Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2398596, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39234778

RESUMO

The global rate of Amphotericin B (AmB) resistance in Candida auris has surpassed 12%. However, there is limited data on available clinical treatments and microevolutionary analyses concerning reduced AmB sensitivity. In this study, we collected 18 C. auris isolates from five patients between 2019 and 2022. We employed clinical data mining, genomic, and transcriptomic analyses to identify genetic evolutionary features linked to reduced AmB sensitivity in these isolates during clinical treatment. We identified six isolates with a minimum inhibitory concentration (MIC) of AmB below 0.5 µg/mL (AmB0.5) and 12 isolates with an AmB-MIC of 1 µg/mL (AmB1) or ≥ 2 µg/mL (AmB2). All five patients received 24-hour AmB (5 mg/L) bladder irrigation treatment. Evolutionary analyses revealed an ERG3 (c923t) mutation in AmB1 C. auris. Additionally, AmB2 C. auris was found to contain a t2831c mutation in the RAD2 gene. In the AmB1 group, membrane lipid-related gene expression (ERG1, ERG2, ERG13, and ERG24) was upregulated, while in the AmB2 group, expression of DNA-related genes (e.g. DNA2 and PRI1) was up-regulated. In a series of C.auris strains with reduced susceptibility to AmB, five key genes were identified: two upregulated (IFF9 and PGA6) and three downregulated (HGT7, HGT13,and PRI32). In this study, we demonstrate the microevolution of reduced AmB sensitivity in vivo and further elucidate the relationship between reduced AmB sensitivity and low-concentration AmB bladder irrigation. These findings offer new insights into potential antifungal drug targets and clinical markers for the "super fungus", C. auris.


Assuntos
Anfotericina B , Antifúngicos , Candida auris , Candidíase , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Humanos , Anfotericina B/farmacologia , Antifúngicos/farmacologia , China/epidemiologia , Farmacorresistência Fúngica/genética , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Candida auris/genética , Candida auris/efeitos dos fármacos , Evolução Molecular , Masculino , Mutação , Feminino , Pessoa de Meia-Idade , Proteínas Fúngicas/genética
2.
Front Cell Infect Microbiol ; 14: 1434939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39282497

RESUMO

Candida auris has emerged as a significant healthcare-associated pathogen due to its multidrug-resistant nature. Ongoing constraints in the discovery and provision of new antifungals create an urgent imperative to design effective remedies to this pressing global blight. Herein, we screened a chemical library and identified aryl-carbohydrazide analogs with potent activity against both C. auris and the most prevalent human fungal pathogen, C. albicans. SPB00525 [N'-(2,6-dichlorophenyl)-5-nitro-furan-2-carbohydrazide] exhibited potent activity against different strains that were resistant to standard antifungals. Using drug-induced haploinsufficient profiling, transcriptomics and metabolomic analysis, we uncovered that Ole1, a Δ(9) fatty acid desaturase, is the likely target of SPB00525. An analog of the latter, HTS06170 [N'-(2,6-dichlorophenyl)-4-methyl-1,2,3-thiadiazole-5-carbohydrazide], had a superior antifungal activity against both C. auris and C. albicans. Both SPB00525 and HTS06170 act as antivirulence agents and inhibited the invasive hyphal growth and biofilm formation of C. albicans. SPB00525 and HTS06170 attenuated fungal damage to human enterocytes and ameliorate the survival of Galleria mellonella larvae used as systemic candidiasis model. These data suggest that inhibiting fungal Δ(9) fatty acid desaturase activity represents a potential therapeutic approach for treating fungal infection caused by the superbug C. auris and the most prevalent human fungal pathogen, C. albicans.


Assuntos
Antifúngicos , Candida auris , Candidíase , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Animais , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Candida auris/efeitos dos fármacos , Candida auris/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/antagonistas & inibidores , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Inibidores Enzimáticos/farmacologia , Mariposas/microbiologia , Mariposas/efeitos dos fármacos , Metabolômica , Larva/microbiologia , Larva/efeitos dos fármacos , Modelos Animais de Doenças , Hidrazinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Perfilação da Expressão Gênica
3.
Mycoses ; 67(8): e13776, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086009

