific delivery system, but long-term RapaMNP failed to slow cyst progression in Pkd1KO mice.


Assuntos
Modelos Animais de Doenças , Camundongos Knockout , Nanopartículas , Doenças Renais Policísticas , Sirolimo , Animais , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Camundongos , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Nanopartículas/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Sistemas de Liberação de Medicamentos , Masculino
8.
JCI Insight ; 9(12)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38912583

RESUMO

Patients with autosomal dominant polycystic kidney disease (ADPKD), a genetic disease due to mutations of the PKD1 or PKD2 gene, show signs of complement activation in the urine and cystic fluid, but their pathogenic role in cystogenesis is unclear. We tested the causal relationship between complement activation and cyst growth using a Pkd1KO renal tubular cell line and newly generated conditional Pkd1-/- C3-/- mice. Pkd1-deficient tubular cells have increased expression of complement-related genes (C3, C5, CfB, C3ar, and C5ar1), while the gene and protein expression of complement regulators DAF, CD59, and Crry is decreased. Pkd1-/- C3-/- mice are unable to fully activate the complement cascade and are characterized by a significantly slower kidney cystogenesis, preserved renal function, and reduced intrarenal inflammation compared with Pkd1-/- C3+/+ controls. Transgenic expression of the cytoplasmic C-terminal tail of Pkd1 in Pkd1KO cells lowered C5ar1 expression, restored Daf levels, and reduced cell proliferation. Consistently, both DAF overexpression and pharmacological inhibition of C5aR1 (but not C3aR) reduced Pkd1KO cell proliferation. In conclusion, the loss of Pkd1 promotes unleashed activation of locally produced complement by downregulating DAF expression in renal tubular cells. Increased C5a formation and C5aR1 activation in tubular cells promotes cyst growth, offering a new therapeutic target.


Assuntos
Antígenos CD55 , Complemento C3 , Camundongos Knockout , Rim Policístico Autossômico Dominante , Animais , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/metabolismo , Camundongos , Antígenos CD55/genética , Antígenos CD55/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Modelos Animais de Doenças , Ativação do Complemento , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Humanos , Proliferação de Células , Masculino , Linhagem Celular , Receptores de Complemento 3b/genética , Receptores de Complemento 3b/metabolismo
9.
Cell Metab ; 36(8): 1711-1725.e8, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38901424

RESUMO

Somatic mutations in non-malignant tissues are selected for because they confer increased clonal fitness. However, it is uncertain whether these clones can benefit organ health. Here, ultra-deep targeted sequencing of 150 liver samples from 30 chronic liver disease patients revealed recurrent somatic mutations. PKD1 mutations were observed in 30% of patients, whereas they were only detected in 1.3% of hepatocellular carcinomas (HCCs). To interrogate tumor suppressor functionality, we perturbed PKD1 in two HCC cell lines and six in vivo models, in some cases showing that PKD1 loss protected against HCC, but in most cases showing no impact. However, Pkd1 haploinsufficiency accelerated regeneration after partial hepatectomy. We tested Pkd1 in fatty liver disease, showing that Pkd1 loss was protective against steatosis and glucose intolerance. Mechanistically, Pkd1 loss selectively increased mTOR signaling without SREBP-1c activation. In summary, PKD1 mutations exert adaptive functionality on the organ level without increasing transformation risk.


Assuntos
Carcinoma Hepatocelular , Cirrose Hepática , Neoplasias Hepáticas , Mutação , Canais de Cátion TRPP , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Camundongos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Masculino , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Feminino , Transdução de Sinais
10.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892431

RESUMO

Orexin-A is a neuropeptide product of the lateral hypothalamus that acts on two receptors, OX1R and OX2R. The orexinergic system is involved in feeding, sleep, and pressure regulation. Recently, orexin-A levels have been found to be negatively correlated with renal function. Here, we analyzed orexin-A levels as well as the incidence of SNPs in the hypocretin neuropeptide precursor (HCRT) and its receptors, HCRTR1 and HCRTR2, in 64 patients affected by autosomal dominant polycystic kidney disease (ADPKD) bearing truncating mutations in the PKD1 or PKD2 genes. Twenty-four healthy volunteers constituted the control group. Serum orexin-A was assessed by ELISA, while the SNPs were investigated through Sanger sequencing. Correlations with the main clinical features of PKD patients were assessed. PKD patients showed impaired renal function (mean eGFR 67.8 ± 34.53) and a statistically higher systolic blood pressure compared with the control group (p < 0.001). Additionally, orexin-A levels in PKD patients were statistically higher than those in healthy controls (477.07 ± 69.42 pg/mL vs. 321.49 ± 78.01 pg/mL; p < 0.001). Furthermore, orexin-A inversely correlated with blood pressure (p = 0.0085), while a direct correlation with eGFR in PKD patients was found. None of the analyzed SNPs showed any association with orexin-A levels in PKD. In conclusion, our data highlights the emerging role of orexin-A in renal physiology and its potential relevance to PKD. Further research is essential to elucidate the intricate mechanisms underlying orexin-A signaling in renal function and its therapeutic implications for PKD and associated cardiovascular complications.


