Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.672
Filtrar
1.
Gene ; 932: 148880, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181273

RESUMO

It has been discovered that Trichorhinophalangeal Syndrome-1 (TRPS1), a novel member of the GATA transcription factor family, participates in both normal physiological processes and the development of numerous diseases. Recently, TRPS1 has been identified as a new biomarker to aid in cancer diagnosis and is very common in breast cancer (BC), especially in triple-negative breast cancer (TNBC). In this review, we discussed the structure and function of TRPS1 in various normal cells, focused on its role in tumorigenesis and tumor development, and summarize the research status of TRPS1 in the occurrence and development of BC. We also analyzed the potential use of TRPS1 in guiding clinically personalized precision treatment and the development of targeted drugs.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proteínas de Ligação a DNA , Proteínas Repressoras , Fatores de Transcrição , Humanos , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação Neoplásica da Expressão Gênica , Carcinogênese/genética , Carcinogênese/metabolismo , Animais
2.
J Hematol Oncol ; 17(1): 78, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218945

RESUMO

BACKGROUND: Ferroptosis, characterized by iron-dependent lipid peroxidation, emerges as a promising avenue for hepatocellular carcinoma (HCC) intervention due to its tumor susceptibility. RNA N6-methyladenosine (m6A) modification has been involved in several types of regulated cell death. However, the roles and molecular mechanisms of m6A-related regulators in HCC cell ferroptosis remain unclear. METHODS: By examining a series of m6A modification enzymes upon ferroptosis induction or inhibition, we identified METTL16 as a novel ferroptotic repressor in HCC cells. The roles of METTL16 on ferroptosis and HCC development were investigated in multiple cell lines, human HCC organoids, subcutaneous xenografts and MYC/Trp53-/- HCC model in hepatocyte-specific Mettl16 knockout and overexpression mice. The underlying mechanism was elucidated with MeRIP/RIP-qPCR, luciferase assay, Co-IP assay and Mass Spectrometry. The clinical significance and relevance were evaluated in human samples. RESULTS: High METTL16 expression confers ferroptosis resistance in HCC cells and mouse models, and promotes cell viability and tumor progression. Mechanistically, METTL16 collaborates with IGF2BP2 to modulate SENP3 mRNA stability in an m6A-dependent manner, and the latter impedes the proteasome-mediated ubiquitination degradation of Lactotransferrin (LTF) via de-SUMOylation. Elevated LTF expression facilitates the chelation of free iron and reduces liable iron pool level. SENP3 and LTF are implicated in METTL16-mediated HCC progression and anti-ferroptotic effects both in vivo and in vitro. Clinically, METTL16 and SENP3 expression were positively correlated, and high METTL16 and SENP3 expression predicts poor prognosis in human HCC samples. CONCLUSIONS: Our study reveals a new METTL16-SENP3-LTF signaling axis regulating ferroptosis and driving HCC development. Targeting this axis is a promising strategy for sensitizing ferroptosis and against HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Metiltransferases , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Cisteína Endopeptidases , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
3.
Sci Adv ; 10(38): eadn2806, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303037

RESUMO

We previously showed that inhibition of glycolysis in cutaneous squamous cell carcinoma (SCC)-initiating cells had no effect on tumorigenesis, despite the perceived requirement of the Warburg effect, which was thought to drive carcinogenesis. Instead, these SCCs were metabolically flexible and sustained growth through glutaminolysis, another metabolic process frequently implicated to fuel tumorigenesis in various cancers. Here, we focused on glutaminolysis and genetically blocked this process through glutaminase (GLS) deletion in SCC cells of origin. Genetic deletion of GLS had little effect on tumorigenesis due to the up-regulated lactate consumption and utilization for the TCA cycle, providing further evidence of metabolic flexibility. We went on to show that posttranscriptional regulation of nutrient transporters appears to mediate metabolic flexibility in this SCC model. To define the limits of this flexibility, we genetically blocked both glycolysis and glutaminolysis simultaneously and found the abrogation of both of these carbon utilization pathways was enough to prevent both papilloma and frank carcinoma.


