Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 982
Filtrar
1.
Astrobiology ; 24(7): 669-683, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979620

RESUMO

Mars has been exposed to ionizing radiation for several billion years, and as part of the search for life on the Red Planet, it is crucial to understand the impact of radiation on biosignature preservation. Several NASA and ESA missions are looking for evidence of ancient life in samples collected at depths shallow enough that they have been impacted by galactic cosmic rays (GCRs). In this study, we exposed a diverse set of Mars analog samples to 0.9 Megagray (MGy) of gamma radiation to mimic 15 million years of exposure on the Martian surface. We measured no significant impact of GCRs on the total organic carbon (TOC) and bulk stable C isotopes in samples with initial TOC concentration > 0.1 wt. %; however, diagnostic molecular biosignatures presented a wide range of degradation that didn't correlate to factors like mineralogy, TOC, water content, and surface area. Exposure dating suggests that the surface of Gale crater has been irradiated at more than five times our dose, yet using this relatively low dose and "best-case scenario" geologically recalcitrant biomarkers, large and variable losses were nevertheless evident. Our results empasize the importance of selecting sampling sites at depth or recently exposed at the Martian surface.


Assuntos
Biomarcadores , Argila , Radiação Cósmica , Meio Ambiente Extraterreno , Marte , Argila/química , Biomarcadores/análise , Meio Ambiente Extraterreno/química , Carbonatos/química , Carbonatos/análise , Exobiologia/métodos , Silicatos de Alumínio/química , Isótopos de Carbono/análise
2.
Astrobiology ; 24(7): 734-753, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985714

RESUMO

Jotun springs in Svalbard, Norway, is a rare warm environment in the Arctic that actively forms travertine. In this study, we assessed the microbial ecology of Jotun's active (aquatic) spring and dry spring transects. We evaluated the microbial preservation potential and mode, as well as the astrobiological relevance of the travertines to marginal carbonates mapped at Jezero Crater on Mars (the Mars 2020 landing site). Our results revealed that microbial communities exhibited spatial dynamics controlled by temperature, fluid availability, and geochemistry. Amorphous carbonates and silica precipitated within biofilm and on the surface of filamentous microorganisms. The water discharged at the source is warm, with near neutral pH, and undersaturated in silica. Hence, silicification possibly occurred through cooling, dehydration, and partially by a microbial presence or activities that promote silica precipitation. CO2 degassing and possible microbial contributions induced calcite precipitation and travertine formation. Jotun revealed that warm systems that are not very productive in carbonate formation may still produce significant carbonate buildups and provide settings favorable for fossilization through silicification and calcification. Our findings suggest that the potential for amorphous silica precipitation may be essential for Jezero Crater's marginal carbonates because it significantly increases the preservation potential of putative martian organisms.


Assuntos
Exobiologia , Fontes Termais , Regiões Árticas , Fontes Termais/microbiologia , Fontes Termais/química , Marte , Dióxido de Silício/química , Svalbard , Carbonatos/química , Carbonatos/análise , Microbiota , Temperatura , Biofilmes
3.
Geobiology ; 22(4): e12609, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38958391

RESUMO

Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post-depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturation in situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47 values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth-based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite-each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (µm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments.


Assuntos
Isótopos de Carbono , Carbonatos , Sedimentos Geológicos , Lagos , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Lagos/microbiologia , Lagos/química , Isótopos de Carbono/análise , Carbonatos/química , Carbonatos/análise , New York , Microbiota , Ciclo do Carbono , Bactérias/metabolismo , Estações do Ano
4.
PLoS One ; 19(6): e0302944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38857272