Assuntos
Receptores de Orexina , Orexinas , Polimorfismo de Nucleotídeo Único , Humanos , Orexinas/metabolismo , Orexinas/genética , Masculino , Feminino , Pessoa de Meia-Idade , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Adulto , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/sangue , Estudos de Casos e Controles , Idoso , Pressão Sanguínea , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/sangue
11.
Curr Biol ; 34(12): 2756-2763.e2, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38838665

RESUMO

Extracellular vesicles (EVs) are submicron membranous structures and key mediators of intercellular communication.1,2 Recent research has highlighted roles for cilia-derived EVs in signal transduction, underscoring their importance as bioactive extracellular organelles containing conserved ciliary signaling proteins.3,4 Members of the transient receptor potential (TRP) channel polycystin-2 (PKD-2) family are found in ciliary EVs of the green algae Chlamydomonas and the nematode Caenorhabditis elegans5,6 and in EVs in the mouse embryonic node and isolated from human urine.7,8 In C. elegans, PKD-2 is expressed in male-specific EV-releasing sensory neurons, which extend ciliary tips to ciliary pore and directly release EVs into the environment.6,9 Males release EVs in a mechanically stimulated manner, regulate EV cargo content in response to mating partners, and deposit PKD-2::GFP-labeled EVs on the vulval cuticle of hermaphrodites during mating.9,10 Combined, our findings suggest that ciliary EV release is a dynamic process. Herein, we identify mechanisms controlling dynamic EV shedding using time-lapse imaging. Cilia can sustain the release of PKD-2-labeled EVs for 2 h. This extended release doesn't require neuronal transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The kinesin-3 motor kinesin-like protein 6 (KLP-6) is necessary for initial and extended EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dynamic replenishment of PKD-2 at the ciliary tip is key to sustained EV release. Our study provides a comprehensive portrait of real-time ciliary EV release and mechanisms supporting cilia as proficient EV release platforms.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Vesículas Extracelulares , Células Receptoras Sensoriais , Canais de Cátion TRPP , Animais , Cílios/metabolismo , Cílios/fisiologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética , Masculino
12.
Cells ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891116

RESUMO

Polycystic kidney disease (PKD) is characterized by extensive cyst formation and progressive fibrosis. However, the molecular mechanisms whereby the loss/loss-of-function of Polycystin 1 or 2 (PC1/2) provokes fibrosis are largely unknown. The small GTPase RhoA has been recently implicated in cystogenesis, and we identified the RhoA/cytoskeleton/myocardin-related transcription factor (MRTF) pathway as an emerging mediator of epithelium-induced fibrogenesis. Therefore, we hypothesized that MRTF is activated by PC1/2 loss and plays a critical role in the fibrogenic reprogramming of the epithelium. The loss of PC1 or PC2, induced by siRNA in vitro, activated RhoA and caused cytoskeletal remodeling and robust nuclear MRTF translocation and overexpression. These phenomena were also manifested in PKD1 (RC/RC) and PKD2 (WS25/-) mice, with MRTF translocation and overexpression occurring predominantly in dilated tubules and the cyst-lining epithelium, respectively. In epithelial cells, a large cohort of PC1/PC2 downregulation-induced genes was MRTF-dependent, including cytoskeletal, integrin-related, and matricellular/fibrogenic proteins. Epithelial MRTF was necessary for the paracrine priming of the fibroblast-myofibroblast transition. Thus, MRTF acts as a prime inducer of epithelial fibrogenesis in PKD. We propose that RhoA is a common upstream inducer of both histological hallmarks of PKD: cystogenesis and fibrosis.