Assuntos
Carcinoma de Células Escamosas , Glutaminase , Glicólise , Folículo Piloso , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Animais , Folículo Piloso/metabolismo , Glutaminase/metabolismo , Glutaminase/genética , Camundongos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Células-Tronco/metabolismo , Glutamina/metabolismo , Humanos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/genética , Carcinogênese/metabolismo , Carcinogênese/genética
4.
Clin Exp Med ; 24(1): 224, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39294405

RESUMO

As one of the factors regulating tumour angiogenesis, angiopoietin-4 (ANGPT4), which plays an important role in promoting tumour proliferation, survival, expansion and angiogenesis, is highly expressed in some tumours, such as lung adenocarcinoma, glioblastoma and ovarian cancer. This may be related to the fact that ANGPT4 affects the blood vessels and lymphatic system of the tumour. Specifically, ANGPT4 could play an effective role in promoting cancer by affecting the tyrosine kinase receptor TIE2, ERK1/2 and PI3K/AKT signalling pathways. Therefore, ANGPT4 may be an important biomarker for the occurrence and development of cancer and poor prognosis. In addition, the inhibition of ANGPT4 may be a useful cancer treatment. This paper reviews the latest preclinical research on ANGPT4, emphasizes its role in tumourigenesis and broadens our understanding of the carcinogenic function of ANGPT4 and the development of ANGPT4 inhibitors. This is the latest version of the revised version of the previous article.


Assuntos
Carcinogênese , Humanos , Carcinogênese/genética , Carcinogênese/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Neovascularização Patológica/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Proteína 4 Semelhante a Angiopoietina
5.
Cell Death Dis ; 15(9): 642, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227585

RESUMO

Paired immunoglobin-like type 2 receptor beta (PILRB) mainly plays a crucial role in regulating innate immunity, but whether PILRB is involved in cancer is poorly understood. Here, we report that PILRB potentiates the PI3K/AKT pathway to drive gastric tumorigenesis by binding and stabilizing IRS4, which could hyperactivate the PI3K/AKT pathway. Firstly, the levels of PILRB are upregulated in human gastric cancer (GC) specimens and associated with poor prognosis in patients with GC. In addition, our data show that PILRB promotes cell proliferation, colony formation, cell migration and invasion in GC cells in vitro and in vivo. Mechanistically, PILRB recruits the deubiquitination enzymes OTUB1 to IRS4 and relieves K48-linked ubiquitination of IRS4, protecting IRS4 protein from proteasomal-mediated degradation and subsequent activation of the PI3K/AKT pathway. Importantly, the levels of PILRB are positively correlated with IRS4 in GC specimens. Meanwhile, we also found that PILRB reprogrammed cholesterol metabolism by altering ABCA1 and SCARB1 expression levels, and PILRB-expression confers GC cell resistance to statin treatment. Taken together, our findings illustrate that the oncogenic role of PILRB in gastric tumorigenesis, providing new insights into the regulation of PI3K/AKT signaling in GC and establishing PILRB as a biomarker for simvastatin therapy resistance in GC.


Assuntos
Carcinogênese , Colesterol , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Colesterol/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Proliferação de Células , Metástase Neoplásica , Movimento Celular , Masculino , Camundongos Endogâmicos BALB C
6.
Cells ; 13(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39273044

RESUMO

Cancer research has advanced tremendously with the identification of causative genes, proteins, and signaling pathways. Numerous antitumor drugs have been designed and screened for cancer therapeutics; however, designing target-specific drugs for malignant cells with minimal side effects is challenging. Recently, energy-sensing- and homeostasis-associated molecules and signaling pathways playing a role in proliferation, apoptosis, autophagy, and angiogenesis have received increasing attention. Energy-metabolism-based studies have shown the contribution of energetics to cancer development, where tumor cells show increased glycolytic activity and decreased oxidative phosphorylation (the Warburg effect) in order to obtain the required additional energy for rapid division. The role of energy homeostasis in the survival of normal as well as malignant cells is critical; therefore, fuel intake and expenditure must be balanced within acceptable limits. Thus, energy-sensing enzymes detecting the disruption of glycolysis, AMP, ATP, or GTP levels are promising anticancer therapeutic targets. Here, we review the common energy mediators and energy sensors and their metabolic properties, mechanisms, and associated signaling pathways involved in carcinogenesis, and explore the possibility of identifying drugs for inhibiting the energy metabolism of tumor cells. Furthermore, to corroborate our hypothesis, we performed meta-analysis based on transcriptomic profiling to search for energy-associated biomarkers and canonical pathways.