RESUMO

OBJECTIVES: The investigation of Candida auris outbreaks is needed to provide insights into its population structure and transmission dynamics. We genotypically and phenotypically characterised a C. auris nosocomial outbreak occurred in Consorcio Hospital General Universitario de Valencia (CHGUV), Spain. METHODS: Data and isolates were collected from CHGUV from September 2017 (first case) until September 2021. Thirty-five isolates, including one from an environmental source, were randomly selected for whole genome sequencing (WGS), and the genomes were analysed along with a database with 335 publicly available genomes, assigning them to one of the five major clades. In order to identify polymorphisms associated with drug resistance, we used the fully susceptible GCA_003014415.1 strain as reference sequence. Known mutations in genes ERG11 and FKS1 conferring resistance to fluconazole and echinocandins, respectively, were investigated. Isolates were classified into aggregating or non-aggregating. RESULTS: All isolates belonged to clade III and were from an outbreak with a single origin. They clustered close to three publicly available genomes from a hospital from where the first patient was transferred, being the probable origin. The mutation VF125AL in the ERG11 gene, conferring resistance to fluconazole, was present in all the isolates and one isolate also carried the mutation S639Y in the FKS1 gene. All the isolates had a non-aggregating phenotype (potentially more virulent). CONCLUSIONS: Isolates are genotypically related and phenotypically identical but one with resistance to echinocandins, which seems to indicate that they all belong to an outbreak originated from a single isolate, remaining largely invariable over the years. This result stresses the importance of implementing infection control practices as soon as the first case is detected or when a patient is transferred from a setting with known cases.


Assuntos
Antifúngicos , Candida auris , Candidíase , Infecção Hospitalar , Surtos de Doenças , Farmacorresistência Fúngica , Genótipo , Fenótipo , Sequenciamento Completo do Genoma , Humanos , Espanha/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Candidíase/microbiologia , Candidíase/epidemiologia , Antifúngicos/farmacologia , Candida auris/genética , Candida auris/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Mutação , Masculino , Fluconazol/farmacologia , Feminino , Equinocandinas/farmacologia , Pessoa de Meia-Idade , Candida/genética , Candida/efeitos dos fármacos , Candida/classificação , Candida/isolamento & purificação
4.
Mycopathologia ; 189(4): 65, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990436

RESUMO

Candida auris is an emerging multi-drug resistant yeast that can cause life-threatening infections. A recent report clarified the ability of C. auris to form a biofilm with enhanced drug resistance properties in the host skin's deep layers. The formed biofilm may initiate further bloodstream spread and immune escape. Therefore, we propose that secreted chemicals from the biofilm may facilitate fungal pathogenesis. In response to this interaction, the host skin may develop potential defensive mechanisms. Comparative transcriptomics was performed on the host dermal cells in response to indirect interaction with C. auris biofilm through Transwell inserts compared to planktonic cells. Furthermore, the effect of antifungals including caspofungin and fluconazole was studied. The obtained data showed that the dermal cells exhibited different transcriptional responses. Kyoto Encyclopedia of Genes and Genomes and Reactome analyses identified potential defensive responses employed by the dermal cells and potential toxicity induced by C. auris. Additionally, our data indicated that the dominating toxic effect was mediated by ferroptosis; which was validated by qRT-PCR, cytotoxicity assay, and flow cytometry. On the other hand, the viability of C. auris biofilm was enhanced and accompanied by upregulation of MDR1, and KRE6 upon interaction with dermal cells; both genes play significant roles in drug resistance and biofilm maturation, respectively. This study for the first-time shed light on the dominating defensive responses of human dermal cells, microbe colonization site, to C. auris biofilm and its toxic effects. Further, it demonstrates how C. auris biofilm responds to the defensive mechanisms developed by the human dermal cells.


Assuntos
Antifúngicos , Biofilmes , Candida auris , Ferroptose , Perfilação da Expressão Gênica , Humanos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida auris/genética , Candida auris/efeitos dos fármacos , Antifúngicos/farmacologia , Ferroptose/efeitos dos fármacos , Fluconazol/farmacologia , Caspofungina/farmacologia , Pele/microbiologia , Interações Hospedeiro-Patógeno
5.
Arch Microbiol ; 206(8): 349, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992278

RESUMO

Candida auris, a rapidly spreading multi-drug-resistant fungus, is causing lethal infections under certain conditions globally. Baicalin (BE), an active ingredient extracted from the dried root of Scutellaria baicalensis Georgi, exhibits antifungal activity. However, studies have shown the distinctive advantages of Traditional Chinese medicine in combating fungal infections, while the effect of BE, an active ingredient extracted from the dried roots of Scutellaria baicalensis Georgi, on C. auris, remains unknown. Therefore, this study aims to evaluate the potential of BE as an antifungal agent against the emerging multidrug-resistant C. auris. Various assays and models, including microbroth dilution, time growth curve analysis, spot assays, adhesion tests, flocculation test, cell surface hydrophobicity assay, hydrolase activity assays, XTT assay, violet crystal assay, scanning electron microscope (SEM), confocal laser scanning microscope (CLSM), flow cytometry, Live/dead fluorescent staining, reactive oxygen species (ROS), cell wall assay, aggregation assay, porcine skin model, Galleria mellonella larvae (G. mellonella larvae) infection model, and reverse transcription-quantitative polymerase chain reaction (RT-PCR) were utilized to investigate how baicalein suppresses C. auris through possible multifaceted mechanisms. The findings indicate that BE strongly inhibited C. auris growth, adhesion, and biofilm formation. It also effectively reduced drug resistance and aggregation by disrupting the cell membrane and cell wall while reducing colonization and invasion of the host. Transcriptome analysis showed significant modulation in gene expression related to different virulence factors post-BE treatment. In conclusion, BE exhibits significant effectiveness against C. auris, suggesting its potential as a viable treatment option due to its multifaceted suppression mechanisms.