Assuntos
Células Epiteliais , Doenças Renais Policísticas , Canais de Cátion TRPP , Proteína rhoA de Ligação ao GTP , Animais , Humanos , Camundongos , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose , Camundongos Endogâmicos C57BL , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Doenças Renais Policísticas/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Transativadores/metabolismo , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética
13.
EMBO Rep ; 25(7): 3040-3063, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849673

RESUMO

Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.


Assuntos
Proteínas de Transporte , Cílios , Proteína 1 Homóloga a Discs-Large , Canais de Cátion TRPP , Animais , Cílios/metabolismo , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética , Camundongos , Proteína 1 Homóloga a Discs-Large/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Humanos , Transporte Proteico , Camundongos Knockout , Rim/metabolismo , Células Epiteliais/metabolismo , Ligação Proteica , Refluxo Vesicoureteral/metabolismo , Refluxo Vesicoureteral/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Anormalidades Urogenitais
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167256, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38782303

RESUMO

The primary cilium, hereafter cilium, is an antenna-like organelle that modulates intracellular responses, including autophagy, a lysosomal degradation process essential for cell homeostasis. Dysfunction of the cilium is associated with impairment of autophagy and diseases known as "ciliopathies". The discovery of autophagy-related proteins at the base of the cilium suggests its potential role in coordinating autophagy initiation in response to physiopathological stimuli. One of these proteins, beclin-1 (BECN1), it which is necessary for autophagosome biogenesis. Additionally, polycystin-2 (PKD2), a calcium channel enriched at the cilium, is required and sufficient to induce autophagy in renal and cancer cells. We previously demonstrated that PKD2 and BECN1 form a protein complex at the endoplasmic reticulum in non-ciliated cells, where it initiates autophagy, but whether this protein complex is present at the cilium remains unknown. Anorexigenic pro-opiomelanocortin (POMC) neurons are ciliated cells that require autophagy to maintain intracellular homeostasis. POMC neurons are sensitive to metabolic changes, modulating signaling pathways crucial for controlling food intake. Exposure to the saturated fatty acid palmitic acid (PA) reduces ciliogenesis and inhibits autophagy in these cells. Here, we show that PKD2 and BECN1 form a protein complex in N43/5 cells, an in vitro model of POMC neurons, and that both PKD2 and BECN1 locate at the cilium. In addition, our data show that the cilium is required for PKD2-BECN1 protein complex formation and that PA disrupts the PKD2-BECN1 complex, suppressing autophagy. Our findings provide new insights into the mechanisms by which the cilium controls autophagy in hypothalamic neuronal cells.


Assuntos
Autofagia , Proteína Beclina-1 , Cílios , Hipotálamo , Neurônios , Canais de Cátion TRPP , Animais , Camundongos , Proteína Beclina-1/metabolismo , Cílios/metabolismo , Hipotálamo/metabolismo , Hipotálamo/citologia , Neurônios/metabolismo , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética
15.
Sci Bull (Beijing) ; 69(12): 1964-1979, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38760248

RESUMO

Mechanical loading is required for bone homeostasis, but the underlying mechanism is still unclear. Our previous studies revealed that the mechanical protein polycystin-1 (PC1, encoded by Pkd1) is critical for bone formation. However, the role of PC1 in bone resorption is unknown. Here, we found that PC1 directly regulates osteoclastogenesis and bone resorption. The conditional deletion of Pkd1 in the osteoclast lineage resulted in a reduced number of osteoclasts, decreased bone resorption, and increased bone mass. A cohort study of 32,500 patients further revealed that autosomal dominant polycystic kidney disease, which is mainly caused by loss-of-function mutation of the PKD1 gene, is associated with a lower risk of hip fracture than those with other chronic kidney diseases. Moreover, mice with osteoclast-specific knockout of Pkd1 showed complete resistance to unloading-induced bone loss. A mechanistic study revealed that PC1 facilitated TAZ nuclear translocation via the C-terminal tail-TAZ complex and that conditional deletion of Taz in the osteoclast lineage resulted in reduced osteoclastogenesis and increased bone mass. Pharmacological regulation of the PC1-TAZ axis alleviated unloading- and estrogen deficiency- induced bone loss. Thus, the PC1-TAZ axis may be a potential therapeutic target for osteoclast-related osteoporosis.


