Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.942
Filtrar
1.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950288

RESUMO

Research advances over the past 30 years have confirmed a critical role for genetics in the etiology of dilated cardiomyopathies (DCMs). However, full knowledge of the genetic architecture of DCM remains incomplete. We identified candidate DCM causal gene, C10orf71, in a large family with 8 patients with DCM by whole-exome sequencing. Four loss-of-function variants of C10orf71 were subsequently identified in an additional group of492 patients with sporadic DCM from 2 independent cohorts. C10orf71 was found to be an intrinsically disordered protein specifically expressed in cardiomyocytes. C10orf71-KO mice had abnormal heart morphogenesis during embryonic development and cardiac dysfunction as adults with altered expression and splicing of contractile cardiac genes. C10orf71-null cardiomyocytes exhibited impaired contractile function with unaffected sarcomere structure. Cardiomyocytes and heart organoids derived from human induced pluripotent stem cells with C10orf71 frameshift variants also had contractile defects with normal electrophysiological activity. A rescue study using a cardiac myosin activator, omecamtiv mecarbil, restored contractile function in C10orf71-KO mice. These data support C10orf71 as a causal gene for DCM by contributing to the contractile function of cardiomyocytes. Mutation-specific pathophysiology may suggest therapeutic targets and more individualized therapy.


Assuntos
Cardiomiopatia Dilatada , Mutação da Fase de Leitura , Camundongos Knockout , Miócitos Cardíacos , Organoides , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/metabolismo , Modelos Animais de Doenças , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Organoides/metabolismo , Organoides/patologia
2.
Nat Commun ; 15(1): 5812, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987251

RESUMO

RagGTPases (Rags) play an essential role in the regulation of cell metabolism by controlling the activities of both mechanistic target of rapamycin complex 1 (mTORC1) and Transcription factor EB (TFEB). Several diseases, herein named ragopathies, are associated to Rags dysfunction. These diseases may be caused by mutations either in genes encoding the Rags, or in their upstream regulators. The resulting phenotypes may encompass a variety of clinical features such as cataract, kidney tubulopathy, dilated cardiomyopathy and several types of cancer. In this review, we focus on the key clinical, molecular and physio-pathological features of ragopathies, aiming to shed light on their underlying mechanisms.


Assuntos
Mutação , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Animais , Catarata/genética , Cardiomiopatia Dilatada/genética
3.
Scand Cardiovasc J ; 58(1): 2373083, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39024033

RESUMO

OBJECTIVE: This paper was performed to decipher the serum microRNA (miR)-125b-5p expression in patients with dilated cardiomyopathy (DCM) combined with heart failure (HF) and its effect on myocardial fibrosis. METHODS: Serum miR-125b-5p expression, LVEDD, LVESD, LVEF, LVFS, and NT-proBNP levels were evaluated in clinical samples. A rat DCM model was established by continuous intraperitoneal injection of adriamycin and treated with miR-125b-5p agomir and its negative control. Cardiac function, serum TNF-α, hs-CRP, and NT-proBNP levels, pathological changes in myocardial tissues, cardiomyocyte apoptosis, and the expression levels of miR-125b-5p and fibrosis-related factors were detected in rats. RESULTS: In comparison to the control group, the case group had higher levels of LVEDD, LVESD, and NT-pro-BNP, and lower levels of LVEF, LVFS, and miR-125b-5p expression levels. Overexpression of miR-125b-5p effectively led to the improvement of cardiomyocyte hypertrophy and collagen arrangement disorder in DCM rats, the reduction of blue-stained collagen fibers in the interstitial myocardium, the reduction of the levels of TNF-α, hs-CRP, and NT-proBNP and the expression levels of TGF-1ß, Collagen I, and α-SMA, and the reduction of the number of apoptosis in cardiomyocytes. CONCLUSION: Overexpression of miR-125b-5p is effective in ameliorating myocardial fibrosis.