Assuntos
Antifúngicos , Candida auris , Flavanonas , Fatores de Virulência , Flavanonas/farmacologia , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Animais , Antifúngicos/farmacologia , Candida auris/efeitos dos fármacos , Candida auris/genética , Testes de Sensibilidade Microbiana , Scutellaria baicalensis/química , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Suínos , Larva/microbiologia , Mariposas/microbiologia , Biofilmes/efeitos dos fármacos , Extratos Vegetais/farmacologia , Flavonoides
6.
Emerg Microbes Infect ; 13(1): 2377584, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38989545

RESUMO

INTRODUCTION: Drug resistance to echinocandins, first-line drugs used to treat Candida auris infection, is rapidly emerging. However, the accumulation of mutations in genes other than FKS1 (before an isolate develops to resistance via FKS1 mutations), remains poorly understood. Methods: Four clinical cases and 29 isolates associated with the incremental process of echinocandin resistance were collected and analyzed using antifungal drug susceptibility testing and genome sequencing to assess the evolution of echinocandin resistance. FINDINGS: Six echinocandin minimum inhibitory concentration (MIC)-elevated C. auris strains and seven resistant strains were isolated from the urinary system of patients receiving echinocandin treatment. Meanwhile, phylogenetic analyses illustrated that the echinocandin-resistant strains were closely related to other strains in the same patient. Genomic data revealed that the echinocandin-resistant strains had FKS1 mutations. Furthermore, three categories (ECN-S/E/R) of non-synonymous mutant SNP genes (such as RBR3, IFF6, MKC1, MPH1, RAD2, and MYO1) in C. auris appeared to be associated with the three-stage-evolutionary model of echinocandin resistance in C. glabrata: cell wall stress, drug adaptation, and genetic escape (FKS mutation). INTERPRETATION: Echinocandin-resistant C. auris undergoes spatial and temporal phase changes closely related to echinocandin exposure, particularly in the urinary system. These findings suggest that FKS1 mutations mediate an evolutionary accumulation of echinocandin resistance followed by modulation of chromosome remodelling and DNA repair processes that ultimately lead to FKS1 hot spot mutations and the development of drug resistance. This study provides an in-depth exploration of the molecular pathways involved in the evolution of Candida auris echinocandin resistance.


Assuntos
Antifúngicos , Candida auris , Candidíase , Farmacorresistência Fúngica , Equinocandinas , Proteínas Fúngicas , Testes de Sensibilidade Microbiana , Mutação , Filogenia , Humanos , Equinocandinas/farmacologia , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candida auris/genética , Candida auris/efeitos dos fármacos , Evolução Molecular , Masculino , Feminino , Glucosiltransferases/genética , Candidíase Invasiva
7.
BMC Microbiol ; 24(1): 269, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030474

RESUMO

Candida auris (C. auris) is a yeast that has caused several outbreaks in the last decade. Cell wall chitin plays a primary role in the antifungal resistance of C. auris. Herein, we investigated the potential of chitinase immobilized with UiO-66 to act as a potent antifungal agent against C. auris. Chitinase was produced from Talaromyces varians SSW3 in a yield of 8.97 U/g dry substrate (ds). The yield was statistically enhanced to 120.41 U/g ds by using Plackett-Burman and Box-Behnken design. We synthesized a UiO-66 framework that was characterized by SEM, TEM, XRD, FTIR, a particle size analyzer, and a zeta sizer. The produced framework had a size of 70.42 ± 8.43 nm with a uniform cubic shape and smooth surface. The produced chitinase was immobilized on UiO-66 with an immobilization yield of 65% achieved after a 6 h loading period. The immobilization of UiO-66 increased the enzyme activity and stability, as indicated by the obtained Kd and T1/2 values. Furthermore, the hydrolytic activity of chitinase was enhanced after immobilization on UiO-66, with an increase in the Vmax and a decrease in the Km of 2- and 38-fold, respectively. Interestingly, the antifungal activity of the produced chitinase was boosted against C. auris by loading the enzyme on UiO-66, with an MIC50 of 0.89 ± 0.056 U/mL, compared to 5.582 ± 0.57 U/mL for the free enzyme. This study offers a novel promising alternative approach to combat the new emerging pathogen C. auris.


