Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 856
Filtrar
1.
Sci Rep ; 14(1): 17469, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39080379

RESUMO

Mutations in the lysosomal membrane protein CLN3 cause Juvenile Neuronal Ceroid Lipofuscinosis (JNCL). Activation of the lysosomal ion channel TRPML1 has previously been shown to be beneficial in several neurodegenerative disease models. Here, we tested whether TRPML1 activation rescues disease-associated phenotypes in CLN3-deficient retinal pigment epithelial (ARPE-19 CLN3-KO) cells. ARPE-19 CLN3-KO cells accumulate LAMP1 positive organelles and show lysosomal storage of mitochondrial ATPase subunit C (SubC), globotriaosylceramide (Gb3), and glycerophosphodiesters (GPDs), whereas lysosomal bis(monoacylglycero)phosphate (BMP/LBPA) lipid levels were significantly decreased. Activation of TRPML1 reduced lysosomal storage of Gb3 and SubC but failed to restore BMP levels in CLN3-KO cells. TRPML1-mediated decrease of storage was TFEB-independent, and we identified TRPML1-mediated enhanced lysosomal exocytosis as a likely mechanism for clearing storage including GPDs. Therefore, ARPE-19 CLN3-KO cells represent a human cell model for CLN3 disease showing many of the described core lysosomal deficits, some of which can be improved using TRPML1 agonists.


Assuntos
Lisossomos , Glicoproteínas de Membrana , Chaperonas Moleculares , Lipofuscinoses Ceroides Neuronais , Epitélio Pigmentado da Retina , Canais de Potencial de Receptor Transitório , Lisossomos/metabolismo , Humanos , Epitélio Pigmentado da Retina/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética , Fenótipo , Linhagem Celular , Exocitose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Lisofosfolipídeos , Monoglicerídeos
2.
CNS Neurosci Ther ; 30(7): e14816, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948951

RESUMO

AIM: This study aimed to explore the mechanisms of transient receptor potential (TRP) channels on the immune microenvironment and develop a TRP-related signature for predicting prognosis, immunotherapy response, and drug sensitivity in gliomas. METHODS: Based on the unsupervised clustering algorithm, we identified novel TRP channel clusters and investigated their biological function, immune microenvironment, and genomic heterogeneity. In vitro and in vivo experiments revealed the association between TRPV2 and macrophages. Subsequently, based on 96 machine learning algorithms and six independent glioma cohorts, we constructed a machine learning-based TRP channel signature (MLTS). The performance of the MLTS in predicting prognosis, immunotherapy response, and drug sensitivity was evaluated. RESULTS: Patients with high expression levels of TRP channel genes had worse prognoses, higher tumor mutation burden, and more activated immunosuppressive microenvironment. Meanwhile, TRPV2 was identified as the most essential regulator in TRP channels. TRPV2 activation could promote macrophages migration toward malignant cells and alleviate glioma prognosis. Furthermore, MLTS could work independently of common clinical features and present stable and superior prediction performance. CONCLUSION: This study investigated the comprehensive effect of TRP channel genes in gliomas and provided a promising tool for designing effective, precise treatment strategies.


Assuntos
Neoplasias Encefálicas , Glioma , Aprendizado de Máquina , Canais de Potencial de Receptor Transitório , Microambiente Tumoral , Glioma/genética , Glioma/imunologia , Microambiente Tumoral/fisiologia , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Animais , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Camundongos , Masculino , Feminino
3.
J Therm Biol ; 122: 103868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38852485