RESUMO

The uniaxial compressive strength (UCS) and elasticity modulus (E) of intact rock are two fundamental requirements in engineering applications. These parameters can be measured either directly from the uniaxial compressive strength test or indirectly by using soft computing predictive models. In the present research, the UCS and E of intact carbonate rocks have been predicted by introducing two stacking ensemble learning models from non-destructive simple laboratory test results. For this purpose, dry unit weight, porosity, P-wave velocity, Brinell surface harnesses, UCS, and static E were measured for 70 carbonate rock samples. Then, two stacking ensemble learning models were developed for estimating the UCS and E of the rocks. The applied stacking ensemble learning method integrates the advantages of two base models in the first level, where base models are multi-layer perceptron (MLP) and random forest (RF) for predicting UCS, and support vector regressor (SVR) and extreme gradient boosting (XGBoost) for predicting E. Grid search integrating k-fold cross validation is applied to tune the parameters of both base models and meta-learner. The results demonstrate the generalization ability of the stacking ensemble method in the comparison of base models in the terms of common performance measures. The values of coefficient of determination (R2) obtained from the stacking ensemble are 0.909 and 0.831 for predicting UCS and E, respectively. Similarly, the stacking ensemble yielded Root Mean Squared Error (RMSE) values of 1.967 and 0.621 for the prediction of UCS and E, respectively. Accordingly, the proposed models have superiority in the comparison of SVR and MLP as single models and RF and XGBoost as two representative ensemble models. Furthermore, sensitivity analysis is carried out to investigate the impact of input parameters.


Assuntos
Carbonatos , Força Compressiva , Módulo de Elasticidade , Carbonatos/química , Carbonatos/análise , Porosidade , Modelos Teóricos
5.
Glob Chang Biol ; 30(6): e17371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863267

RESUMO

As the balance between erosional and constructive processes on coral reefs tilts in favor of framework loss under human-induced local and global change, many reef habitats worldwide degrade and flatten. The resultant generation of coral rubble and the beds they form can have lasting effects on reef communities and structural complexity, threatening the continuity of reef ecological functions and the services they provide. To comprehensively capture changing framework processes and predict their evolution in the context of climate change, heavily colonized rubble fragments were exposed to ocean acidification (OA) conditions for 55 days. Controlled diurnal pH oscillations were incorporated in the treatments to account for the known impact of diel carbonate chemistry fluctuations on calcification and dissolution response to OA. Scenarios included contemporary pH (8.05 ± 0.025 diel fluctuation), elevated OA (7.90 ± 0.025), and high OA (7.70 ± 0.025). We used a multifaceted approach, combining chemical flux analyses, mass alteration measurements, and computed tomography scanning images to measure total and chemical bioerosion, as well as chemically driven secondary calcification. Rates of net carbonate loss measured in the contemporary conditions (1.36 kg m-2 year-1) were high compared to literature and increased in OA scenarios (elevated: 1.84 kg m-2 year-1 and high: 1.59 kg m-2 year-1). The acceleration of these rates was driven by enhanced chemical dissolution and reduced secondary calcification. Further analysis revealed that the extent of these changes was contingent on the density of the coral skeleton, in which the micro- and macroborer communities reside. Findings indicated that increased mechanical bioerosion rates occurred in rubble with lower skeletal density, which is of note considering that corals form lower-density skeletons under OA. These direct and indirect effects of OA on chemical and mechanical framework-altering processes will influence the permanence of this crucial habitat, carrying implications for biodiversity and reef ecosystem function.


Assuntos
Antozoários , Mudança Climática , Recifes de Corais , Água do Mar , Antozoários/fisiologia , Antozoários/química , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Calcificação Fisiológica , Carbonatos/química , Carbonatos/análise , Oceanos e Mares , Acidificação dos Oceanos
6.
Mar Environ Res ; 198: 106496, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640691

RESUMO

The carbonate chemistry in river-dominated marginal seas is highly heterogeneous, and there is ongoing debate regarding the definition of atmospheric CO2 source or sink. On this basis, we investigated the carbonate chemistry and air-sea CO2 fluxes in a hotspot estuarine area: the Changjiang Estuary during winter and summer. The spatial characteristics of the carbonate system were influenced by water mixing of three end-members in winter, including the Changjiang freshwater with low total alkalinity (TA) concentration, the less saline Yellow Sea Surface Water with high TA, and the saline East China Sea (ECS) offshore water with moderate TA. While in summer with increased river discharge, the carbonate system was regulated by simplified two end-member mixing between the Changjiang freshwater and the ECS offshore water. By performing the end-member mixing model on DIC variations in the river plume region, significant biological addition of DIC was found in winter with an estimation of -120 ± 113 µmol kg-1 caused by wintertime organic matter remineralization from terrestrial source. While this biological addition of DIC shifted to DIC removal due to biological production in summer supported by the increased nutrient loading from Changjiang River. The pCO2 dynamics in the river plume and the ECS offshore were both subjected to physical mixing of freshwater and seawater, whether in winter and summer. In the inner estuary without horizontal mixing, the pCO2 dynamics were mainly influenced by biological uptake in winter and temperature in summer. The inner estuary, the river plume, and the ECS offshore were sources of atmospheric CO2, with their contributions varying seasonally. The Changjiang runoff enhanced the inner estuary's role as a CO2 source in summer, while intensive biological uptake reduced the river plume's contribution.