Assuntos
Carcinogênese , Metabolismo Energético , Neoplasias , Transdução de Sinais , Humanos , Transdução de Sinais/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Metabolismo Energético/efeitos dos fármacos , Carcinogênese/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/genética , Animais
7.
Cancer Lett ; 603: 217200, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39222677

RESUMO

Triple-negative breast cancer (TNBC) is difficult to treat breast cancer subtype due to lack or insignificant expressions of targetable estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2). Therefore, finding a targetable protein or signaling pathway in TNBC would impact patient care. Here, we report that a member of the Mixed Lineage Kinase (MLK) family, MLK3, is an effector of G-protein-coupled protease-activated receptors 1 (PAR1) and targeting MLK3 by a small-molecule inhibitor prevented PAR1-mediated TNBC tumorigenesis. In silico and immunohistochemistry analysis of human breast tumors showed overexpression of PAR1 and MLK3 in TNBC tumors. Treating α-thrombin and PAR1 agonist increased MLK3 and JNK activities and induced cell migration in TNBC cells. The PAR1 positive/high (PAR1+/hi) population of TNBC cells showed aggressive tumor phenotype with increased MLK3 signaling. Moreover, combined inhibition of the PAR1 and MLK3 mitigated the TNBC tumor burden in preclinical TNBC models. Our data suggests that activation of the PAR1-MLK3 axis promotes TNBC tumorigenesis. Therefore, combinatorial therapy targeting MLK3 and PAR1 could effectively reduce TNBC tumor burden.


Assuntos
MAP Quinase Quinase Quinases , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno , Receptor PAR-1 , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Humanos , Receptor PAR-1/metabolismo , Receptor PAR-1/genética , Feminino , Animais , Linhagem Celular Tumoral , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Movimento Celular , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinogênese/metabolismo , Carcinogênese/genética , Camundongos , Proliferação de Células
8.
Adv Exp Med Biol ; 1460: 727-766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287871

RESUMO

Higher body fat content is related to a higher risk of mortality, and obesity-related cancer represents approximately 40% of all cancer patients diagnosed each year. Furthermore, epigenetic mechanisms are involved in cellular metabolic memory and can determine one's predisposition to being overweight. Low-grade chronic inflammation, a well-established characteristic of obesity, is a central component of tumor development and progression. Cancer-associated adipocytes (CAA), which enhance inflammation- and metastasis-related gene sets within the cancer microenvironment, have pro-tumoral effects. Adipose tissue is a major source of the exosomal micro ribonucleic acids (miRNAs), which modulate pathways involved in the development of obesity and obesity-related comorbidities. Owing to their composition of cargo, exosomes can activate receptors at the target cell or transfer molecules to the target cells and thereby change the phenotype of these cells. Exosomes that are released into the extracellular environment are internalized with their cargo by neighboring cells. The tumor-secreted exosomes promote organ-specific metastasis of tumor cells that normally lack the capacity to metastasize to a specific organ. Therefore, the communication between neighboring cells via exosomes is defined as the "next-cell hypothesis." The reciprocal interaction between the adipocyte and tumor cell is realized through the adipocyte-derived exosomal miRNAs and tumor cell-derived oncogenic miRNAs. The cargo molecules of adipocyte-derived exosomes are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. RNA-induced silencing regulates gene expression through various mechanisms. Destabilization of DICER enzyme, which catalyzes the conversion of primary miRNA (pri-miRNA) to precursor miRNA (pre-miRNA), is an important checkpoint in cancer development and progression. Interestingly, adipose tissue in obesity and tumors share similar pathogenic features, and the local hypoxia progress in both. While hypoxia in obesity leads to the adipocyte dysfunction and metabolic abnormalities, in obesity-related cancer cases, it is associated with worsened prognosis, increased metastatic potential, and resistance to chemotherapy. Notch-interleukin-1 (IL-1)-Leptin crosstalk outcome is referred to as "NILCO effect." In this chapter, obesity-related cancer development is discussed in the context of "next-cell hypothesis," miRNA biogenesis, and "NILCO effect."


Assuntos
Adipócitos , Exossomos , MicroRNAs , Neoplasias , Obesidade , Microambiente Tumoral , Humanos , Obesidade/metabolismo , Obesidade/complicações , Obesidade/patologia , Exossomos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/etiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Animais , Comunicação Celular , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais
9.
Sci Signal ; 17(854): eabq4888, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39288218

RESUMO

Doublecortin-like kinase 1 (DCLK1) is a proposed driver of gastric cancer (GC) that phosphorylates serine and threonine residues. Here, we showed that the kinase activity of DCLK1 orchestrated cancer cell-intrinsic and-extrinsic processes that led to pro-invasive and pro-metastatic reprogramming of GC cells. Inhibition of the kinase activity of DCLK1 reduced the growth of subcutaneous xenograft tumors formed from MKN1 human gastric carcinoma cells in mice and decreased the abundance of the stromal markers α-Sma, vimentin, and collagen. Similar effects were seen in mice with xenograft tumors formed from MKN1 cells expressing a kinase-inactive DCLK1 mutant (MKN1D511N). MKN1D511N cells also had reduced in vitro migratory potential and stemness compared with control cells. Mice orthotopically grafted with MKN1 cells overexpressing DCLK1 (MKN1DCLK1) showed increased invasiveness and had a greater incidence of lung metastases compared with those grafted with control MKN1 cells. Mechanistically, we showed that the chemokine CXCL12 acted downstream of DCLK1 in cultured MKN1 cells and in mice subcutaneously implanted with gastric tumors formed by MKN1DCLK1 cells. Moreover, inhibition of the kinase activity of DCLK1 or the expression of DCLK1D511N reversed the pro-tumorigenic and pro-metastatic phenotype. Together, this study establishes DCLK1 as a broadly acting and potentially targetable promoter of GC.