Assuntos
Antifúngicos , Candida auris , Quitinases , Testes de Sensibilidade Microbiana , Nanopartículas , Quitinases/farmacologia , Quitinases/metabolismo , Quitinases/química , Antifúngicos/farmacologia , Antifúngicos/química , Nanopartículas/química , Candida auris/efeitos dos fármacos , Candida auris/genética , Enzimas Imobilizadas/química , Talaromyces/efeitos dos fármacos , Talaromyces/química , Talaromyces/enzimologia , Farmacorresistência Fúngica Múltipla , Hidrólise , Quitina/química , Quitina/farmacologia
8.
Lancet Microbe ; 5(9): 100878, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39008997

RESUMO

BACKGROUND: The emerging fungal pathogen Candida auris poses a serious threat to global public health due to its worldwide distribution, multidrug resistance, high transmissibility, propensity to cause outbreaks, and high mortality. We aimed to characterise three unusual C auris isolates detected in Singapore, and to determine whether they constitute a novel clade distinct from all previously known C auris clades (I-V). METHODS: In this genotypic and phenotypic study, we characterised three C auris clinical isolates, which were cultured from epidemiologically unlinked inpatients at a large tertiary hospital in Singapore. The index isolate was detected in April, 2023. We performed whole-genome sequencing (WGS) and obtained hybrid assemblies of these C auris isolates. The complete genomes were compared with representative genomes of all known C auris clades. To provide a global context, 3651 international WGS data from the National Center for Biotechnology Information (NCBI) database were included in a high-resolution single nucleotide polymorphism (SNP) analysis. Antifungal susceptibility testing was done and antifungal resistance genes, mating-type locus, and chromosomal rearrangements were characterised from the WGS data of the three investigated isolates. We further implemented Bayesian logistic regression models to classify isolates into known clades and simulate the automatic detection of isolates belonging to novel clades as their WGS data became available. FINDINGS: The three investigated isolates were separated by at least 37 000 SNPs (range 37 000-236 900) from all existing C auris clades. These isolates had opposite mating-type allele and different chromosomal rearrangements when compared with their closest clade IV relatives. The isolates were susceptible to all tested antifungals. Therefore, we propose that these isolates represent a new clade of C auris, clade VI. Furthermore, an independent WGS dataset from Bangladesh, accessed via the NCBI Sequence Read Archive, was found to belong to this new clade. As a proof-of-concept, our Bayesian logistic regression model was able to flag these outlier genomes as a potential new clade. INTERPRETATION: The discovery of a new C auris clade in Singapore and Bangladesh in the Indomalayan zone, showing a close relationship to clade IV members most commonly found in South America, highlights the unknown genetic diversity and origin of C auris, particularly in under-resourced regions. Active surveillance in clinical settings, along with effective sequencing strategies and downstream analysis, will be essential in the identification of novel strains, tracking of transmission, and containment of adverse clinical effects of C auris infections. FUNDING: Duke-NUS Academic Medical Center Nurturing Clinician Researcher Scheme, and the Genedant-GIS Innovation Program.


Assuntos
Antifúngicos , Candida auris , Genoma Fúngico , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , Singapura/epidemiologia , Humanos , Antifúngicos/farmacologia , Candida auris/genética , Candida auris/efeitos dos fármacos , Genoma Fúngico/genética , Fenótipo , Candidíase/microbiologia , Candidíase/epidemiologia , Candidíase/tratamento farmacológico , Polimorfismo de Nucleotídeo Único/genética , Filogenia , Genômica/métodos , Genótipo , Farmacorresistência Fúngica/genética , Candida/genética , Candida/efeitos dos fármacos , Candida/isolamento & purificação
9.
Curr Opin Microbiol ; 80: 102510, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964276

RESUMO

Candida auris, a newly emergent fungal species, has been spreading in health care systems and causing life-threatening infections. Intact innate immunity is essential for protection against many invasive fungal infections, including candidiasis. Here, we highlight recent studies exploring immune interactions with C. auris, including investigations using animal models and ex vivo immune cells. We summarize innate immune studies comparing C. auris and the common fungal pathogen Candida albicans. We also discuss how structures of the C. auris cell wall influence immune recognition, the role of soluble host factors in immune recognition, and areas of future study.


Assuntos
Candida auris , Candidíase , Imunidade Inata , Humanos , Animais , Candidíase/imunologia , Candidíase/microbiologia , Candida auris/imunologia , Candida auris/genética , Candida albicans/imunologia , Parede Celular/imunologia , Interações Hospedeiro-Patógeno/imunologia , Candida/imunologia
10.
mBio ; 15(8): e0090824, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39041799