Assuntos
Dióxido de Carbono , Carbonatos , Monitoramento Ambiental , Estuários , Rios , Estações do Ano , Água do Mar , Dióxido de Carbono/análise , Carbonatos/análise , China , Rios/química , Água do Mar/química , Poluentes Químicos da Água/análise , Poluentes Atmosféricos/análise
7.
Environ Monit Assess ; 196(4): 398, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530475

RESUMO

The current study was conducted within the context of the Holocene era in Sebkha El-Guettiate, located in southeastern Tunisia. The aim was to determine the factors influencing the geochemical and mineralogical composition of sediments and to elucidate the sedimentary characteristics of the Holocene within the Sebkha core. We examined a sediment core extending 100 cm from this Sebkha, subjecting it to comprehensive analysis to uncover its sedimentological, mineralogical, and geochemical properties. Several techniques were employed to strengthen and validate the connections between geochemical and mineralogical analyses, including X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and infrared (IR) spectroscopy, among others. Furthermore, statistical analyses utilizing principal component analysis (PCA) were applied to the results of the geochemical and mineralogical studies, aiding in the identification of patterns and relationships. A comprehensive mineralogical assessment of the core's sediments revealed the presence and interpretation of carbonate minerals, evaporite minerals, and detrital minerals. Through the application of infrared (IR) spectrometer techniques to all sediment samples, we gained insight into the mineralogical components and the distribution of key elements such as quartz, kaolinite, calcite, feldspar, and organic carbon. The geochemical composition demonstrated a clear dominance of silica (SiO2), accompanied by fluctuations in carbonate percentages (CaCO3). The prominent major elements, primarily magnesium (Mg) and calcium (Ca) originating from dolomitization, sodium (Na) and chlorine (Cl) from halite, and calcium (Ca) from gypsum, exhibited varying levels. Results from Rock-Eval 6 pyrolysis indicated that the organic matter within the sediments is generally a mixture of terrestrial and aquatic origins. This study provides practical information that underscores the diverse origins contributing to Sebkha sediment formation, often influenced by saline systems.


Assuntos
Cálcio , Dióxido de Silício , Cálcio/análise , Dióxido de Silício/análise , Tunísia , Monitoramento Ambiental , Minerais/análise , Carbonato de Cálcio/análise , Carbonatos/análise
8.
Environ Geochem Health ; 46(4): 134, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483664

RESUMO

Familiarity with the chemical characteristics of regional groundwater can provide important guidance and reference for the development of regional groundwater exploitation. Jianghan Plain has been reported to have high groundwater total hardness (TH), resulting in the inability of local groundwater to be directly used as drinking water. In order to explore the causes of high TH, the paper analyzed the hydrochemical characteristics of shallow groundwater in Jianghan Plain combined with software of SPSS, JMP, and PHEEQC. The results showed that the cations in the groundwater in the area were mainly Ca2+, while the anions were mainly HCO3-. 20% of groundwater exceed the China national guideline for TH (i.e., 450 mg/L). The groundwater chemistry in the study area was controlled by three main factors of dissolution of carbonate rocks, human activities, and redox conditions, among which the interaction between water and rock had the greatest impact. The water carbonate rock interaction within Jianghan Plain was affected by various factors such as water flow and aquifers and showed a gradually weakening trend from west to east. This work not only strengthened the understanding of the causes of the high TH of groundwater in the region, but also provided reference value for regional groundwater environmental management.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Dureza , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Qualidade da Água , Água Potável/análise , China , Carbonatos/análise
9.
Environ Sci Pollut Res Int ; 31(10): 15716-15732, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305969