Assuntos
Progressão da Doença , Quinases Semelhantes a Duplacortina , Peptídeos e Proteínas de Sinalização Intracelular , Fenótipo , Proteínas Serina-Treonina Quinases , Neoplasias Gástricas , Quinases Semelhantes a Duplacortina/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Animais , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Carcinogênese/genética , Carcinogênese/metabolismo
10.
Mol Med ; 30(1): 143, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256649

RESUMO

BACKGROUND: Targeting the tumor microenvironment represents an emerging therapeutic strategy for cancer. Macrophages are an essential part of the tumor microenvironment. Macrophage polarization is modulated by mitochondrial metabolism, including oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and reactive oxygen species content. Isocitrate dehydrogenase 2 (IDH2), an enzyme involved in the TCA cycle, reportedly promotes cancer progression. However, the mechanisms through which IDH2 influences macrophage polarization and modulates tumor growth remain unknown. METHODS: In this study, IDH2-deficient knockout (KO) mice and primary cultured bone marrow-derived macrophages (BMDMs) were used. Both in vivo subcutaneous tumor experiments and in vitro co-culture experiments were performed, and samples were collected for analysis. Western blotting, RNA quantitative analysis, immunohistochemistry, and flow cytometry were employed to confirm changes in mitochondrial function and the resulting polarization of macrophages exposed to the tumor microenvironment. To analyze the effect on tumor cells, subcutaneous tumor size was measured, and growth and metastasis markers were identified. RESULTS: IDH2-deficient macrophages co-cultured with cancer cells were found to possess increased mitochondrial dysfunction and fission than wild-type BMDM. Additionally, the levels of M2-associated markers decreased, whereas M1-associated factor levels increased in IDH2-deficient macrophages. IDH2-deficient macrophages were predominantly M1. Tumor sizes in the IDH2-deficient mouse group were significantly smaller than in the wild-type mouse group. IDH2 deficiency in macrophages was associated with inhibited tumor growth and epithelial-mesenchymal transition. CONCLUSIONS: Our findings suggest that IDH2 deficiency inhibits M2 macrophage polarization and suppresses tumorigenesis. This study underlines the potential contribution of IDH2 expression in macrophages and tumor microenvironment remodeling, which could be useful in clinical cancer research.


Assuntos
Isocitrato Desidrogenase , Macrófagos , Mitocôndrias , Microambiente Tumoral , Animais , Humanos , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/genética , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo
11.
Theranostics ; 14(13): 4948-4966, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267787

RESUMO

Rationale: Tumor cells remodel transcriptome to construct an ecosystem with stemness features, which maintains tumor growth and highly malignant characteristics. However, the core regulatory factors involved in this process still need to be further discovered. Methods: Single cell RNA-sequncing (scRNA-seq) and bulk RNA-sequencing profiles derived from fetal liver, normal liver, liver tumors, and their adjacent samples were collected to analyze the ecosystem of liver cancer. Mouse models were established to identify molecular functions of oncofetal-related oncogenes using hydrodynamic tail vein injection. Results: We found that liver cancer rebuilt oncofetal ecosystem to maintain malignant features. Interestingly, we identified a group of RNA-binding proteins (RBPs) that were highly overexpressed with oncofetal features. Among them, TRIM71 was specifically expressed in liver cancers and was associated with poor outcomes. TRIM71 drove the carcinogenesis of hepatocellular carcinoma (HCC), and knockdown of TRIM71 significantly abolished liver cancer cell proliferation. Mechanistically, TRIM71 formed a protein complex with IGF2BP1, bound to and stabilized the mRNA of CEBPA in an m6A-dependent manner, enhance the serine/glycine metabolic pathway, and ultimately promoted liver cancer progression. Furthermore, we identified that all-trans-retinoic acid (ATRA) combined with e1A binding protein p300 (EP300) inhibitor A-485 repressed TRIM71, attenuated glycine/serine metabolism, and inhibited liver cancer cell proliferation with high TRIM71 levels. Conclusions: We demonstrated the oncofetal status in liver cancer and highlighted the crucial role of TRIM71 and provided potential therapeutic strategies and liver cancer-specific biomarker for liver cancer patients.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Glicina , Neoplasias Hepáticas , Serina , Animais , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Camundongos , Humanos , Serina/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Glicina/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos Nus
12.
Stem Cell Res Ther ; 15(1): 256, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135143