Assuntos
Apoptose , Cardiomiopatia Dilatada , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca , MicroRNAs , Miocárdio , Função Ventricular Esquerda , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/sangue , Cardiomiopatia Dilatada/patologia , MicroRNAs/sangue , MicroRNAs/genética , MicroRNAs/metabolismo , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Masculino , Humanos , Miocárdio/patologia , Miocárdio/metabolismo , Pessoa de Meia-Idade , Feminino , Estudos de Casos e Controles , Ratos Sprague-Dawley , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/genética , Remodelação Ventricular , Fragmentos de Peptídeos/sangue , Adulto , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Idoso , Volume Sistólico
4.
Int J Med Sci ; 21(9): 1769-1782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006834

RESUMO

Dilated cardiomyopathy (DCM) causes heart failure and sudden death. Epigenetics is crucial in cardiomyopathy susceptibility and progression; however, the relationship between epigenetics, particularly DNA methylation, and DCM remains unknown. Therefore, this study identified aberrantly methylated differentially expressed genes (DEGs) associated with DCM using bioinformatics analysis and characterized their clinical utility in DCM. DNA methylation expression profiles and transcriptome data from public datasets of human DCM and healthy control cardiac tissues were obtained from the Gene Expression Omnibus public datasets. Then an epigenome-wide association study was performed. DEGs were identified in both DCM and healthy control cardiac tissues. In total, 3,353 cytosine-guanine dinucleotide sites annotated to 2,818 mRNAs were identified, and 479 DCM-related genes were identified. Subsequently, core genes were screened using logistic, least absolute shrinkage and selection operator, random forest, and support vector machine analyses. The overlapping of these genes resulted in DEGs with abnormal methylation patterns. Cross-tabulation analysis identified 8 DEGs with abnormal methylation. Real-time quantitative polymerase chain reaction confirmed the expression of aberrantly methylated DEGs in mice. In DCM murine cardiac tissues, the expressions of SLC16A9, SNCA, PDE5A, FNDC1, and HTRA1 were higher compared to normal murine cardiac tissues. Moreover, logistic regression model associated with aberrantly methylated DEGs was developed to evaluate the diagnostic value, and the area under the receiver operating characteristic curve was 0.949, indicating that the diagnostic model could reliably distinguish DCM from non-DCM samples. In summary, our study identified 5 DEGs through integrated bioinformatic analysis and in vivo experiments, which could serve as potential targets for further comprehensive investigation.


Assuntos
Cardiomiopatia Dilatada , Biologia Computacional , Metilação de DNA , Perfilação da Expressão Gênica , Cardiomiopatia Dilatada/genética , Metilação de DNA/genética , Humanos , Animais , Camundongos , Epigênese Genética , Transcriptoma/genética , Masculino , Regulação da Expressão Gênica/genética
5.
Commun Biol ; 7(1): 702, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849449

RESUMO

The Drosophila model is pivotal in deciphering the pathophysiological underpinnings of various human ailments, notably aging and cardiovascular diseases. Cutting-edge imaging techniques and physiology yield vast high-resolution videos, demanding advanced analysis methods. Our platform leverages deep learning to segment optical microscopy images of Drosophila hearts, enabling the quantification of cardiac parameters in aging and dilated cardiomyopathy (DCM). Validation using experimental datasets confirms the efficacy of our aging model. We employ two innovative approaches deep-learning video classification and machine-learning based on cardiac parameters to predict fly aging, achieving accuracies of 83.3% (AUC 0.90) and 79.1%, (AUC 0.87) respectively. Moreover, we extend our deep-learning methodology to assess cardiac dysfunction associated with the knock-down of oxoglutarate dehydrogenase (OGDH), revealing its potential in studying DCM. This versatile approach promises accelerated cardiac assays for modeling various human diseases in Drosophila and holds promise for application in animal and human cardiac physiology under diverse conditions.


Assuntos
Envelhecimento , Cardiomiopatia Dilatada , Modelos Animais de Doenças , Aprendizado de Máquina , Animais , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Dilatada/genética , Envelhecimento/fisiologia , Drosophila melanogaster/fisiologia , Aprendizado Profundo , Coração/fisiopatologia , Coração/fisiologia , Humanos , Drosophila/fisiologia
6.
PLoS One ; 19(6): e0293105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889130