RESUMO

Candida auris is an emerging, multidrug-resistant fungal pathogen that poses a significant public health threat in healthcare settings. Despite yearly clinical cases rapidly increasing from 77 to 8,131 in the last decade, surveillance data on its distribution and prevalence remain limited. We implemented a novel assay for C. auris detection on a nationwide scale prospectively from September 2023 to March 2024, analyzing a total of 13,842 samples from 190 wastewater treatment plants across 41 U.S. states. Assays were extensively validated through comparison to other known assays and internal controls. Of these 190 wastewater treatment plants, C. auris was detected in the wastewater solids of 65 of them (34.2%) with 1.45% of all samples having detectable levels of C. auris nucleic-acids. Detections varied seasonally, with 2.00% of samples positive in autumn vs 1.01% in winter (P < 0.0001). The frequency of detection in wastewater was significantly associated with states having older populations (P < 0.001), sewersheds containing more hospitals (P < 0.0001), and sewersheds containing more nursing homes (P < 0.001). These associations are in agreement with known C. auris epidemiology. This nationwide study demonstrates the viability of wastewater surveillance for C. auris surveillance and further highlights the value of wastewater surveillance when clinical testing is constrained. IMPORTANCE: This study highlights the viability of wastewater surveillance when dealing with emerging pathogens. By leveraging an existing framework of wastewater surveillance, we reveal the widespread presence of C. auris in the United States. We further demonstrate that these wastewater detections are consistent with demographic factors relevant to C. auris epidemiology like age and number of hospitals or nursing homes. As C. auris and other pathogens continue to emerge, the low-cost and rapid nature of wastewater surveillance will provide public health officials with the information necessary to enact targeted prevention and control strategies.


Assuntos
Candida auris , Águas Residuárias , Águas Residuárias/microbiologia , Estados Unidos , Estudos Prospectivos , Candida auris/genética , Humanos , Estações do Ano , Candidíase/microbiologia , Candidíase/epidemiologia
11.
Mycologia ; 116(5): 673-693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024116

RESUMO

Candida auris is an emerging drug-resistant pathogen associated with high mortality rates. This study aimed to explore the metabolic alterations and associated pathogenesis and drug resistance in fluconazole-treated Candida auris-host cell interaction. Compared with controls, secreted metabolites from fluconazole-treated C. auris and fluconazole-treated C. auris-host cell co-culture demonstrated notable anti-Candida activity. Fluconazole caused significant reductions in C. auris cell numbers and aggregated phenotype. Metabolites produced by C. auris with potential fungal colonization, invasion, and host immune evasion effects were identified. Metabolites known to enhance biofilm formation produced during C. auris-host cell interaction were inhibited by fluconazole. Fluconazole enhanced the production of metabolites with biofilm inhibition activity, including behenyl alcohol and decanoic acid. Metabolites with potential Candida growth inhibition activity such as 2-palmitoyl glycerol, 1-tetradecanol, and 1-nonadecene were activated by fluconazole. Different patterns of proinflammatory cytokine expression presented due to fluconazole concentration and host cell type (fibroblasts versus macrophages). This highlights the immune response's complexity, emphasizing the necessity for additional research to comprehend cell-type-specific responses to antifungal therapies. Both host cell interaction and fluconazole treatment increased the expression of CDR1 and ERG11 genes, both associated with drug resistance. This study provides insights into pathogenesis in C. auris due to host cell interaction and fluconazole treatment. Understanding these interactions is crucial for enhancing fluconazole sensitivity and effectively combating C. auris.


Assuntos
Antifúngicos , Biofilmes , Candida auris , Farmacorresistência Fúngica , Fluconazol , Macrófagos , Fluconazol/farmacologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Humanos , Candida auris/efeitos dos fármacos , Candida auris/genética , Candida auris/metabolismo , Macrófagos/microbiologia , Macrófagos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Fibroblastos/microbiologia , Interações Hospedeiro-Patógeno , Candidíase/microbiologia , Técnicas de Cocultura , Citocinas/metabolismo
12.
PLoS Pathog ; 20(7): e1012362, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38976759

RESUMO

Filamentous cell growth is a vital property of fungal pathogens. The mechanisms of filamentation in the emerging multidrug-resistant fungal pathogen Candida auris are poorly understood. Here, we show that exposure of C. auris to glycerol triggers a rod-like filamentation-competent (RL-FC) phenotype, which forms elongated filamentous cells after a prolonged culture period. Whole-genome sequencing analysis reveals that all RL-FC isolates harbor a mutation in the C2H2 zinc finger transcription factor-encoding gene GFC1 (Gfc1 variants). Deletion of GFC1 leads to an RL-FC phenotype similar to that observed in Gfc1 variants. We further demonstrate that GFC1 mutation causes enhanced fatty acid ß-oxidation metabolism and thereby promotes RL-FC/filamentous growth. This regulation is achieved through a Multiple Carbon source Utilizer (Mcu1)-dependent mechanism. Interestingly, both the evolved RL-FC isolates and the gfc1Δ mutant exhibit an enhanced ability to colonize the skin. Our results reveal that glycerol-mediated GFC1 mutations are beneficial during C. auris skin colonization and infection.