RESUMO

BACKGROUND: One of major challenges in breast tumor therapy is the existence of breast cancer stem cells (BCSCs). BCSCs are a small subpopulation of tumor cells that exhibit characteristics of stem cells. BCSCs are responsible for progression, recurrence, chemoresistance and metastasis of breast cancer. Ca2+ signalling plays an important role in diverse processes in cancer development. However, the role of Ca2+ signalling in BCSCs is still poorly understood. METHODS: A highly effective 3D soft fibrin gel system was used to enrich BCSC-like cells from ER+ breast cancer lines MCF7 and MDA-MB-415. We then investigated the role of two Ca2+-permeable ion channels Orai1 and Orai3 in the growth and stemness of BCSC-like cells in vitro, and tumorigenicity in female NOD/SCID mice in vivo. RESULTS: Orai1 RNA silencing and pharmacological inhibition reduced the growth of BCSC-like cells in tumor spheroids, decreased the expression levels of BCSC markers, and reduced the growth of tumor xenografts in NOD/SCID mice. Orai3 RNA silencing also had similar inhibitory effect on the growth and stemness of BCSC-like cells in vitro, and tumor xenograft growth in vivo. Mechanistically, Orai1 and SPCA2 mediate store-operated Ca2+ entry. Knockdown of Orai1 or SPCA2 inhibited glycolysis pathway, whereas knockdown of Orai3 or STIM1 had no effect on glycolysis. CONCLUSION: We found that Orai1 interacts with SPCA2 to mediate store-independent Ca2+ entry, subsequently promoting the growth and tumorigenicity of BCSC-like cells via glycolysis pathway. In contrast, Orai3 and STIM1 mediate store-operated Ca2+ entry, promoting the growth and tumorigenicity of BCSC-like cells via a glycolysis-independent pathway. Together, our study uncovered a well-orchestrated mechanism through which two Ca2+ entry pathways act through distinct signalling axes to finely control the growth and tumorigenicity of BCSCs.


Assuntos
Neoplasias da Mama , Canais de Cálcio , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas , Proteína ORAI1 , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Humanos , Animais , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Camundongos , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Transdução de Sinais , Sinalização do Cálcio , Células MCF-7
13.
J Biochem Mol Toxicol ; 38(9): e23815, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39171650

RESUMO

Drug transporters play a pivotal role in modulating drug disposition and are subject to alterations under inflammatory conditions. This study aimed to elucidate the intricate expression patterns of drug transporters during both acute and chronic inflammation, which are closely linked to malignant transformation. To investigate acute inflammation, we employed an in vitro model by subjecting Caco-2 cells to various inflammatory stimuli (IL-1ß, TNF-α, or LPS) individually or in combination. The successful induction of inflammation was confirmed by robust increases in IL-6 and NO production. Notably, inflamed Caco-2 cells exhibited significantly diminished levels of ABCB1 and ABCG2, while the expression of ABCC2 was upregulated. For chronic inflammation induction in vivo, we employed the well-established AOM/DSS mouse model known for its association with colitis-driven tumorigenesis. Persistent inflammation was effectively monitored throughout the experiment via elevated IL-6 and NO levels. The sequential stages of tumorigenesis were confirmed through Ki-67 immunohistochemistry. Intriguingly, we observed gradual alterations in the expression patterns of the studied drug transporters during stepwise induction, with ABCB1, ABCG2, and ABCC1 showing downregulation and ABCC2 exhibiting upregulation. Immunohistochemistry further revealed dynamic changes in the expression of ABCB1 and ABCC2 during the induction cycles, closely paralleling the gradual increase in Ki-67 expression observed during the development of precancerous lesions. Collectively, our findings underscore the significant impact of inflammation on drug transporter expression, potentially influencing the process of malignant transformation of the colon.