RESUMO

Tongling is a significant non-ferrous metal mining city in China, which produces waste that negatively impacts the area's water environment. It is essential to comprehend the hydrochemical properties and formation processes of groundwater to safeguard and utilize it efficiently. We explored major ions, strontium, and its isotopes in water and river-bottom samples from the northern (i.e., A-A' section) and southern (i.e., B-B' section) areas. The hydrochemical facies show the mining activities have a greater impact on surface water than on groundwater. Groundwater hydrochemical formation results from several factors, with water-rock interaction and ion exchange being primary. Additionally, the dissolution of calcite, dolomite, and feldspar, oxidation of pyrite, and hydrolysis of carbonate minerals also impact the formation of groundwater chemistry. Our analysis of strontium and its isotopes indicates that carbonate dissolution primarily occurred in the recharge area; the runoff from the recharge to the discharge area results in the dissolution of certain silicate rocks; calcite dissolution sources account for > 70% contribution in both surface water and groundwater water-rock interactions, whereas silicate rock dissolution sources and dolomite dissolution sources account for < 30%. Due to changed order of dissolved carbonate and silicate minerals during groundwater flow, the distribution of strontium and its isotopes in the A-A' section is opposite to that in the B-B' section. The findings provide a basis for developing, utilizing, managing, and protecting groundwater resources, especially in similar mining areas.


Assuntos
Água Subterrânea , Magnésio , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Carbonato de Cálcio/análise , Água Subterrânea/química , Mineração , Isótopos de Estrôncio/análise , Minerais/análise , Estrôncio/análise , Carbonatos/análise , Isótopos/análise , Silicatos/análise , Água/análise
10.
Astrobiology ; 24(2): 138-150, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38393829

RESUMO

Most of the chemical and physical interactions of interest to the astrobiology community are influenced by the mineralogy of the systems under consideration. Often, this mineralogy occurs in sediment or sediment-like aqueous microenvironments in which the early minerals differ dramatically from the mature version that results from a long diagenesis, which are tied to complex interactions of pH, redox state, concentration, and temperature. This interconnectedness is difficult to reproduce in a laboratory setting yet is essential to understanding how the physical and chemical demands of living systems alter and are altered by their geological context. We present a facile means for producing precipitated mineral analogues within a microchannel and demonstrate its analytical efficacy through instrumental and modeling techniques. We show that amorphous, early-stage analogues of iron sulfide, iron carbonate, and iron phosphate can be formed at the boundary between flowing solutions, modeled on the microscale, and analyzed by standard instrumental techniques such as scanning electron microscopy/energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy.


Assuntos
Compostos Ferrosos , Minerais , Fosfatos , Minerais/química , Carbonatos/análise , Ferro/química
11.
Mar Pollut Bull ; 198: 115843, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039577

RESUMO

Accurately constraining the natural variability of the carbonate system is essential for evaluating long-term changes in coastal areas, which result from the absorption of anthropogenic CO2. This is particularly important given the significant variation in physical and biological processes in these regions. In this regard, the analysis of surface carbonate chemistry in the Yellow Sea was conducted using discrete seawater samples obtained from the Socheongcho Ocean Research Station (37.423°N, 124.738°E) between 2017 and 2022. Our bottle data and sensor pH measurements revealed considerable seasonal variations of aragonite saturation state (ΩAR), typically ranging from 1.6 to 3.9. These variations are particularly pronounced during the summer and early winter. Our dataset serves as a baseline for understanding the long-term changes in ocean acidification in the Yellow Sea, the complex biogeochemical processes in coastal areas, and their impact on ocean acidification.


Assuntos
Carbonato de Cálcio , Água do Mar , Carbonato de Cálcio/análise , Concentração de Íons de Hidrogênio , Dióxido de Carbono/análise , Carbonatos/análise , Oceanos e Mares
12.
J Hazard Mater ; 465: 133174, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38086299

RESUMO

Microbial induced carbonate precipitation (MICP) can immobilize metals and reduce their bioavailability. However, little is known about the immobilization mechanism of Cd in the presence of soil cations and the triggered gene expression and metabolic pathways in paddy soil. Thus, microcosmic experiments were conducted to study the fractionation transformation of Cd and metatranscriptome analysis. Results showed that bioavailable Cd decreased from 0.62 to 0.29 mg/kg after 330 d due to the MICP immobilization. This was ascribed to the increase in carbonate bound, Fe-Mn oxides bound, and residual Cd. The underlying immobilization mechanisms could be attributed to the formation of insoluble Cd-containing precipitates, the complexation and lattice substitution with carbonate and Fe, Mn and Al (hydr)oxides, and the adsorption on functional group on extracellular polymers of cell. During the MICP immobilization process, up-regulated differential expression urease genes were significantly enriched in the paddy soil, corresponding to the arginine biosynthesis, purine metabolism and atrazine degradation. The metabolic pathway of bacterial chemotaxis, flagellum assembly, and peptidoglycan biosynthesis and the expression of cadA gene related to Cd excretion enhanced Cd resistance of soil microbiome. Therefore, this study provided new insights into the immobilization mechanisms of Cd in paddy soils through ureolysis-based MICP process.