RESUMO

Obg-like ATPase 1 (OLA1) protein has GTP and ATP hydrolyzing activities and is important for cellular growth and survival. The human OLA1 gene maps to chromosome 2 (locus 2q31.1), near Titin (TTN), which is associated with familial dilated cardiomyopathy (DCM). In this study, we found that expression of OLA1 was significantly downregulated in failing human heart tissue (HF) compared to non-failing hearts (NF). Using the Sanger sequencing method, we characterized the human OLA1 gene and screened for mutations in the OLA1 gene in patients with failing and non-failing hearts. Among failing and non-failing heart patients, we found 15 different mutations in the OLA1 gene, including two transversions, one substitution, one deletion, and eleven transitions. All mutations were intronic except for a non-synonymous 5144A>G, resulting in 254Tyr>Cys in exon 8 of the OLA1 gene. Furthermore, haplotype analysis of these mutations revealed that these single nucleotide polymorphisms (SNPs) are linked to each other, resulting in disease-specific haplotypes. Additionally, to screen the 254Tyr>Cys point mutation, we developed a cost-effective, rapid genetic screening PCR test that can differentiate between homozygous (AA and GG) and heterozygous (A/G) genotypes. Our results demonstrate that this PCR test can effectively screen for OLA1 mutation-associated cardiomyopathy in human patients using easily accessible cells or tissues, such as blood cells. These findings have important implications for the diagnosis and treatment of cardiomyopathy.


Assuntos
Insuficiência Cardíaca , Polimorfismo de Nucleotídeo Único , Humanos , Insuficiência Cardíaca/genética , Masculino , Feminino , Haplótipos , Reação em Cadeia da Polimerase/métodos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/diagnóstico , Pessoa de Meia-Idade , Adulto , Testes Genéticos/métodos , Mutação , Adenosina Trifosfatases/genética
7.
Biomolecules ; 14(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38927106

RESUMO

Dilated cardiomyopathy (DCM) is a common cause of heart failure (HF) and heart transplantation (HTx), with genetic factors playing a significant role. In recent years, the RNA-binding protein motif 20 (RBM20), which affects the gene splicing of various proteins with different cellular functions, was identified as the first DCM gene with regulatory properties. Variants of RBM20 have been associated with severe forms of DCM. The aim of this critical systematic review was to analyse RBM20 cardiomyopathy clinical features and outcomes. According to PRISMA guidelines, a search was run in the PubMed, Scopus and Web of Science electronic databases using the following keywords: "RBM20"; "cardiomyopathy"; "arrhythmias"; "heart failure". A total of 181 records were screened, of which 27 studies were potentially relevant to the topic. Through the application of inclusion and exclusion criteria, eight papers reporting 398 patients with RBM20 pathogenic variants were analysed. The mean age at presentation was 41 years. Familiarity with cardiomyopathy was available in 59% of cases, with 55% of probands reporting a positive family history. Imaging data indicated a mild reduction of left ventricular ejection fraction (mean LVEF 40%), while tissue characterization was reported in 24.3% of cases, showing late gadolinium enhancement in 33% of patients. Composite outcomes of sustained monomorphic ventricular tachycardia or ventricular fibrillation occurred in 19.4% of patients, with 12% undergoing HTx. There were no gender differences in arrhythmic outcomes, while 96.4% of patients who underwent HTx were male. In conclusion, RBM20 cardiomyopathy exhibits a severe phenotypic expression, both in terms of arrhythmic burden and HF progression.


Assuntos
Cardiomiopatia Dilatada , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Cardiomiopatia Dilatada/genética , Masculino , Feminino , Adulto
8.
Circ Res ; 135(2): 301-313, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38860363