Assuntos
Reabsorção Óssea , Camundongos Knockout , Osteoclastos , Osteogênese , Canais de Cátion TRPP , Animais , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Osteoclastos/metabolismo , Camundongos , Humanos , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Masculino , Feminino , Proteínas Adaptadoras de Transdução de Sinal
16.
Kidney Int ; 106(2): 258-272, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782200

RESUMO

Alteration of DNA methylation leads to diverse diseases, and the dynamic changes of DNA methylation (DNAm) on sets of CpG dinucleotides in mammalian genomes are termed "DNAm age" and "epigenetic clocks" that can predict chronological age. However, whether and how dysregulation of DNA methylation promotes cyst progression and epigenetic age acceleration in autosomal dominant polycystic kidney disease (ADPKD) remains elusive. Here, we show that DNA methyltransferase 1 (DNMT1) is upregulated in cystic kidney epithelial cells and tissues and that knockout of Dnmt1 and targeting DNMT1 with hydralazine, a safe demethylating agent, delays cyst growth in Pkd1 mutant kidneys and extends life span of Pkd1 conditional knockout mice. With methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), DNMT1 chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing analysis, we identified two novel DNMT1 targets, PTPRM and PTPN22 (members of the protein tyrosine phosphatase family). PTPRM and PTPN22 function as mediators of DNMT1 and the phosphorylation and activation of PKD-associated signaling pathways, including ERK, mTOR and STAT3. With whole-genome bisulfide sequencing in kidneys of patients with ADPKD versus normal individuals, we found that the methylation of epigenetic clock-associated genes was dysregulated, supporting that epigenetic age is accelerated in the kidneys of patients with ADPKD. Furthermore, five epigenetic clock-associated genes, including Hsd17b14, Itpkb, Mbnl1, Rassf5 and Plk2, were identified. Thus, the diverse biological roles of these five genes suggest that their methylation status may not only predict epigenetic age acceleration but also contribute to disease progression in ADPKD.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Epigênese Genética , Camundongos Knockout , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/enzimologia , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Animais , Humanos , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Camundongos , Transdução de Sinais , Modelos Animais de Doenças , Masculino , Progressão da Doença , Rim/patologia , Rim/metabolismo
17.
Genes Cells ; 29(7): 599-607, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782708

RESUMO

WT 9-12 is one of the cell lines commonly used for autosomal dominant polycystic kidney disease (ADPKD) studies. Previous studies had described the PKD gene mutations and polycystin expression in WT 9-12. Nonetheless, the mutations occurring in other ADPKD-associated genes have not been investigated. This study aims to revisit these mutations and protein profile of WT 9-12. Whole genome sequencing verified the presence of truncation mutation at amino acid 2556 (Q2556X) in PKD1 gene of WT 9-12. Besides, those variations with high impacts included single nucleotide polymorphisms (rs8054182, rs117006360, and rs12925771) and insertions and deletions (InDels) (rs145602984 and rs55980345) in PKD1L2; InDel (rs1296698195) in PKD1L3; and copy number variations in GANAB. Protein profiles generated from the total proteins of WT 9-12 and HK-2 cells were compared using isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Polycystin-1 was absent in WT 9-12. The gene ontology enrichment and reactome pathway analyses revealed that the upregulated and downregulated proteins of WT 9-12 relative to HK-2 cell line leaded to signaling pathways related to immune response and amino acid metabolism, respectively. The ADPKD-related mutations and signaling pathways associated with differentially expressed proteins in WT 9-12 may help researchers in cell line selection for their studies.


Assuntos
Mutação , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Humanos , Linhagem Celular , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Polimorfismo de Nucleotídeo Único , Variações do Número de Cópias de DNA
18.
Nat Commun ; 15(1): 3698, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693102

RESUMO

Mouse models of autosomal dominant polycystic kidney disease (ADPKD) show that intact primary cilia are required for cyst growth following the inactivation of polycystin-1. The signaling pathways underlying this process, termed cilia-dependent cyst activation (CDCA), remain unknown. Using translating ribosome affinity purification RNASeq on mouse kidneys with polycystin-1 and cilia inactivation before cyst formation, we identify the differential 'CDCA pattern' translatome specifically dysregulated in kidney tubule cells destined to form cysts. From this, Glis2 emerges as a candidate functional effector of polycystin signaling and CDCA. In vitro changes in Glis2 expression mirror the polycystin- and cilia-dependent changes observed in kidney tissue, validating Glis2 as a cell culture-based indicator of polycystin function related to cyst formation. Inactivation of Glis2 suppresses polycystic kidney disease in mouse models of ADPKD, and pharmacological targeting of Glis2 with antisense oligonucleotides slows disease progression. Glis2 transcript and protein is a functional target of CDCA and a potential therapeutic target for treating ADPKD.