Assuntos
Oryza , Poluentes do Solo , Solo , Cádmio/metabolismo , Poluentes do Solo/análise , Carbonatos/análise , Cátions , Óxidos/análise , Oryza/metabolismo , Carbonato de Cálcio/metabolismo
13.
Arch Oral Biol ; 158: 105868, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070323

RESUMO

OBJECTIVES: To investigate the chemical and mechanical properties of intraradicular dentin submitted to radiotherapy. MATERIALS AND METHODS: Sixteen mandibular incisors were divided into two groups (n = 8): non-irradiated and irradiated. The irradiated teeth were obtained from head and neck radiotherapy patients, with a total dose ranging from 70.2 to 72 Gy divided into 1.8 Gy daily. After sample preparation, intraradicular dentin slices of each root third were evaluated by Raman spectroscopy, energy dispersive spectroscopy and Knoop microhardness test. Data were analyzed by Two-way ANOVA and Tukey's test (α = 0.05). RESULTS: In Raman spectroscopy, carbonate and amide III showed a significant difference for irradiation and third (carbonate p = 0.021 and p < 0.001; amide III p < 0.001 and p = 0.001, respectively). For amide I, there was a significant difference for third (p < 0.001). For carbonate/mineral ratio, there was a significant difference for irradiation (p = 0.0016) and third (p < 0.001), with the irradiated middle third showing the lowest values. For amide I/amide III ratio, there was a significant difference for irradiation (p = 0.005) in the cervical third. In energy dispersive spectroscopy, carbon (p = 0.004; p = 0.020), phosphorus (p < 0.001; p = 0.009) and calcium (p = 0.008; p = 0.007) showed differences for irradiation and third, with the irradiated groups presenting lower values in cervical and middle thirds. For calcium/phosphorus ratio, there was a significant difference for irradiation (p < 0.001) in cervical and middle thirds. Regarding microhardness, there was a significant difference for irradiation (p < 0.001), with all irradiated groups showing lower microhardness values. CONCLUSIONS: The radiotherapy altered the chemical and mechanical properties of intraradicular dentin, mainly in the cervical and middle root thirds.


Assuntos
Cálcio , Dentina , Humanos , Dentina/química , Cálcio/análise , Incisivo , Carbonatos/análise , Fósforo/análise , Amidas/análise , Teste de Materiais
14.
Ground Water ; 62(2): 196-211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37401104

RESUMO

Structural landform evolution and hydrogeochemical analyses are crucial for understanding the characteristics of karst groundwater systems and the development of deep karst formed by complex aquifers in a tectonic collision zone. Detailed structural landform evolution analysis was carried out along the large-scale anticlinorium to investigate the temporal evolution of karst aquifer systems and karstification. Results showed that the tectonic activity included weak horizontal compression and slow vertical uplift during the Triassic to Middle Jurassic, forming a denuded clastic platform. This period was mainly preserved in the geological record as burial karst. From the Late Jurassic to the Early Cretaceous, the study area was strongly compressed by S-N-trending stress, and developed E-W-trending high-angle imbricate thrust structures, which controlled the formation of folded and fault-blocked mountains. Vertical multilayered strata underwent a strong horizontal extrusion, forming a large-scale anticlinorium with secondary folds and faults. With the exposure of carbonate rocks due to rapid crustal uplift, karst began to develop, forming a vertical multilayer karst aquifer system and controlling the distribution of karst groundwater. The Fangxian faulted basin was formed from the Late Cretaceous to the Paleogene, whereby landforms were dominated by intermountain basins. Slow crustal uplift caused the retreat of the denudation line to the east, leading to an increase in hydrodynamic conditions and karstification, and the initiation of early karst groundwater systems. Since the Neogene, intermittent and rapid crustal uplift has led to the deepening of rivers, resulting in the formation of peak clusters and canyons, the development of deep karst, and the complete formation of karst groundwater systems. Combined with hydrogeochemical and borehole data, local, intermediate, and regional karst groundwater systems were identified. It has vital significance to the geological route selection or construction of deep-buried tunnels and the utilization of karst groundwater.