RESUMO

BACKGROUND: The tumor suppressor and proapoptotic transcription factor P53 is induced (and activated) in several forms of heart failure, including cardiotoxicity and dilated cardiomyopathy; however, the precise mechanism that coordinates its induction with accessibility to its transcriptional promoter sites remains unresolved, especially in the setting of mature terminally differentiated (nonreplicative) cardiomyocytes. METHODS: Male and female control or TRIM35 (tripartite motif containing 35) overexpression adolescent (aged 1-3 months) and adult (aged 4-6 months) transgenic mice were used for all in vivo experiments. Primary adolescent or adult mouse cardiomyocytes were isolated from control or TRIM35 overexpression transgenic mice for all in vitro experiments. Adenovirus or small-interfering RNA was used for all molecular experiments to overexpress or knockdown, respectively, target genes in primary mouse cardiomyocytes. Patient dilated cardiomyopathy or nonfailing left ventricle samples were used for translational and mechanistic insight. Chromatin immunoprecipitation and DNA sequencing or quantitative real-time polymerase chain reaction (qPCR) was used to assess P53 binding to its transcriptional promoter targets, and RNA sequencing was used to identify disease-specific signaling pathways. RESULTS: Here, we show that E3-ubiquitin ligase TRIM35 can directly monoubiquitinate lysine-120 (K120) on histone 2B in postnatal mature cardiomyocytes. This epigenetic modification was sufficient to promote chromatin remodeling, accessibility of P53 to its transcriptional promoter targets, and elongation of its transcribed mRNA. We found that increased P53 transcriptional activity (in cardiomyocyte-specific Trim35 overexpression transgenic mice) was sufficient to initiate heart failure and these molecular findings were recapitulated in nonischemic human LV dilated cardiomyopathy samples. CONCLUSIONS: These findings suggest that TRIM35 and the K120Ub-histone 2B epigenetic modification are molecular features of cardiomyocytes that can collectively predict dilated cardiomyopathy pathogenesis.


Assuntos
Insuficiência Cardíaca , Histonas , Camundongos Transgênicos , Miócitos Cardíacos , Proteína Supressora de Tumor p53 , Ubiquitinação , Animais , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Feminino , Histonas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Células Cultivadas , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Regiões Promotoras Genéticas , Camundongos Endogâmicos C57BL
9.
Circ Res ; 135(3): 434-449, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38864216

RESUMO

BACKGROUND: Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS: We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS: lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 (nuclear factor of activated T cells/myocyte enhancer factor-2) pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1 (KRAB-associated protein-1). lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS: These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.


Assuntos
Cardiomegalia , Camundongos Knockout , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Camundongos , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Cardiomegalia/patologia , Camundongos Endogâmicos C57BL , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/prevenção & controle , Remodelação Ventricular
11.
Sci Rep ; 14(1): 13942, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886541

RESUMO

Dilated cardiomyopathy (DCM) is a common cause of heart failure, thromboembolism, arrhythmias, and sudden cardiac death. The quality of life and long-term survival rates of patients with dilated DCM have greatly improved in recent decades. Nevertheless, the clinical prognosis for DCM patients remains unfavorable. The primary driving factors underlying the pathogenesis of DCM remain incompletely understood. The present study aimed to identify driving factors underlying the pathogenesis of DCM from the perspective of gene regulatory networks. Single-cell RNA sequencing data and bulk RNA data were obtained from the Gene Expression Omnibus (GEO) database. Differential gene analysis, single-cell genomics analysis, and functional enrichment analysis were conducted using R software. The construction of Gene Regulatory Networks was performed using Python. We used the pySCENIC method to analyze the single-cell data and identified 401 regulons. Through variance decomposition, we selected 19 regulons that showed significant responsiveness to DCM. Next, we employed the ssGSEA method to assess regulons in two bulk RNA datasets. Significant statistical differences were observed in 9 and 13 regulons in each dataset. By intersecting these differentiated regulons and identifying shared targets that appeared at least twice, we successfully pinpointed three differentially expressed targets across both datasets. In this study, we assessed and identified 19 gene regulatory networks that were responsive to the disease. Furthermore, we validated these networks using two bulk RNA datasets of DCM. The elucidation of dysregulated regulons and targets (CDKN1A, SAT1, ZFP36) enhances the molecular understanding of DCM, aiding in the development of tailored therapies for patients.


Assuntos
Cardiomiopatia Dilatada , Redes Reguladoras de Genes , Análise de Sequência de RNA , Análise de Célula Única , Cardiomiopatia Dilatada/genética , Análise de Célula Única/métodos , Humanos , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica , RNA/genética , RNA/metabolismo , Biologia Computacional/métodos , Regulação da Expressão Gênica
12.
Mol Genet Genomic Med ; 12(6): e2486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924380