Assuntos
Candida auris , Candidíase , Proteínas Fúngicas , Mutação , Candidíase/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candida auris/genética , Candida auris/metabolismo , Camundongos , Animais , Glicerol/metabolismo , Adaptação Fisiológica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação Fúngica da Expressão Gênica , Humanos
13.
J Microbiol Biotechnol ; 34(7): 1365-1375, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38881183

RESUMO

The rise of Candida auris, a multidrug-resistant fungal pathogen, across more than 40 countries, has signaled an alarming threat to global health due to its significant resistance to existing antifungal therapies. Characterized by its rapid spread and robust drug resistance, C. auris presents a critical challenge in managing infections, particularly in healthcare settings. With research on its biological traits and genetic basis of virulence and resistance still in the early stages, there is a pressing need for a concerted effort to understand and counteract this pathogen. This review synthesizes current knowledge on the epidemiology, biology, genetic manipulation, pathogenicity, diagnostics, and resistance mechanisms of C. auris, and discusses future directions in research and therapeutic development. By exploring the complexities surrounding C. auris, we aim to underscore the importance of advancing research to devise effective control and treatment strategies.


Assuntos
Antifúngicos , Candida auris , Candidíase , Farmacorresistência Fúngica Múltipla , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Farmacorresistência Fúngica Múltipla/genética , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Candida auris/genética , Candida auris/efeitos dos fármacos , Virulência , Animais , Candida/efeitos dos fármacos , Candida/genética , Candida/patogenicidade
14.
Anal Chem ; 96(23): 9424-9429, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38825761

RESUMO

Candida auris (C. auris) was first discovered in Japan in 2009 and has since spread worldwide. It exhibits strong transmission ability, high multidrug resistance, blood infectivity, and mortality rates. Traditional diagnostic techniques for C. auris have shortcomings, leading to difficulty in its timely diagnosis and identification. Therefore, timely and accurate diagnostic assays for clinical samples are crucial. We developed a novel, rapid recombinase-aided amplification (RAA) assay targeting the 18S rRNA, ITS1, 5.8S rRNA, ITS2, and 28S rRNA genes for C. auris identification. This assay can rapidly amplify DNA at 39 °C in 20 min. The analytical sensitivity and specificity were evaluated. From 241 clinical samples collected from pediatric inpatients, none were detected as C. auris-positive. We then prepared simulated clinical samples by adding 10-fold serial dilutions of C. auris into the samples to test the RAA assay's efficacy and compared it with that of real-time PCR. The assay demonstrated an analytical sensitivity of 10 copies/µL and an analytical specificity of 100%. The lower detection limit of the RAA assay for simulated clinical samples was 101 CFU/mL, which was better than that of real-time PCR (102-103 CFU/mL), demonstrating that the RAA assay may have a better detection efficacy for clinical samples. In summary, the RAA assay has high sensitivity, specificity, and detection efficacy. This assay is a potential new method for detecting C. auris, with simple reaction condition requirements, thus helping to manage C. auris epidemics.


Assuntos
Candida auris , Técnicas de Amplificação de Ácido Nucleico , Recombinases , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Recombinases/metabolismo , Candida auris/genética , Candidíase/diagnóstico , Candidíase/microbiologia , Limite de Detecção , DNA Fúngico/genética , DNA Fúngico/análise
15.
Microbiol Spectr ; 12(8): e0012724, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38912805

RESUMO

Candida auris, an emerging fungal pathogen, predominately colonizes human skin leading to serious invasive infections in humans. Though it is assumed that skin colonization can lead to invasive infection, dissemination potential of C. auris from skin to internal organs is still unknown. In this study, immunocompetent and immunocompromised mouse models of intradermal skin infection were used to compare the dissemination potential of C. auris to internal organs. Our results suggest that C. auris persists in the skin tissue of both immunocompetent and immunocompromised infected mice even at 30 days post-infection. Furthermore, C. auris can readily disseminate from skin tissue to internal organs such as the spleen and kidney as early as 24 h post-infection and was detected until 30 days post-infection. Taken together, our findings for the first time indicate that murine skin intradermally infected with C. auris can readily disseminate to internal organs and cause invasive infections. IMPORTANCE: Candida auris is a multi-drug-resistant emerging fungal pathogen colonizes the human skin and causes life-threatening infections. However, whether C. auris can disseminate from the skin to internal organs is unclear. Understanding the dissemination potential of C. auris in both immunocompetent and immunocompromised hosts is necessary to monitor susceptible individuals and to develop novel approaches to prevent and treat this emerging fungal pathogen. Using mouse models of intradermal C. auris skin infection, our findings report a novel observation that mice skin intradermally infected with C. auris can readily disseminate to internal organs leading to systemic disease. These findings help explain the colonization, persistence, and dissemination potential of C. auris in immunocompetent and immunocompromised hosts and reveal that skin infection is a potential source of invasive infection.