RESUMO

Transient Receptor Potential (TRP) ion channels are important for sensing environmental temperature. In rodents, TRPV4 senses warmth (25-34 °C), TRPV1 senses heat (>42 °C), TRPA1 putatively senses cold (<17 °C), and TRPM8 senses cool-cold (18-26 °C). We investigated if knockout (KO) mice lacking these TRP channels exhibited changes in thermal preference. Thermal preference was tested using a dual hot-cold plate with one thermoelectric surface set at 30 °C and the adjacent surface at a temperature of 15-45 °C in 5 °C increments. Blinded observers counted the number of times mice crossed through an opening between plates and the percentage of time spent on the 30 °C plate. In a separate experiment, observers blinded as to genotype also assessed the temperature at the location on a thermal gradient (1.83 m, 4-50 °C) occupied by the mouse at 5- or 10-min intervals over 2 h. Male and female wildtype mice preferred 30 °C and significantly avoided colder (15-20 °C) and hotter (40-45 °C) temperatures. Male TRPV1KOs and TRPA1KOs, and TRPV4KOs of both sexes, were similar, while female WTs, TRPV1KOs, TRPA1KOs and TRPM8KOs did not show significant thermal preferences across the temperature range. Male and female TRPM8KOs did not significantly avoid the coldest temperatures. Male mice (except for TRPM8KOs) exhibited significantly fewer plate crossings at hot and cold temperatures and more crossings at thermoneutral temperatures, while females exhibited a similar but non-significant trend. Occupancy temperatures along the thermal gradient exhibited a broad distribution that shrank somewhat over time. Mean occupancy temperatures (recorded at 90-120 min) were significantly higher for females (30-34 °C) compared to males (26-27 °C) of all genotypes, except for TRPA1KOs which exhibited no sex difference. The results indicate (1) sex differences with females (except TRPA1KOs) preferring warmer temperatures, (2) reduced thermosensitivity in female TRPV1KOs, and (3) reduced sensitivity to cold and innocuous warmth in male and female TRPM8KOs consistent with previous studies.


Assuntos
Camundongos Knockout , Canal de Cátion TRPA1 , Canais de Cátion TRPV , Sensação Térmica , Animais , Feminino , Masculino , Camundongos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/fisiologia , Camundongos Endogâmicos C57BL , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Temperatura Alta , Temperatura Baixa
4.
Zhen Ci Yan Jiu ; 49(6): 558-565, 2024 Jun 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38897799

RESUMO

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Neiguan"(PC6) on cardiac function, cardiac morphology and transient receptor potential channel (TRPC) protein expressions in myocardial tissue of mice with myocardial hypertrophy, so as to explore its mechanisms underlying improvement of myocardial hypertrophy. METHODS: Forty-five male C57BL/6 mice were randomly divided into control, model and EA groups (15 mice/group). The myocardial hypertrophy model was established by subcutaneous injection of isoproterenol hydrochloride (15 mg·kg-1·d-1) for 14 days. The mice of the control group received subcutaneous injection of same amount of normal saline. The mice of the EA group received EA stimulation (frequency of 2 Hz, intensity of 1 mA) of bilateral PC6 for 20 min each time, once a day for 14 consecutive days. After the intervention, the body weight, tibia length and heart weight were measured. The left ventricular ejection fraction (EF), fractional shortening index (FS), left ventricular end-systolic volume (LVEV), left ventricular end-systolic internal diameter (LVID) and left ventricular posterior wall thickness (LVPW) were measured by using echocardiography for evaluating the cardiac function. The mean number and surface area of myocardial cells was detected by wheat germ agglutinin (WGA) staining, and changes of the cardiac morphology were observed under light microscopy after HE staining. The expression levels of TRPC1, TRPC3, TRPC4 and TRPC6 (TRPC1/3/4/6) in the myocardial tissue were detected by real-time quantitative PCR (qPCR) and Western blot, separately. RESULTS: Compared with the control group, the heart-body weight ratio(P<0.05) and heart-weight-to-tibia-length ratio (P<0.01), LVEV and LVID levels, the relative surface area, left ventricular area ratio, and the expression levels of cardiac TRPC1/3/4/6 were significantly increased (P<0.01, P<0.05), while the EF, FS, LVPW, number of cardiomyocytes, and the left ventricular posterior wall ratio were obviously decreased (P<0.01, P<0.05) in the model group. In comparison with the model group, the heart/body weight ratio, heart-weight-to-tibia-length ratio, LVEV and LVID levels, relative surface area, left ventricular area ratio, and the expression levels of cardiac TRPC1/3/4/6 were significantly decreased (P<0.01, P<0.05), while the EF, FS, LVPW, number of cardiomyocytes and left ventricular posterior wall ratio were significantly increased (P<0.01, P<0.05) in the EA group. H.E. staining showed disordered arrangement of cardiomyocytes and obvious myocardial interstitial inflammatory cell infiltration in the model group, and evident reduction of degree of cardiac fibrosis and interstitial edema in the EA group. CONCLUSIONS: EA of PC6 can improve the cardiac function and cardiac morphology in mice with myocardial hypertrophy, which may be related to its functions in down-regulating the expression of transient receptor potential channels.