Assuntos
Água Subterrânea , Água Subterrânea/química , Carbonatos/análise , Hidrodinâmica , Rios , Monitoramento Ambiental/métodos
15.
Sci Rep ; 13(1): 20389, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990070

RESUMO

The present study aimed to investigate the possible use of a non-instrumentation technique including blue light irradiation for root canal cleaning. Extracted human single rooted teeth were selected. Nine different groups included distilled water, NaOCl, intra-canal heated NaOCl, and NaOCl + EDTA irrigation after either instrumentation or non-instrumentation, and a laser application group following non-instrumentation technique. The chemical assessment of the root canal dentine was evaluated using energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. Surface microstructural analyses were performed by using scanning electron microscopy (SEM). The antimicrobial efficacy of different preparation techniques was evaluated using microbial tests. Light application didn't change the calcium/phosphorus, carbonate/phosphate and amide I/phosphate ratios of the root canal dentin. The root canal dentin preserved its original chemistry and microstructure after light application. The instrumentation decreased the carbonate/phosphate and amide I/phosphate ratios of the root canal dentin regardless of the irrigation solution or technique (p < 0.05). The application of light could not provide antibacterial efficacy to match the NaOCl irrigation. The NaOCl irrigation both in the non-instrumentation and instrumentation groups significantly reduced the number of bacteria (p < 0.05). The use of minimally invasive root canal preparation techniques where the root canal is not instrumented and is disinfected by light followed by obturation with a hydraulic cement sealer reduced the microbial load and preserved the dentin thus may be an attractive treatment option for management of vital teeth needing root canal therapy.


Assuntos
Dentina , Tratamento do Canal Radicular , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Dentina/química , Tratamento do Canal Radicular/métodos , Fosfatos/análise , Carbonatos/análise , Amidas/análise , Irrigantes do Canal Radicular , Ácido Edético , Hipoclorito de Sódio , Microscopia Eletrônica de Varredura
16.
Environ Sci Pollut Res Int ; 30(55): 117688-117705, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37867172

RESUMO

The treatment and beneficial use of polluted or contaminated environmental matrices have become major issues, especially as the world strives toward a zero-waste policy. In this regard, dredged sediments need to be treated before they can be used in an environmentally safe and sustainable manner. Therefore, this work aims to treat estuarine sediments and, more importantly, use physicochemical, mineral, organic, and chemical information to understand the reactions that occur upon treatment. Dredged estuarine sediments were collected from Tancarville (Seine River estuary, France) and subjected to electrokinetic (EK) remediation using a 128-L laboratory-scale reactor. The sediments were treated 8 h per day for 21 days. The electric (voltage and current) and physicochemical (pH and electric conductivity) parameters were monitored during treatment. Sediments were collected from various sections in the reactor at the end of the experiment (lengthwise, widthwise, and depthwise). The spatial variation was investigated in terms of organic, mineral, and metal contents. Statistical analyses proved that the variation occurred only in the lengthwise direction. Furthermore, three main phases described the treatment, which were mainly linked to carbonate dissolution and pH variation. The results also showed that the trace elements Ni and Zn were reduced by 21% and 19%, respectively, without a direct link to pH, while Ca and Mg were only redistributed. The buffering capacity of the anodic sediment was reduced due to carbonate dissolution. The treated sediments showed reduced contents in trace metals without affecting major elements that can be useful in agriculture (i.e., Ca and Mg).


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Oligoelementos/análise , Metais/análise , Minerais , Agricultura , Carbonatos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Metais Pesados/análise
17.
Environ Geochem Health ; 45(10): 7065-7080, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572235