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) is characterized by dilatation of the left ventricle, systolic dysfunction, and normal or reduced thickness of the left ventricular wall. It is a leading cause of heart failure and cardiac death at a young age. Cases with neonatal onset DCM were correlated with severe clinical presentation and poor prognosis. A monogenic molecular etiology accounts for nearly half of cases. FAMILY DESCRIPTION: Here, we report a family with three deceased offspring at the age of 1 year old. The autopsy of the first deceased infant revealed a DCM. The second infant presented a DCM phenotype with a severely reduced Left Ventricular Ejection Fraction (LVEF) of 10%. Similarly, the third infant showed a severe DCM phenotype with LVEF of 30% as well, in addition to eccentric mitral insufficiency. RESULTS: Exome sequencing was performed for the trio (the second deceased infant and her parents). Data analysis following the autosomal dominant and recessive patterns of inheritance was carried out along with a mitochondrial pathways-based analysis. We identified a homozygous frameshift variant in the TNNI3 gene (c.204delG; p.(Arg69AlafsTer8)). This variant has been recently reported in the ClinVar database in association with cardiac phenotypes as pathogenic or likely pathogenic and classified as pathogenic according to ACMG. CONCLUSION: Genetic counseling was provided for the family and a prenatal diagnosis of choronic villus was proposed in the absence of pre-implantation genetic diagnosis possibilities. Our study expands the case series of early-onset DCM patients with a protein-truncating variant in the TNNI3 gene by reporting three affected infant siblings.


Assuntos
Cardiomiopatia Dilatada , Consanguinidade , Mutação da Fase de Leitura , Homozigoto , Linhagem , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Feminino , Masculino , Lactente , Fenótipo , Troponina I
15.
Biochem Biophys Res Commun ; 723: 150175, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38820625

RESUMO

BACKGROUND: Variants of the SCN5A gene, which encodes the NaV1.5 cardiac sodium channel, have been linked to arrhythmic disorders associated with dilated cardiomyopathy (DCM). However, the precise pathological mechanisms remain elusive. The present study aimed to elucidate the pathophysiological consequences of the DCM-linked Nav1.5/R219H variant, which is known to generate a gating pore current, using patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cultured in monolayers. METHODS: Ventricular- and atrial-like hiPSC-CM monolayers were generated from DCM patients carrying the R219H SCN5A variant as well as from healthy control individuals. CRISPR-corrected hiPSC-CMs served as isogenic controls. Simultaneous optical mapping of action potentials (APs) and calcium transients (CaTs) was employed to measure conduction velocities (CVs) and AP durations (APDs) and served as markers of electrical excitability. Calcium handling was evaluated by assessing CaT uptake (half-time to peak), recapture (tau of decay), and durations (TD50 and TD80). A multi-electrode array (MEA) analysis was conducted on hiPSC-CM monolayers to measure field potential (FP) parameters, including corrected Fridericia FP durations (FPDc). RESULTS: Our results revealed that CVs were significantly reduced by more than 50 % in both ventricular- and atrial-like hiPSC-CM monolayers carrying the R219H variant compared to the control group. APDs were also prolonged in the R219H group compared to the control and CRISPR-corrected groups. CaT uptake, reuptake, and duration were also markedly delayed in the R219H group compared to the control and CRISPR-corrected groups in both the ventricular- and the atrial-like hiPSC-CM monolayers. Lastly, the MEA data revealed a notably prolonged FPDc in the ventricular- and atrial-like hiPSC-CMs carrying the R219H variant compared to the control and isogenic control groups. CONCLUSIONS: These findings highlight the impact of the gating pore current on AP propagation and calcium homeostasis within a functional syncytium environment and offer valuable insights into the potential mechanisms underlying DCM pathophysiology.


Assuntos
Potenciais de Ação , Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Canal de Sódio Disparado por Voltagem NAV1.5 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/citologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Dilatada/patologia , Cálcio/metabolismo , Ativação do Canal Iônico , Células Cultivadas , Fenômenos Eletrofisiológicos
16.
Sci China Life Sci ; 67(6): 1155-1169, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811441