Assuntos
Eletroacupuntura , Camundongos Endogâmicos C57BL , Miocárdio , Animais , Camundongos , Masculino , Humanos , Miocárdio/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética , Cardiomegalia/metabolismo , Cardiomegalia/terapia , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Pontos de Acupuntura , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética
5.
Virulence ; 15(1): 2350893, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38725096

RESUMO

Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a zoonotic disease. Intracellular replication of C. burnetii requires the maturation of a phagolysosome-like compartment known as the replication permissive Coxiella-containing vacuole (CCV). Effector proteins secreted by the Dot/Icm secretion system are indispensable for maturation of a single large CCV by facilitating the fusion of promiscuous vesicles. However, the mechanisms of CCV maintenance and evasion of host cell clearance remain to be defined. Here, we show that C. burnetii secreted Coxiella vacuolar protein E (CvpE) contributes to CCV biogenesis by inducing lysosome-like vacuole (LLV) enlargement. LLV fission by tubulation and autolysosome degradation is impaired in CvpE-expressing cells. Subsequently, we found that CvpE suppresses lysosomal Ca2+ channel transient receptor potential channel mucolipin 1 (TRPML1) activity in an indirect manner, in which CvpE binds phosphatidylinositol 3-phosphate [PI(3)P] and perturbs PIKfyve activity in lysosomes. Finally, the agonist of TRPML1, ML-SA5, inhibits CCV biogenesis and C. burnetii replication. These results provide insight into the mechanisms of CCV maintenance by CvpE and suggest that the agonist of TRPML1 can be a novel potential treatment that does not rely on antibiotics for Q fever by enhancing Coxiella-containing vacuoles (CCVs) fission.


Assuntos
Proteínas de Bactérias , Coxiella burnetii , Lisossomos , Fosfatidilinositol 3-Quinases , Fosfatos de Fosfatidilinositol , Canais de Potencial de Receptor Transitório , Vacúolos , Animais , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Coxiella burnetii/metabolismo , Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/genética , Células HeLa , Interações Hospedeiro-Patógeno , Lisossomos/metabolismo , Lisossomos/microbiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Febre Q/microbiologia , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética , Vacúolos/microbiologia , Vacúolos/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(22): e2318412121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781205

RESUMO

Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that low concentrations of GPN rupture a small fraction of lysosomes, but surprisingly trigger Ca2+ release from nearly all. Chelating cytoplasmic Ca2+ makes lysosomes more sensitive to GPN-induced rupture, suggesting a role for Ca2+ in lysosomal membrane resilience. GPN-elicited Ca2+ release causes the Ca2+-sensor Apoptosis Linked Gene-2 (ALG-2), along with Endosomal Sorting Complex Required for Transport (ESCRT) proteins it interacts with, to redistribute onto lysosomes. Functionally, ALG-2, but not its ESCRT binding-disabled ΔGF122 splice variant, increases lysosomal resilience to osmotic stress. Importantly, elevating juxta-lysosomal Ca2+ without membrane damage by activating TRPML1 also recruits ALG-2 and ESCRTs, protecting lysosomes from subsequent osmotic rupture. These findings reveal that Ca2+, through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress.


Assuntos
Cálcio , Complexos Endossomais de Distribuição Requeridos para Transporte , Lisossomos , Pressão Osmótica , Lisossomos/metabolismo , Humanos , Cálcio/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Membranas Intracelulares/metabolismo , Células HeLa , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética , Proteínas de Ligação ao Cálcio , Proteínas Reguladoras de Apoptose
7.
J Histochem Cytochem ; 72(5): 275-287, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38725415