Assuntos
Azoximetano , Neoplasias do Colo , Inflamação , Proteína 2 Associada à Farmacorresistência Múltipla , Humanos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Animais , Células CACO-2 , Camundongos , Azoximetano/toxicidade , Inflamação/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Carcinogênese/metabolismo , Carcinogênese/induzido quimicamente , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/biossíntese , Interleucina-6/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Masculino
14.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125864

RESUMO

The potential role of the transient receptor potential Vanilloid 1 (TRPV1) non-selective cation channel in gastric carcinogenesis remains unclear. The main objective of this study was to evaluate TRPV1 expression in gastric cancer (GC) and precursor lesions compared with controls. Patient inclusion was based on a retrospective review of pathology records. Patients were subdivided into five groups: Helicobacter pylori (H. pylori)-associated gastritis with gastric intestinal metaplasia (GIM) (n = 12), chronic atrophic gastritis (CAG) with GIM (n = 13), H. pylori-associated gastritis without GIM (n = 19), GC (n = 6) and controls (n = 5). TRPV1 expression was determined with immunohistochemistry and was significantly higher in patients with H. pylori-associated gastritis compared with controls (p = 0.002). TRPV1 expression was even higher in the presence of GIM compared with patients without GIM and controls (p < 0.001). There was a complete loss of TRPV1 expression in patients with GC. TRPV1 expression seems to contribute to gastric-mucosal inflammation and precursors of GC, which significantly increases in cancer precursor lesions but is completely lost in GC. These findings suggest TRPV1 expression to be a potential marker for precancerous conditions and a target for individualized treatment. Longitudinal studies are necessary to further address the role of TRPV1 in gastric carcinogenesis.


Assuntos
Infecções por Helicobacter , Neoplasias Gástricas , Canais de Cátion TRPV , Humanos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/complicações , Infecções por Helicobacter/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Estudos Retrospectivos , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Helicobacter pylori/patogenicidade , Metaplasia/metabolismo , Metaplasia/patologia , Gastrite/metabolismo , Gastrite/patologia , Gastrite/microbiologia , Adulto , Imuno-Histoquímica , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Gastrite Atrófica/metabolismo , Gastrite Atrófica/patologia
15.
J Exp Clin Cancer Res ; 43(1): 227, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39148124

RESUMO

BACKGROUND: The failure of proper recognition of the intricate nature of pathophysiology in colorectal cancer (CRC) has a substantial effect on the progress of developing novel medications and targeted therapy approaches. Imbalances in the processes of lipid oxidation and biosynthesis of fatty acids are significant risk factors for the development of CRC. Therapeutic intervention that specifically targets the peroxisome proliferator-activated receptor gamma (PPARγ) and its downstream response element, in response to lipid metabolism, has been found to promote the growth of tumors and has shown significant clinical advantages in cancer patients. METHODS: Clinical CRC samples and extensive in vitro and in vivo experiments were carried out to determine the role of ZDHHC6 and its downstream targets via a series of biochemical assays, molecular analysis approaches and lipid metabolomics assay, etc. RESULTS: To study the effect of ZDHHC6 on the progression of CRC and identify whether ZDHHC6 is a palmitoyltransferase that regulates fatty acid synthesis, which directly palmitoylates and stabilizes PPARγ, and this stabilization in turn activates the ACLY transcription-related metabolic pathway. In this study, we demonstrate that PPARγ undergoes palmitoylation in its DNA binding domain (DBD) section. This lipid-related modification enhances the stability of PPARγ protein by preventing its destabilization. As a result, palmitoylated PPARγ inhibits its degradation induced by the lysosome and facilitates its translocation into the nucleus. In addition, we have identified zinc finger-aspartate-histidine-cysteine 6 (ZDHHC6) as a crucial controller of fatty acid biosynthesis. ZDHHC6 directly interacts with and adds palmitoyl groups to stabilize PPARγ at the Cys-313 site within the DBD domain of PPARγ. Consequently, this palmitoylation leads to an increase in the expression of ATP citrate lyase (ACLY). Furthermore, our findings reveals that ZDHHC6 actively stimulates the production of fatty acids and plays a role in the development of colorectal cancer. However, we have observed a significant reduction in the cancer-causing effects when the expression of ZDHHC6 is inhibited in in vivo trials. Significantly, in CRC, there is a strong positive correlation between the high expression of ZDHHC6 and the expression of PPARγ. Moreover, this high expression of ZDHHC6 is connected with the severity of CRC and is indicative of a poor prognosis. CONCLUSIONS: We have discovered a mechanism in which lipid biosynthesis is controlled by ZDHHC6 and includes the signaling of PPARγ-ACLY in the advancement of CRC. This finding provides a justification for targeting lipid synthesis by blocking ZDHHC6 as a potential therapeutic approach.