Assuntos
Candida auris , Candidíase , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Pele , Animais , Camundongos , Candidíase/microbiologia , Candidíase/imunologia , Pele/microbiologia , Candida auris/genética , Humanos , Feminino , Imunocompetência
17.
Microbiol Spectr ; 12(7): e0354023, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38842332

RESUMO

Candida auris, initially identified in 2009, has rapidly become a critical concern due to its antifungal resistance and significant mortality rates in healthcare-associated outbreaks. To date, whole-genome sequencing (WGS) has identified five unique clades of C. auris, with some strains displaying resistance to all primary antifungal drug classes. In this study, we presented the first WGS analysis of C. auris from Bangladesh, describing its origins, transmission dynamics, and antifungal susceptibility testing (AFST) profile. Ten C. auris isolates collected from hospital settings in Bangladesh were initially identified by CHROMagar Candida Plus, followed by VITEK2 system, and later sequenced using Illumina NextSeq 550 system. Reference-based phylogenetic analysis and variant calling pipelines were used to classify the isolates in different clades. All isolates aligned ~90% with the Clade I C. auris B11205 reference genome. Of the 10 isolates, 8 were clustered with Clade I isolates, highlighting a South Asian lineage prevalent in Bangladesh. Remarkably, the remaining two isolates formed a distinct cluster, exhibiting >42,447 single-nucleotide polymorphism differences compared to their closest Clade IV counterparts. This significant variation corroborates the emergence of a sixth clade (Clade VI) of C. auris in Bangladesh, with potential for international transmission. AFST results showed that 80% of the C. auris isolates were resistant to fluconazole and voriconazole, whereas Clade VI isolates were susceptible to azoles, echinocandins, and pyrimidine analogue. Genomic sequencing revealed ERG11_Y132F mutation conferring azole resistance while FCY1_S70R mutation found inconsequential in describing 5-flucytosine resistance. Our study underscores the pressing need for comprehensive genomic surveillance in Bangladesh to better understand the emergence, transmission dynamics, and resistance profiles of C. auris infections. Unveiling the discovery of a sixth clade (Clade VI) accentuates the indispensable role of advanced sequencing methodologies.IMPORTANCECandida auris is a nosocomial fungal pathogen that is commonly misidentified as other Candida species. Since its emergence in 2009, this multidrug-resistant fungus has become one of the five urgent antimicrobial threats by 2019. Whole-genome sequencing (WGS) has proven to be the most accurate identification technique of C. auris which also played a crucial role in the initial discovery of this pathogen. WGS analysis of C. auris has revealed five distinct clades where isolates of each clade differ among themselves based on pathogenicity, colonization, infection mechanism, as well as other phenotypic characteristics. In Bangladesh, C. auris was first reported in 2019 from clinical samples of a large hospital in Dhaka city. To understand the origin, transmission dynamics, and antifungal-resistance profile of C. auris isolates circulating in Bangladesh, we conducted a WGS-based surveillance study on two of the largest hospital settings in Dhaka, Bangladesh.


Assuntos
Antifúngicos , Candida auris , Candidíase , Testes de Sensibilidade Microbiana , Filogenia , Sequenciamento Completo do Genoma , Bangladesh/epidemiologia , Humanos , Antifúngicos/farmacologia , Candidíase/microbiologia , Candidíase/epidemiologia , Candida auris/genética , Candida auris/efeitos dos fármacos , Candida auris/isolamento & purificação , Farmacorresistência Fúngica , Genoma Fúngico , Polimorfismo de Nucleotídeo Único , Candida/genética , Candida/efeitos dos fármacos , Candida/classificação , Candida/isolamento & purificação , Fluconazol/farmacologia , Feminino
18.
Med Mycol ; 62(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38877671

RESUMO

Candida auris is an emerging fungal pathogen associated with multi-drug resistance rates and widespread outbreaks in hospitals and healthcare units worldwide. Sequencing studies have revealed that different clonal lineages of the fungus seem to be prevalent among distinct geographical sites. The first case of C. auris in Northern Greece was reported in Thessaloniki in October 2022, almost 2 years after the first isolation in Greece (Athens 2019). The Mycology Laboratory of the Medical School of Aristotle University of Thessaloniki stands as the reference laboratory for fungal diseases in Northern Greece and a meticulous search for the yeast, in plenty of suspicious samples, has been run since 2019 in the Lab as well as a retrospective analysis of all its yeasts' collection, back to 2008, with negative results for the presence of C. auris. Here, are presented the findings concerning the outbreak and surveillance of C. auris in Northern Greece, mainly the region of Thessaloniki and the broader area of Macedonia, from October 2022 until August 2023. The isolates from Northern Greece continue to fall in Clade I and present with an almost equal and stable sensitivity profile until now.


The study concerns the outbreak of Candida auris in Northern Greece since October 2022 and the effort for surveillance and epidemiological monitoring. All isolates continue to fall in Clade I and present with an almost equal and stable sensitivity profile till now.