RESUMO

The TRPA1 ion channel is a sensitive detector of reactive chemicals, found primarily on sensory neurons. The phenotype exhibited by mice lacking TRPA1 suggests its potential as a target for pharmacological intervention. Antibody-based detection for distribution analysis is a standard technique. In the case of TRPA1, however, there is no antibody with a plausible validation in knockout animals or functional studies, but many that have failed in this regard. To this end we employed the single molecule in situ hybridization technique RNAscope on sensory neurons immediately after detection of calcium responses to the TRPA1 agonist allyl isothiocyanate. There is a clearly positive correlation between TRPA1 calcium imaging and RNAscope detection (R = 0.43), although less than what might have been expected. Thus, the technique of choice should be carefully considered to suit the research question. The marginal correlation between TRPV1 RNAscope and the specific agonist capsaicin indicates that such validation is advisable for every RNAscope target. Given the recent description of a long-awaited TRPA1 reporter mouse, TRPA1 RNAscope detection might still have its use cases, for detection of RNA at particular sites, for example, defined structurally or by other molecular markers.


Assuntos
Cálcio , Isotiocianatos , Canal de Cátion TRPA1 , Animais , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Isotiocianatos/farmacologia , Camundongos , Cálcio/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/agonistas , Capsaicina/farmacologia , Hibridização In Situ , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/agonistas , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Masculino
8.
J Cell Mol Med ; 28(9): e18274, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38676362

RESUMO

TRP channels, are non-specific cationic channels that are involved in multiple physiological processes that include salivation, cellular secretions, memory extinction and consolidation, temperature, pain, store-operated calcium entry, thermosensation and functionality of the nervous system. Here we choose to look at the evidence that decisively shows how TRP channels modulate human neuron plasticity as it relates to the molecular neurobiology of sleep/circadian rhythm. There are numerous model organisms of sleep and circadian rhythm that are the results of the absence or genetic manipulation of the non-specific cationic TRP channels. Drosophila and mice that have had their TRP channels genetically ablated or manipulated show strong evidence of changes in sleep duration, sleep activity, circadian rhythm and response to temperature, noxious odours and pattern of activity during both sleep and wakefulness along with cardiovascular and respiratory function during sleep. Indeed the role of TRP channels in regulating sleep and circadian rhythm is very interesting considering the parallel roles of TRP channels in thermoregulation and thermal response with concomitant responses in growth and degradation of neurites, peripheral nerves and neuronal brain networks. TRP channels provide evidence of an ability to create, regulate and modify our sleep and circadian rhythm in a wide array of physiological and pathophysiological conditions. In the current review, we summarize previous results and novel recent advances in the understanding of calcium ion entry via TRP channels in different sleep and circadian rhythm conditions. We discuss the role of TRP channels in sleep and circadian disorders.


Assuntos
Ritmo Circadiano , Sono , Canais de Potencial de Receptor Transitório , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Animais , Humanos , Sono/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética
9.
Int Ophthalmol ; 44(1): 63, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347388

RESUMO

PURPOSE: Pterygium is a hyaline degenerative disease of the conjunctiva characterized by the progression of fibrovascular connective tissue from the bulbar conjunctiva to the cornea. The mechanism of pterygium formation is still not fully understood. Transient receptor potential (TRP) channels are a group of ion channels with distinct characteristics. Recent indications suggest TRP channels may play a significant regulatory role in pterygium development, but previous studies have mainly focused on in silico analysis. Accordingly, in the present study, we aimed to decipher the expression signatures and role of TRP channels in pterygium development. METHODS: The study encompassed a cohort of 45 patients matched for age and gender distribution, comprising 30 individuals with primary pterygium (PP) and 15 individuals with recurrent pterygium (RP). The control group consisted of unaffected conjunctival tissue obtained from the same set of patients. High-throughput screening of differentially expressed TRP channels in pterygium tissues was achieved with the help of Fluidigm 96.96 Dynamic Array Expression Chip and reactions were held in BioMark™ HD System Real-Time PCR platform. RESULTS: Statistically significant increases were found in the expression of 21 genes, mainly TRPA1 (p = 0.021), TRPC2 (p = 0.001), and TRPM8 (p = 0.003), in patients with PP, and in TRPC5 (p = 0.05), TRPM2 (p = 0.029), TRPM4 (p = 0.03), TRPM6 (p = 0.045), TRPM8 (p = 0.038), TRPV1 (p = 0.01) and TRPV4 (p = 0.025) genes in RP tissues. CONCLUSION: Collectively, TRP channel proteins appear to play pivotal roles in both the development and progression of pterygium, making them promising candidates for future therapeutic interventions in patients afflicted by this condition.