Assuntos
Cílios , Modelos Animais de Doenças , Rim Policístico Autossômico Dominante , Transdução de Sinais , Canais de Cátion TRPP , Animais , Humanos , Masculino , Camundongos , Cílios/metabolismo , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligonucleotídeos Antissenso/farmacologia , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/tratamento farmacológico , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética
19.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791330

RESUMO

Bone mechanotransduction is a critical process during skeletal development in embryogenesis and organogenesis. At the same time, the type and level of mechanical loading regulates bone remodeling throughout the adult life. The aberrant mechanosensing of bone cells has been implicated in the development and progression of bone loss disorders, but also in the bone-specific aspect of other clinical entities, such as the tumorigenesis of solid organs. Novel treatment options have come into sight that exploit the mechanosensitivity of osteoblasts, osteocytes, and chondrocytes to achieve efficient bone regeneration. In this regard, runt-related transcription factor 2 (Runx2) has emerged as a chief skeletal-specific molecule of differentiation, which is prominent to induction by mechanical stimuli. Polycystins represent a family of mechanosensitive proteins that interact with Runx2 in mechano-induced signaling cascades and foster the regulation of alternative effectors of mechanotransuction. In the present narrative review, we employed a PubMed search to extract the literature concerning Runx2, polycystins, and their association from 2000 to March 2024. The keywords stated below were used for the article search. We discuss recent advances regarding the implication of Runx2 and polycystins in bone remodeling and regeneration and elaborate on the targeting strategies that may potentially be applied for the treatment of patients with bone loss diseases.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Mecanotransdução Celular , Canais de Cátion TRPP , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética , Animais , Osso e Ossos/metabolismo , Remodelação Óssea , Regeneração Óssea , Osteócitos/metabolismo
20.
Am J Physiol Renal Physiol ; 326(6): F1004-F1015, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634129

RESUMO

Humans are predisposed to gout because they lack uricase that converts uric acid to allantoin. Rodents have uricase, resulting in low basal serum uric acid. A uricase inhibitor raises serum uric acid in rodents. There were two aims of the study in polycystic kidney disease (PKD): 1) to determine whether increasing serum uric acid with the uricase inhibitor, oxonic acid, resulted in faster cyst growth and 2) to determine whether treatment with the xanthine oxidase inhibitor, oxypurinol, reduced the cyst growth caused by oxonic acid. Orthologous models of human PKD were used: PCK rats, a polycystic kidney and hepatic disease 1 (Pkhd1) gene model of autosomal recessive PKD (ARPKD) and Pkd1RC/RC mice, a hypomorphic Pkd1 gene model. In PCK rats and Pkd1RC/RC mice, oxonic acid resulted in a significant increase in serum uric acid, kidney weight, and cyst index. Mechanisms of increased cyst growth that were investigated were proinflammatory cytokines, the inflammasome, and crystal deposition in the kidney. Oxonic acid resulted in an increase in proinflammatory cytokines in the serum and kidney in Pkd1RC/RC mice. Oxonic acid did not cause activation of the inflammasome or uric acid crystal deposition in the kidney. In Pkd1RC/RC male and female mice analyzed together, oxypurinol decreased the oxonic acid-induced increase in cyst index. In summary, increasing serum uric acid by inhibiting uricase with oxonic acid results in an increase in kidney weight and cyst index in PCK rats and Pkd1RC/RC mice. The effect is independent of inflammasome activation or crystal deposition in the kidney.NEW & NOTEWORTHY This is the first reported study of uric acid measurements and xanthine oxidase inhibition in polycystic kidney disease (PKD) rodents. Raising serum uric acid with a uricase inhibitor resulted in increased kidney weight and cyst index in Pkd1RC/RC mice and PCK rats, elevated levels of proinflammatory cytokines in the serum and kidney in Pkd1RC/RC mice, and no uric acid crystal deposition or activation of the caspase-1 inflammasome in the kidney.


Assuntos
Modelos Animais de Doenças , Rim , Doenças Renais Policísticas , Urato Oxidase , Ácido Úrico , Animais , Ácido Úrico/sangue , Doenças Renais Policísticas/patologia , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/tratamento farmacológico , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Oxipurinol/farmacologia , Ácido Oxônico/farmacologia , Inibidores Enzimáticos/farmacologia , Ratos , Feminino , Inflamassomos/metabolismo , Citocinas/metabolismo , Citocinas/sangue , Camundongos , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...