Assuntos
Aciltransferases , Neoplasias do Colo , Reprogramação Metabólica , PPAR gama , Animais , Feminino , Humanos , Masculino , Camundongos , Aciltransferases/metabolismo , Aciltransferases/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Metabolismo dos Lipídeos/genética , Lipidômica/métodos , Reprogramação Metabólica/genética , PPAR gama/metabolismo
16.
Nat Commun ; 15(1): 6915, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134530

RESUMO

Protein post-translational modifications (PTMs) are crucial for cancer cells to adapt to hypoxia; however, the functional significance of lysine crotonylation (Kcr) in hypoxia remains unclear. Herein we report a quantitative proteomics analysis of global crotonylome under normoxia and hypoxia, and demonstrate 128 Kcr site alterations across 101 proteins in MDA-MB231 cells. Specifically, we observe a significant decrease in K131cr, K156cr and K220cr of phosphoglycerate kinase 1 (PGK1) upon hypoxia. Enoyl-CoA hydratase 1 (ECHS1) is upregulated and interacts with PGK1, leading to the downregulation of PGK1 Kcr under hypoxia. Abolishment of PGK1 Kcr promotes glycolysis and suppresses mitochondrial pyruvate metabolism by activating pyruvate dehydrogenase kinase 1 (PDHK1). A low PGK1 K131cr level is correlated with malignancy and poor prognosis of breast cancer. Our findings show that PGK1 Kcr is a signal in coordinating glycolysis and the tricarboxylic acid (TCA) cycle and may serve as a diagnostic indicator for breast cancer.


Assuntos
Neoplasias da Mama , Ciclo do Ácido Cítrico , Glicólise , Fosfoglicerato Quinase , Fosfoglicerato Quinase/metabolismo , Fosfoglicerato Quinase/genética , Humanos , Glicólise/genética , Linhagem Celular Tumoral , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Regulação para Baixo , Camundongos , Proteômica/métodos , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/metabolismo , Hipóxia Celular , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética
17.
J Cell Mol Med ; 28(16): e70021, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39153212

RESUMO

Accumulating evidence has demonstrated that F-box protein 22 (FBXO22) participates in tumour development and progression in various types of human malignancies. However, the functions and detailed molecular mechanisms of FBXO22 in osteosarcoma tumorigenesis and progression remain elusive. In this study, we aimed to determine the effects of FBXO22 on the cell proliferation, migration and invasion of osteosarcoma cells using cell counting kit-8 and Matrigel Transwell approaches. Moreover, we explored the molecular mechanisms by which FBXO22 mediated oncogenesis and progression in osteosarcoma via Western blotting, immunoprecipitation and ubiquitination. We found that FBXO22 depletion inhibited the proliferation, migration and invasion of osteosarcoma cells, whereas FBXO22 overexpression increased the proliferation and motility of osteosarcoma cells. Mechanistically, FBXO22 promoted the ubiquitination and degradation of FoxO1 in osteosarcoma cells. FBXO22 depletion reduced cell proliferation and motility via regulation of FoxO1. Taken together, our findings provide new insight into FBXO22-induced osteosarcoma tumorigenesis. The inhibition of FBXO22 could be a promising strategy for the treatment of osteosarcoma.


Assuntos
Movimento Celular , Proliferação de Células , Proteínas F-Box , Proteína Forkhead Box O1 , Regulação Neoplásica da Expressão Gênica , Osteossarcoma , Ubiquitinação , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Humanos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Proteólise , Progressão da Doença , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Invasividade Neoplásica , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Receptores Citoplasmáticos e Nucleares
18.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119810, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128596

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide, with non-small cell lung cancer (NSCLC) constituting approximately 84 % of all lung cancer cases. The role of inflammation in the initiation and progression of NSCLC tumors has been the focus of extensive research. Among the various inflammatory mediators, prostaglandin E2 (PGE2) plays a pivotal role in promoting the aggressiveness of epithelial tumors through multiple mechanisms, including the stimulation of growth, evasion of apoptosis, invasion, and induction of angiogenesis. The Extracellular signal-Regulated Kinase 5 (ERK5), the last discovered member among conventional mitogen-activated protein kinases (MAPK), is implicated in cancer-associated inflammation. In this study, we explored whether ERK5 is involved in the process of tumorigenesis induced by PGE2. Using A549 and PC9 NSCLC cell lines, we found that PGE2 triggers the activation of ERK5 via the EP1 receptor. Moreover, both genetic and pharmacological inhibition of ERK5 reduced PGE2-induced proliferation, migration, invasion and stemness of A549 and PC9 cells, indicating that ERK5 plays a critical role in PGE2-induced tumorigenesis. In summary, our study underscores the pivotal role of the PGE2/EP1/ERK5 axis in driving the malignancy of NSCLC cells in vitro. Targeting this axis holds promise as a potential avenue for developing novel therapeutic strategies aimed at controlling the advancement of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Dinoprostona , Neoplasias Pulmonares , Proteína Quinase 7 Ativada por Mitógeno , Humanos , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Movimento Celular/efeitos dos fármacos , Células A549 , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/metabolismo , Fenótipo
19.
J Extracell Vesicles ; 13(8): e12482, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39105261