Assuntos
Túnica Conjuntiva/anormalidades , Pterígio , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Pterígio/diagnóstico , Ensaios de Triagem em Larga Escala , Túnica Conjuntiva/metabolismo
10.
Cells ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38334649

RESUMO

TRPM3 belongs to the melastatin sub-family of transient receptor potential (TRPM) cation channels and has been shown to function as a steroid-activated, heat-sensitive calcium ion (Ca2+) channel. A missense substitution (p.I65M) in the TRPM3 gene of humans (TRPM3) and mice (Trpm3) has been shown to underlie an inherited form of early-onset, progressive cataract. Here, we model the pathogenetic effects of this cataract-causing mutation using 'knock-in' mutant mice and human cell lines. Trpm3 and its intron-hosted micro-RNA gene (Mir204) were strongly co-expressed in the lens epithelium and other non-pigmented and pigmented ocular epithelia. Homozygous Trpm3-mutant lenses displayed elevated cytosolic Ca2+ levels and an imbalance of sodium (Na+) and potassium (K+) ions coupled with increased water content. Homozygous TRPM3-mutant human lens epithelial (HLE-B3) cell lines and Trpm3-mutant lenses exhibited increased levels of phosphorylated mitogen-activated protein kinase 1/extracellular signal-regulated kinase 2 (MAPK1/ERK2/p42) and MAPK3/ERK1/p44. Mutant TRPM3-M65 channels displayed an increased sensitivity to external Ca2+ concentration and an altered dose response to pregnenolone sulfate (PS) activation. Trpm3-mutant lenses shared the downregulation of genes involved in insulin/peptide secretion and the upregulation of genes involved in Ca2+ dynamics. By contrast, Trpm3-deficient lenses did not replicate the pathophysiological changes observed in Trpm3-mutant lenses. Collectively, our data suggest that a cataract-causing substitution in the TRPM3 cation channel elicits a deleterious gain-of-function rather than a loss-of-function mechanism in the lens.


Assuntos
Catarata , MicroRNAs , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Humanos , Animais , Camundongos , Cálcio/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Catarata/genética , Canais de Potencial de Receptor Transitório/genética , Mutação/genética , Cátions/metabolismo
11.
Gene ; 910: 148317, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38423141

RESUMO

Transient Receptor Potential (TRP) channels, essential for sensing environmental stimuli, are widely distributed. Among them, thermosensory TRP channels play a crucial role in temperature sensing and regulation. Sebastes schlegelii, a significant aquatic economic species, exhibits sensitivity to temperature across multiple aspects. In this study, we identified 18 SsTRP proteins using whole-genome scanning. Motif analysis revealed motif 2 in all TRP proteins, with conserved motifs in subfamilies. TRP-related domains, anchored repeats, and ion-transmembrane domains were found. Chromosome analysis showed 18 TRP genes on 11 chromosomes and a scaffold. Phylogenetics classified SsTRPs into four subfamilies: TRPM, TRPA, TRPV, and TRPC. In diverse organisms, four monophyletic subfamilies were identified. Additionally, we identified key TRP genes with significantly upregulated transcription levels under short-term (30 min) and long-term (3 days) exposure at 24 °C (optimal elevated temperature) and 27 °C (critical high temperature). We propose that genes upregulated at 30 min may be involved in the primary response process of temperature sensing, while genes upregulated at 3 days may participate in the secondary response process of temperature perception. This study lays the foundation for understanding the regulatory mechanisms of TRPs responses to environmental stimuli in S. schlegelii and other fishes.


Assuntos
Perciformes , Canais de Potencial de Receptor Transitório , Animais , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Temperatura , Domínios Proteicos , Perciformes/genética , Perciformes/metabolismo
12.
Int J Biol Macromol ; 262(Pt 2): 129551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367416

RESUMO

Transient receptor potential (TRP) channels are cation channels related to a wide range of physical and chemical stimuli, they are expressed all along the gastrointestinal system, and a myriad of diseases are often associated with aberrant expression or mutation of the TRP gene, suggesting that TRPs are promising targets for drug therapy. Therefore, a better understanding of the information of TRPs in health and disease could facilitate the development of effective drugs for the treatment of gastrointestinal diseases like IBD. But there are very few generalizations about the experimental techniques studied in this field. In view of the promise of TRP as a therapeutic target, we discuss experimental methods that can be used for TRPs including their distribution, function and interaction with other proteins, as well as some promising emerging technologies to provide experimental methods for future studies.