RESUMO

East China is a highly aggregated coal-grain composite area where coal mining and agricultural production activities are both flourishing. At present, the geochemical characteristics of dissolved inorganic carbon (DIC) in groundwater in coal mining areas are still unclear. This study combined hydrochemical and carbon isotope methods to explore the sources and factors influencing DIC in the groundwater of different active areas in coal mining areas. Moreover, the 13C isotope method was used to calculate the contribution rates of various sources to DIC in groundwater. The results showed that the hydrochemical types of groundwater were HCO3-Ca·Na and HCO3-Na. The main water‒rock interactions were silicate and carbonate rock weathering. Agricultural areas were mainly affected by the participation of HNO3 produced by chemical fertilizer in the weathering of carbonate rocks. Soil CO2 and carbonate rock weathering were the major sources of DIC in the groundwater. Groundwater in residential areas was primarily affected by CO2 from the degradation of organic matter from anthropogenic inputs. Sulfate produced by gypsum dissolution, coal gangue accumulation leaching and mine drainage participated in carbonate weathering under acidic conditions, which was an important factor controlling the DIC and isotopic composition of groundwater in coal production areas. The contribution rates of groundwater carbonate weathering to groundwater DIC in agricultural areas and coal production areas ranged from 57.46 to 66.18% and from 54.29 to 62.16%, respectively. In residential areas, the contribution rates of soil CO2 to groundwater DIC ranged from 51.48 to 61.84%. The results will help clarify the sources and circulation of DIC in groundwater under the influence of anthropogenic activities and provide a theoretical reference for water resource management.


Assuntos
Minas de Carvão , Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Dióxido de Carbono/análise , Isótopos de Carbono/análise , Carbonatos/análise , Água Subterrânea/química , China , Solo , Carvão Mineral/análise , Poluentes Químicos da Água/análise
18.
Environ Sci Pollut Res Int ; 30(42): 95348-95366, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37544950

RESUMO

During weathering and pedogenesis of carbonate rock with poor-uranium (U) and thorium (Th), U and Th present the characteristics of strong leaching (especially U) and significant residual enrichment, the cause of which is still unclear. In this paper, a weathering profile developed by dolomite in karst area of Guizhou province in southwest China was selected, which showed zonation characteristics of bedrock (Y), powdery rock (Yf), and soil layer (T1 to T12) from the bottom to up. Through the determination of the occurrence speciation of U and Th in Y and weathering profile, combined with mineralogical, geochemical characteristics, and element mass balance calculation, the constraints of U and Th speciation on the geochemical behavior of U and Th during the weathering of carbonate rock were revealed. The results proved that U and Th in Y preferentially existed in acid insoluble phase, for example, the contents of U and Th in Y were 0.90 mg·kg-1 and 0.28 mg·kg-1, respectively, while those in acid insoluble matter were 2.34 mg·kg-1 and 2.57 mg·kg-1, respectively, but because the mass percentage of acid insoluble matter was extremely low (0.95%), the mass percentages of U and Th in the acid soluble phase in the whole rock were absolutely superior (96% of U and 86% Th). The U and Th in the acid soluble phase of Y were mainly adsorbed on the crystal surface of carbonate minerals or existed in the cement, and the U and Th in the carbonate lattice only accounted for a small proportion. From Y to Yf with the initial dissolution, U and Th released from the surface of carbonate minerals and cements were in carbonate-rich alkaline environment, and these portions of U and Th were leached out, resulting in strong loss of U and Th in the Yf (the loss rates are 83% of U and 65% of Th, respectively). From the Yf to the overlying soil layer T1, the carbonate components were completely dissolved, and the U and Th released from the carbonate lattice showed different behaviors, where U was completely leached and Th tended to stay in the weathered residue. Thus, in the soil layer T1 formed by Y or Yf , the residual U was the inheritance of the U in the acid insoluble phase of Y; For Th, it not only inherited the Th of acid insoluble phase of Y, but also superimposed the Th from carbonate lattice in Y. On the other hand, during the evolution process from Y to Yf and to soil layer T1, with the dissolution of carbonate, the acid insoluble phase also showed a significant tendency of chemical weathering. However, the U and Th in the Y acid insoluble phase were not leached with the decomposition of the acid insoluble phase but were redistributed among the residual phases. For the geochemical behaviors of U and Th in the evolution of soil profile (T1~T12), they were subjected to the occurrence speciation of U and Th in T1 and the change of U and Th occurrence speciation with the upward direction of soil profile. The U and Th released from the carrier minerals were mainly redistributed among the residual solid phases, which weakened the intensity of their further loss. This study deepens the understanding of the geochemical behavior of radionuclides in karst environment and provides reference for the treatment of radioactive pollution in karst areas.