RESUMO

It is known that small extracellular vesicles (sEVs) are released from cancer cells and contribute to cancer progression via crosstalk with recipient cells. We have previously reported that sEVs expressing the αVß3 integrin, a protein upregulated in aggressive neuroendocrine prostate cancer (NEPrCa), contribute to neuroendocrine differentiation (NED) in recipient cells. Here, we examine the impact of αVß3 expression on sEV protein content, density and function. sEVs used in this study were isolated by iodixanol density gradients and characterized by nanoparticle tracking analysis, immunoblotting and single vesicle analysis. Our proteomic profile of sEVs containing αVß3 shows downregulation of typical effectors involved in apoptosis and necrosis and an upregulation of tumour cell survival factors compared to control sEVs. We also show that the expression of αVß3 in sEVs causes a distinct reposition of EV markers (Alix, CD81, CD9) to a low-density sEV subpopulation. This low-density reposition is independent of extracellular matrix (ECM) protein interactions with sEVs. This sEV subset contains αVß3 and an αVß3 downstream effector, NgR2, a novel marker for NEPrCa. We show that sEVs containing αVß3 are loaded with higher amounts of NgR2 as compared to sEVs that do not express αVß3. Mechanistically, we demonstrate that sEVs containing NgR2 do not affect the sEV marker profile, but when injected in vivo intratumorally, they promote tumour growth and induce NED. We show that sEVs expressing NgR2 increase the activation of focal adhesion kinase (FAK), a known promoter of cancer cell proliferation, in recipient cells. We also show that NgR2 mimics the effect of sEVs containing αVß3 since it displays increased growth of NgR2 transfectants in vivo, as compared to control cells. Overall, our results describe the changes that occur in cargo, density and functions of cancer cell-derived sEVs containing the αVß3 integrin and its effector, NgR2, without affecting the sEV tetraspanin profiles.


Assuntos
Vesículas Extracelulares , Integrina alfaVbeta3 , Neoplasias da Próstata , Masculino , Integrina alfaVbeta3/metabolismo , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Vesículas Extracelulares/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Carcinogênese/metabolismo
20.
Life Sci ; 355: 122974, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147318

RESUMO

BACKGROUND: Basic helix-loop-helix ARNT like 2 (ARNTL2) is a transcription factor that controls the circadian rhythm. Amounts of studies have demonstrated the carcinogenic function of ARNTL2 in human malignant tumors albeit the underlying mechanisms remain poorly understood. We aimed to study the significance of ARNTL2 in bladder cancer (BLCA). METHODS: Immunohistochemical staining, immunoblotting and the database from TCGA were used to analyze the clinical relevance of ARNTL2, enolase 1 (ENO1) and solute carrier family 31 member 1 (SLC31A1) in BLCA. The function of ARNTL2 was explored by cell proliferation assay, apoptosis, colony formation and xenografted tumorigenesis. The molecular mechanisms of ARNTL2-driving BLCA development were investigated by RT-qPCR, immunoblotting and luciferase assays. Glycolysis was checked by measuring glucose consumption and lactate production. ENO1 activity was assessed by using indicated assay kit. RESULTS: Overexpression of ARNTL2 facilitates the proliferation and tumorigenesis of BLCA cells through suppression of apoptosis and enhancement of glycolysis. Up-regulation of SLC31A1, ENO1, and enhancement of SLC31A1-mediated ENO1 activity were critical for ARNTL2-triggered glycolysis and malignant growth in BLCA cells. ARNTL2 was positively correlated with SLC31A1 and ENO1 in BLCA patients. High expression of ARNTL2, SLC31A1 or ENO1 predicted the poor prognosis of BLCA patients. Depletion of SLC31A1 and inhibition of glycolysis completely blunted the growth ability of BLCA cells. CONCLUSION: In summary, ARNTL2 facilitates the progression of BLCA via activating ENO1-mediated glycolysis in a SLC31A1-independent and -dependent manner. Inhibiting SLC31A1 and glycolysis may be an aspirational approach for the treatment of BLCA patients with overexpression of ARNTL2.


Assuntos
Fatores de Transcrição ARNTL , Proliferação de Células , Proteínas de Ligação a DNA , Glicólise , Fosfopiruvato Hidratase , Proteínas Supressoras de Tumor , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Humanos , Fosfopiruvato Hidratase/metabolismo , Fosfopiruvato Hidratase/genética , Animais , Camundongos , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Progressão da Doença , Camundongos Nus , Apoptose , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos Endogâmicos BALB C , Carcinogênese/metabolismo , Carcinogênese/genética , Biomarcadores Tumorais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...