Assuntos
Canais de Potencial de Receptor Transitório , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Trato Gastrointestinal/metabolismo
13.
Lipids Health Dis ; 23(1): 49, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365763

RESUMO

Globally, obesity and asthma pose significant health challenges, with obesity being a key factor influencing asthma. Despite this, effective treatments for obese asthma, a distinct phenotype, remain elusive. Since the discovery of transient receptor potential (TRP) channels in 1969, their value as therapeutic targets for various diseases has been acknowledged. TRP channels, present in adipose tissue cells, influence fat cell heat production and the secretion of adipokines and cytokines, which are closely associated with asthma and obesity. This paper aims to investigate the mechanisms by which obesity exacerbates asthma-related inflammation and suggests that targeting TRP channels in adipose tissue could potentially suppress obese asthma and offer novel insights into its treatment.


Assuntos
Asma , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/genética , Obesidade/complicações , Obesidade/genética , Asma/tratamento farmacológico , Asma/complicações , Tecido Adiposo , Macrófagos , Inflamação/complicações
14.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255767

RESUMO

Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.


Assuntos
Aterosclerose , Doenças Metabólicas , Síndrome Metabólica , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/genética , Cátions
15.
BMC Genomics ; 25(1): 72, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233779

RESUMO

BACKGROUND: Temperature is an important environment factor that is critical to the survival and growth of crustaceans. However, the mechanisms by which crustaceans detect changes in temperature are still unclear. The transient receptor potential (TRP) channels are non-selective cation channels well known for properties in temperature sensation. However, comprehensive understandings on TRP channels as well as their temperature sensing functions are still lacking in crustaceans. RESULTS: In this study, a total of 26 TRP genes were identified in the swimming crab, Portunus trituberculatus, which can be classified into TRPA, TRPC, TRPP, TRPM, TRPML, TRPN and TRPV. Tissue expression analysis revealed a wide distribution of these TRP genes in P. trituberculatus, and antennules, neural tissues, and ovaries were the most commonly expressed tissues. To investigate the responsiveness of TRP genes to the temperature change, 18 TRPs were selected to detect their expression after high and low temperature stress. The results showed that 12 TRPs showed induced gene expression in both high and low temperature groups, while 3 were down-regulated in the low temperature group, and 3 showed no change in expression in either group. CONCLUSIONS: This study characterized the TRP family genes in P. trituberculatus, and explored their involvement in response to temperature stress. Our results will enhance overall understanding of crustacean TRP channels and their possible functions.


Assuntos
Braquiúros , Canais de Potencial de Receptor Transitório , Animais , Canais de Potencial de Receptor Transitório/genética , Braquiúros/genética , Temperatura , Natação
16.
Am J Ophthalmol ; 258: 183-195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972748

RESUMO

PURPOSE: To report the genetic etiology of Lisch epithelial corneal dystrophy (LECD). DESIGN: Multicenter cohort study. METHODS: A discovery cohort of 27 individuals with LECD from 17 families, including 7 affected members from the original LECD family, 6 patients from 2 new families and 14 simplex cases, was recruited. A cohort of 6 individuals carrying a pathogenic MCOLN1 (mucolipin 1) variant was reviewed for signs of LECD. Next-generation sequencing or targeted Sanger sequencing were used in all patients to identify pathogenic or likely pathogenic variants and penetrance of variants. RESULTS: Nine rare heterozygous MCOLN1 variants were identified in 23 of 27 affected individuals from 13 families. The truncating nature of 7 variants and functional testing of 1 missense variant indicated that they result in MCOLN1 haploinsufficiency. Importantly, in the homozygous and compound-heterozygous state, 4 of 9 LECD-associated variants cause the rare lysosomal storage disorder mucolipidosis IV (MLIV). Autosomal recessive MLIV is a systemic disease and comprises neurodegeneration as well as corneal opacity of infantile-onset with epithelial autofluorescent lysosomal inclusions. However, the 6 parents of 3 patients with MLIV confirmed to carry pathogenic MCOLN1 variants did not have the LECD phenotype, suggesting MCOLN1 haploinsufficiency may be associated with reduced penetrance and variable expressivity. CONCLUSIONS: MCOLN1 haploinsufficiency is the major cause of LECD. Based on the overlapping clinical features of corneal epithelial cells with autofluorescent inclusions reported in both LECD and MLIV, it is concluded that some carriers of MCOLN1 haploinsufficiency-causing variants present with LECD.