Assuntos
Candida auris , Candidíase , Surtos de Doenças , Monitoramento Epidemiológico , Grécia/epidemiologia , Humanos , Candidíase/epidemiologia , Candidíase/microbiologia , Candida auris/genética , Candida auris/isolamento & purificação , Estudos Retrospectivos , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Masculino , Farmacorresistência Fúngica Múltipla , Candida/isolamento & purificação , Candida/classificação , Candida/genética , Feminino
19.
J Clin Microbiol ; 62(7): e0052524, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38888304

RESUMO

Candida auris is a multidrug-resistant fungal pathogen with a propensity to colonize humans and persist on environmental surfaces. C. auris invasive fungal disease is being increasingly identified in acute and long-term care settings. We have developed a prototype cartridge-based C. auris surveillance assay (CaurisSurV cartridge; "research use only") that includes integrated sample processing and nucleic acid amplification to detect C. auris from surveillance skin swabs in the GeneXpert instrument and is designed for point-of-care use. The assay limit of detection (LoD) in the skin swab matrix was 10.5 and 14.8 CFU/mL for non-aggregative (AR0388) and aggregative (AR0382) strains of C. auris, respectively. All five known clades of C. auris were detected at 2-3-5× (31.5-52.5 CFU/mL) the LoD. The assay was validated using a total of 85 clinical swab samples banked at two different institutions (University of California Los Angeles, CA and Wadsworth Center, NY). Compared to culture, sensitivity was 96.8% (30/31) and 100% (10/10) in the UCLA and Wadsworth cohorts, respectively, providing a combined sensitivity of 97.5% (40/41), and compared to PCR, the combined sensitivity was 92% (46/50). Specificity was 100% with both clinical (C. auris negative matrix, N = 31) and analytical (non-C. auris strains, N = 32) samples. An additional blinded study with N = 60 samples from Wadsworth Center, NY yielded 97% (29/30) sensitivity and 100% (28/28) specificity. We have developed a completely integrated, sensitive, specific, and 58-min prototype test, which can be used for routine surveillance of C. auris and might help prevent colonization and outbreaks in acute and chronic healthcare settings. IMPORTANCE: This study has the potential to offer a better solution to healthcare providers at hospitals and long-term care facilities in their ongoing efforts for effective and timely control of Candida auris infection and hence quicker response for any potential future outbreaks.


Assuntos
Candida auris , Candidíase , Sensibilidade e Especificidade , Humanos , Candidíase/diagnóstico , Candidíase/microbiologia , Candida auris/genética , Controle de Infecções/métodos , Monitoramento Epidemiológico , Pele/microbiologia , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Candida/isolamento & purificação , Candida/genética , Candida/classificação
20.
Mycoses ; 67(6): e13752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38880933

RESUMO

BACKGROUND: Candida auris is an emerging multidrug-resistant yeast, frequently causing outbreaks in health care facilities. The pathogen persistently colonises human skin and inanimate surfaces such as catheters, aiding to its spread. Moreover, colonisation is a risk factor to develop invasive infection. OBJECTIVES: We investigated 61 C. auris strains isolated from non-sterile human body sites (n = 53) and the hospital environment (n = 8), originating from four different centres in a single Brazilian state. MATERIALS AND METHODS: Antifungal susceptibility testing (AFST) against common antifungals was performed, and resistance-associated genes were evaluated. Genetic relatedness was investigated with short tandem repeat (STR) genotyping and validated with whole-genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis. RESULTS: Antifungal susceptibility testing demonstrated that all isolates were susceptible to azoles, echinocandins and amphotericin B. No mutations were detected in ERG11 and FKS1 genes. With STR typing, isolates were allocated to clade IV and appeared closely related. This was confirmed by WGS SNP analysis of 6 isolates, which demonstrated a maximal difference of only 41 SNPs between these strains. Furthermore, the Brazilian isolates formed a distinct autochthonous branch within clade IV, excluding recent introductions from outside the country. A molecular clock analysis of clade IV isolates from various countries suggests that early in the previous century there was a unique event causing environmental spread of a C. auris ancestor throughout the Latin-American continent, followed by human introduction during the last decades. CONCLUSION: We report the emergence of C. auris patient colonisation in multiple centres by fluconazole-susceptible clade IV close-related strains in Pernambuco State, Brazil.


Assuntos
Antifúngicos , Azóis , Candida auris , Candidíase , Surtos de Doenças , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único , Humanos , Brasil/epidemiologia , Antifúngicos/farmacologia , Candidíase/microbiologia , Candidíase/epidemiologia , Azóis/farmacologia , Candida auris/genética , Candida auris/efeitos dos fármacos , Sequenciamento Completo do Genoma , Genótipo , Feminino , Masculino , Farmacorresistência Fúngica/genética , Adulto , Pessoa de Meia-Idade , Candidíase Invasiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...