RESUMO

CFIRL is a long noncoding RNA (lncRNA), we previously identified as the most significantly upregulated lncRNA in the failing hearts of patients with dilated cardiomyopathy (DCM). In this study, we determined the function of CFIRL and its role in DCM. Real-time polymerase chain reaction and in situ hybridization assays revealed that CFIRL was primarily localized in the nucleus of cardiac fibroblasts and robustly increased in failing hearts. Global knockdown or fibroblast-specific knockout of CFIRL attenuated transverse aortic constriction (TAC)-induced cardiac dysfunction and fibrosis in vivo. Overexpression of CFIRL in vitro promoted fibroblast proliferation and aggravated angiotensin II-induced differentiation to myofibroblasts. CFIRL knockdown attenuated these effects. Mechanistically, RNA pull-down assay and gene expression profiling revealed that CFIRL recruited ENO1, a newly identified noncanonical transcriptional factor, to activate IL-6 transcription. IL-6 exerted a paracrine effect on cardiomyocytes to promote cardiac hypertrophy, which can be prevented by CFIRL knockdown. These findings uncover the critical role of CFIRL, a fibroblast-associated lncRNA, in heart failure by facilitating crosstalk between fibroblasts and cardiomyocytes. CFIRL knockdown might be a potent strategy to prevent cardiac remodeling in heart failure, particularly in DCM.


Assuntos
Cardiomiopatia Dilatada , Fibroblastos , Fibrose , Miócitos Cardíacos , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Animais , Fibroblastos/metabolismo , Masculino , Humanos , Miócitos Cardíacos/metabolismo , Camundongos , Proliferação de Células , Interleucina-6/metabolismo , Interleucina-6/genética , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Miofibroblastos/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diferenciação Celular , Técnicas de Silenciamento de Genes
17.
J Clin Invest ; 134(13)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743494

RESUMO

Cardiomyocyte sarcomeres contain localized ribosomes, but the factors responsible for their localization and the significance of localized translation are unknown. Using proximity labeling, we identified ribosomal protein SA (RPSA) as a Z-line protein. In cultured cardiomyocytes, the loss of RPSA led to impaired local protein translation and reduced sarcomere integrity. By employing CAS9-expressing mice, along with adeno-associated viruses expressing CRE recombinase and single-guide RNAs targeting Rpsa, we knocked out Rpsa in vivo and observed mislocalization of ribosomes and diminished local translation. These genetic mosaic mice with Rpsa knockout in a subset of cardiomyocytes developed dilated cardiomyopathy, featuring atrophy of RPSA-deficient cardiomyocytes, compensatory hypertrophy of unaffected cardiomyocytes, left ventricular dilation, and impaired contractile function. We demonstrated that RPSA C-terminal domain is sufficient for localization to the Z-lines and that if the microtubule network is disrupted RPSA loses its sarcomeric localization. These findings highlight RPSA as a ribosomal factor essential for ribosome localization to the Z-line, facilitating local translation and sarcomere maintenance.


Assuntos
Camundongos Knockout , Miócitos Cardíacos , Biossíntese de Proteínas , Proteínas Ribossômicas , Sarcômeros , Animais , Sarcômeros/metabolismo , Sarcômeros/patologia , Sarcômeros/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ribossomos/metabolismo , Ribossomos/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia
18.
J Gen Physiol ; 156(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709176

RESUMO

Dilated cardiomyopathy (DCM) is a condition characterized by impaired cardiac function, due to myocardial hypo-contractility, and is associated with point mutations in ß-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super-relaxed" state (SRX), which may be further stabilized by a structural state known as the "interacting heads motif" (IHM). Here, we sought to determine whether hypo-contractility of DCM myocardium results from reduced function of individual myosin molecules or from decreased myosin availability to interact with actin due to increased IHM/SRX stabilization. We used an established DCM myosin mutation, E525K, and characterized the biochemical and mechanical activity of wild-type and mutant human ß-cardiac myosin constructs that differed in the length of their coiled-coil tail, which dictates their ability to form the IHM/SRX state. We found that short-tailed myosin constructs exhibited low IHM/SRX content, elevated actin-activated ATPase activity, and fast velocities in unloaded motility assays. Conversely, longer-tailed constructs exhibited higher IHM/SRX content and reduced actomyosin ATPase and velocity. Our modeling suggests that reduced velocities may be attributed to IHM/SRX-dependent sequestration of myosin heads. Interestingly, longer-tailed E525K mutants showed no apparent impact on velocity or actomyosin ATPase at low ionic strength but stabilized IHM/SRX state at higher ionic strength. Therefore, the hypo-contractility observed in DCM may be attributable to reduced myosin head availability caused by enhanced IHM/SRX stability in E525K mutants.