Assuntos
Tório , Urânio , Tório/análise , Urânio/análise , Solo , Minerais , Carbonatos/análise
19.
PeerJ ; 11: e15594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426411

RESUMO

Background: Continental weathering plays an important role in regulating atmospheric CO2 levels. Chemical weathering in glacial areas has become an intensely focused topic in the background of global change compared with other terrestrial weathering systems. However, research on the weathering of the glacial areas in the Yarlung Tsangpo River Basin (YTRB) is still limited. Methods: In this article, the major ions of the Chaiqu and Niangqu catchments in the YTRB have been investigated to illustrate the chemical weathering rates and mechanisms of the glacier areas in the YTRB. Results: Ca2+ and HCO3- dominate the major ions of the Chaiqu and Niangqu rivers, accounting for about 71.3% and 69.2% of the TZ+ of the Chaiqu (the total cations, TZ+ = Na+ + K+ + Ca2 + + Mg2+, in µeq/L), and about 64.2% and 62.6% of the TZ+ of the Niangqu. A Monte Carlo model with six end-members is applied to quantitatively partition the dissolved load sources of the catchments. The results show that the dissolved loads of the Chaiqu and Niangqu rivers are mainly derived from carbonate weathering (accounting for about 62.9% and 79.7% of the TZ+, respectively), followed by silicate weathering (about 25.8% and 7.9% of the TZ+, respectively). The contributions of precipitation and evaporite to the Chaiqu rivers are about 5.0% and 6.2%, and those to the Niangqu rivers are about 6.3% and 6.2%. The model also calculated the proportion of sulfuric acid weathering in the Chaiqu and Niangqu catchments, which account for about 21.1% and 32.3% of the TZ+, respectively. Based on the results calculated by the model, the carbonate and silicate weathering rates in the Chaiqu catchment are about 7.9 and 1.8 ton km-2 a-1, and in the Niangqu catchment, the rates are about 13.7 and 1.5 ton km-2 a-1. The associated CO2 consumption in the Chaiqu catchment is about 4.3 and 4.4 × 104 mol km-2 a-1, and about 4.3 and 1.3 × 104 mol km-2 a-1 in the Niangqu catchment. The chemical weathering rates of the glacier areas in the YTRB show an increasing trend from upstream to downstream. Studying the weathering rates of glacier catchments in the Tibetan Plateau (TP) reveals that the chemical weathering rates of the temperate glacier catchments are higher than those of the cold glacier catchments and that lithology and runoff are important factors in controlling the chemical weathering of glacier catchments in the TP. The chemical weathering mechanisms of glacier areas in the YTRB were explored through statistical methods, and we found that elevation-dependent climate is the primary control. Lithology and glacial landforms rank second and third, respectively. Our results suggest that, above a certain altitude, climate change caused by tectonic uplift may inhibit chemical weathering. There is a more complex interaction between tectonic uplift, climate, and chemical weathering.


Assuntos
Dióxido de Carbono , Monitoramento Ambiental , Tibet , Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Silicatos/análise , Cátions , Carbonatos/análise
20.
Sci Total Environ ; 892: 164713, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37302593

RESUMO

Long-term series data can provide a glimpse of the influence of natural and anthropogenic factors on water chemistry. However, few studies have been conducted to analyze the driving forces of the chemistry of large rivers based on long-term data. This study aimed to analyze the variations and driving mechanisms of riverine chemistry from 1999 to 2019. We compiled published data on major ions in the Yangtze River, one of the three largest rivers in the world. The results showed that Na+ and Cl- concentrations decreased with increasing discharge. Significant differences in riverine chemistry were found between the upper and middle-lower reaches. Major ion concentrations in the upper reaches were mainly controlled by evaporites, especially Na+ and Cl- ions. In contrast, major ion concentrations in the middle-lower reaches were mainly affected by silicate and carbonate weathering. Furthermore, human activities were the drivers of some major ions, notably SO42- ions associated with coal emissions. The increased major ions and total dissolved solids in the Yangtze River in the last 20 years were ascribed to the continuous acidification of the river and the construction of the Three Gorges Dam. Attention should be given to the impact of anthropogenic activities on the water quality of the Yangtze River.


Assuntos
Monitoramento Ambiental , Rios , Humanos , Monitoramento Ambiental/métodos , Qualidade da Água , Carbonatos/análise , Tempo (Meteorologia) , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...