Assuntos
Distrofias Hereditárias da Córnea , Mucolipidoses , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/genética , Estudos de Coortes , Mucolipidoses/diagnóstico , Mucolipidoses/genética , Mucolipidoses/patologia , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/genética
17.
Biosci Biotechnol Biochem ; 88(2): 196-202, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37994656

RESUMO

The transient receptor potential (TRP) channel family, including TRPA1, is known to be involved in temperature sensing and response. Previous studies have shown that intragastric administration of cinnamaldehyde (a typical TRPA1 agonist) can change body temperature, but the role of TRPA1 in this response is not clear. In this study, we found that intragastric administration of cinnamaldehyde increased in the intrascapular brown adipose tissue (IBAT) and rectal temperatures. However, this effect was not observed in TRPA1 knockout mice, suggesting that TRPA1 is involved in these temperature changes. Intravenous cinnamaldehyde also increased IBAT and rectal temperatures, only in the presence of TRPA1. We also explored the contribution of the vagus nerve to these temperature changes and found that it played a limited role. These results suggest that cinnamaldehyde can affect body temperature through TRPA1 activation, with the vagus nerve having a minor influence.


Assuntos
Temperatura Corporal , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Canal de Cátion TRPA1/genética , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/agonistas , Acroleína/farmacologia
18.
J Biol Chem ; 300(1): 105484, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992804

RESUMO

Sterols are hydrophobic molecules, known to cluster signaling membrane-proteins in lipid rafts, while methyl-ß-cyclodextrin (MßCD) has been a major tool for modulating membrane-sterol content for studying its effect on membrane proteins, including the transient receptor potential (TRP) channels. The Drosophila light-sensitive TRP channels are activated downstream of a G-protein-coupled phospholipase Cß (PLC) cascade. In phototransduction, PLC is an enzyme that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) generating diacylglycerol, inositol-tris-phosphate, and protons, leading to TRP and TRP-like (TRPL) channel openings. Here, we studied the effects of MßCD on Drosophila phototransduction using electrophysiology while fluorescently monitoring PIP2 hydrolysis, aiming to examine the effects of sterol modulation on PIP2 hydrolysis and the ensuing light-response in the native system. Incubation of photoreceptor cells with MßCD dramatically reduced the amplitude and kinetics of the TRP/TRPL-mediated light response. MßCD also suppressed PLC-dependent TRP/TRPL constitutive channel activity in the dark induced by mitochondrial uncouplers, but PLC-independent activation of the channels by linoleic acid was not affected. Furthermore, MßCD suppressed a constitutively active TRP mutant-channel, trpP365, suggesting that TRP channel activity is a target of MßCD action. Importantly, whole-cell voltage-clamp measurements from photoreceptors and simultaneously monitored PIP2-hydrolysis by translocation of fluorescently tagged Tubby protein domain, from the plasma membrane to the cytosol, revealed that MßCD virtually abolished the light response when having little effect on the light-activated PLC. Together, MßCD uncoupled TRP/TRPL channel gating from light-activated PLC and PIP2-hydrolysis suggesting the involvement of distinct nanoscopic lipid domains such as lipid rafts and PIP2 clusters in TRP/TRPL channel gating.