Assuntos
Miosinas Cardíacas , Cardiomiopatia Dilatada , Miosinas Ventriculares , Animais , Humanos , Actinas/metabolismo , Actinas/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Mutação , Contração Miocárdica/fisiologia , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo
19.
Cell Rep ; 43(6): 114284, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38814785

RESUMO

Nuclear envelope (NE) ruptures are emerging observations in Lamin-related dilated cardiomyopathy, an adult-onset disease caused by loss-of-function mutations in Lamin A/C, a nuclear lamina component. Here, we test a prevailing hypothesis that NE ruptures trigger the pathological cGAS-STING cytosolic DNA-sensing pathway using a mouse model of Lamin cardiomyopathy. The reduction of Lamin A/C in cardio-myocyte of adult mice causes pervasive NE ruptures in cardiomyocytes, preceding inflammatory transcription, fibrosis, and fatal dilated cardiomyopathy. NE ruptures are followed by DNA damage accumulation without causing immediate cardiomyocyte death. However, cGAS-STING-dependent inflammatory signaling remains inactive. Deleting cGas or Sting does not rescue cardiomyopathy in the mouse model. The lack of cGAS-STING activation is likely due to the near absence of cGAS expression in adult cardiomyocytes at baseline. Instead, extracellular matrix (ECM) signaling is activated and predicted to initiate pro-inflammatory communication from Lamin-reduced cardiomyocytes to fibroblasts. Our work nominates ECM signaling, not cGAS-STING, as a potential inflammatory contributor in Lamin cardiomyopathy.


Assuntos
Matriz Extracelular , Proteínas de Membrana , Miócitos Cardíacos , Membrana Nuclear , Nucleotidiltransferases , Transdução de Sinais , Animais , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Membrana Nuclear/metabolismo , Matriz Extracelular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/genética , Dano ao DNA
20.
Circ Heart Fail ; 17(6): e011204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38813684

RESUMO

BACKGROUND: Acute myocarditis has been genetically linked to dilated cardiomyopathy (DCM), but the clinical significance remains uncertain. We investigated the prevalence and long-term prognosis of DCM and heart failure (HF) among unselected patients hospitalized with acute myocarditis and their first-degree relatives compared with an age- and sex-matched cohort. METHODS: This was an observational study utilizing the Danish nationwide registries, where all patients with a first-time myocarditis diagnosis from 1995 to 2018 were identified and matched (on birth year and sex) with 10 controls from the general population. RESULTS: Totally 3176 patients with acute myocarditis and 31 760 controls were included (median age, 49.8 [Q1-Q3, 32.5-70.2] years; 35.6% female). At baseline, patients with myocarditis had a higher prevalence of DCM (7 [0.2%] versus 8 [0.0%]) and HF (336 [10.6%] versus 695 [2.2%]) than controls; P<0.0001 for both. Patients with myocarditis more often had siblings with DCM (12 [0.4%] versus 17 [0.05%]) or HF (36 [1.1%] versus 89 [0.3%]); P<0.0001, odds ratios 7.09 (3.38-14.85) and 2.92 (1.25-6.80), respectively, whereas parental DCM and HF did not differ among patients with myocarditis and controls. Patients with myocarditis had greater 20-year incidence of DCM, HF, and all-cause mortality (0.5% [0.3%-0.9%], 15% [13%-17%], and 47% [44%-50%]) compared with controls (0.06% [0.03%-0.11%], 6.8% [6.4%-7.3%], and 34% [33%-35%]; P<0.0001). Having a first-degree relative with DCM or HF was associated with increased long-term mortality among the patients with myocarditis (hazard ratio, 1.40 [1.11-1.77]) but not among the controls (hazard ratio, 0.90 [0.81-1.01]; Pdifference=0.0008). CONCLUSIONS: Acute myocarditis aggregates with DCM within families, where it carries a worsened prognosis. A differential association between parents and siblings (with sibling preponderance) could suggest that additional environmental factors are important for myocarditis development even in predisposed individuals.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Miocardite , Sistema de Registros , Humanos , Miocardite/epidemiologia , Miocardite/genética , Miocardite/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Prevalência , Prognóstico , Dinamarca/epidemiologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/epidemiologia , Cardiomiopatia Dilatada/mortalidade , Idoso , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/genética , Doença Aguda , Fatores de Risco , Predisposição Genética para Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...