Assuntos
Proteínas de Drosophila , Lipídeos de Membrana , Canais de Potencial de Receptor Transitório , Fosfolipases Tipo C , beta-Ciclodextrinas , Animais , beta-Ciclodextrinas/farmacologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Lipídeos de Membrana/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos dos fármacos , Células Fotorreceptoras de Invertebrados/metabolismo , Esteróis/metabolismo , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Fosfolipases Tipo C/metabolismo , Transdução de Sinal Luminoso/efeitos dos fármacos
19.
J Ethnopharmacol ; 322: 117581, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38103845

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Borneol is a long-established traditional Chinese medicine that has been found to be effective in treating pain and itchy skin. However, whether borneol has a therapeutic effect on chronic itch and its related mechanisms remain unclear. AIM OF THE STUDY: To investigate the antipruritic effect of borneol and its molecular mechanism. MATERIALS AND METHODS: DrugBAN framework and molecular docking were applied to predict the targets of borneol, and the calcium imaging or patch-clamp recording analysis were used to detect the effects of borneol on TRPA1, TRPM8 or TRPV3 channels in HEK293T cells. In addition, various mouse models of acute itch and chronic itch were established to evaluate the antipruritic effects of borneol on C57BL/6J mice. Then, the borneol-induced pruritic relief was further investigated in Trpa1-/-, Trpm8-/-, or Trpa1-/-/Trpm8-/- mice. The effects of borneol on the activation of TRPM8 and the inhibition of TRPA1 were also measured in dorsal root ganglia neurons of wild-type (WT), Trpm8-/- and Trpv1-/- mice. Lastly, a randomized, double-blind study of adult patients was conducted to evaluate the clinical antipruritic effect of borneol. RESULTS: TRPA1, TRPV3 and TRPM8 are the potential targets of borneol according to the results of DrugBAN algorithm and molecular docking. Calcium imaging and patch-clamp recording analysis demonstrated that borneol activates TRPM8 channel-induced cell excitability and inhibits TRPA1 channel-mediated cell excitability in transfected HEK293T cells. Animal behavior analysis showed that borneol can significantly reduce acute and chronic itch behavior in C57BL/6J mice, but this effect was eliminated in Trpa1-/-, Trpm8-/- mice, or at least in Trpa1-/-/Trpm8-/- mice. Borneol elicits TRPM8 channel induced [Ca2+]i responses but inhibits AITC or SADBE-induced activation of TRPA1 channels in dorsal root ganglia neurons of WT and Trpv1-/- mice, respectively. Furthermore, the clinical results indicated that borneol could reduce itching symptoms in patients and its efficacy is similar to that of menthol. CONCLUSION: Borneol has therapeutic effects on multiple pruritus models in mice and patients with chronic itch, and the mechanism may be through inhibiting TRPA1 and activating TRPM8.


Assuntos
Canfanos , Proteínas de Membrana , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Humanos , Camundongos , Animais , Canais de Potencial de Receptor Transitório/genética , Antipruriginosos/farmacologia , Antipruriginosos/uso terapêutico , Cálcio/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Canal de Cátion TRPA1/genética , Prurido/tratamento farmacológico , Canais de Cátion TRPM/genética , Canais de Cátion TRPV/genética , Gânglios Espinais
20.
Mol Neurobiol ; 61(8): 4992-5001, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38157120

RESUMO

Neurodegenerative diseases, a group of debilitating disorders, have garnered increasing attention due to their escalating prevalence, particularly among aging populations. Alzheimer's disease (AD) reigns as a prominent exemplar within this category, distinguished by its relentless progression of cognitive impairment and the accumulation of aberrant protein aggregates within the intricate landscape of the brain. While the intricate pathogenesis of neurodegenerative diseases has been the subject of extensive investigation, recent scientific inquiry has unveiled a novel player in this complex scenario-transient receptor potential mucolipin 1 (TRPML1) channels. This comprehensive review embarks on an exploration of the intricate interplay between TRPML1 channels and neurodegenerative diseases, with an explicit spotlight on Alzheimer's disease. It immerses itself in the intricate molecular mechanisms governing TRPML1 channel functionality and elucidates their profound implications for the well-being of neurons. Furthermore, the review ventures into the realm of therapeutic potential, pondering the possibilities and challenges associated with targeting TRPML1 channels as a promising avenue for the amelioration of neurodegenerative disorders. As we traverse this multifaceted terrain of neurodegeneration and the enigmatic role of TRPML1 channels, we embark on a journey that not only broadens our understanding of the intricate machinery governing neuronal health but also holds promise for the development of innovative therapeutic interventions in the relentless battle against neurodegenerative diseases.


Assuntos
Mutação , Doenças Neurodegenerativas , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Mutação/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...