Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.538
Filtrar
1.
Int J Med Sci ; 21(9): 1629-1639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006843

RESUMO

The complete molecular mechanism underlying doxorubicin-induced cardiomyopathy remains incompletely elucidated. In this investigation, we engineered mice with cardiomyocyte-specific sorting nexin 3 knockout (SNX3Cko ) to probe the potential protective effects of SNX3 ablation on doxorubicin-triggered myocardial injury, focusing on GPX4-dependent ferroptosis. Our findings indicate that SNX3 deletion normalized heart contractile/relaxation function and thwarted the escalation of cardiac injury biomarkers following doxorubicin exposure. Additionally, SNX3 deletion in the heart mitigated the inflammatory response and oxidative stress in the presence of doxorubicin. At the molecular level, the detrimental effects of doxorubicin-induced cell death, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction were alleviated by SNX3 deficiency. Molecular analysis revealed the activation of GPX4-mediated ferroptosis by doxorubicin, whereas loss of SNX3 prevented the initiation of GPX4-dependent ferroptosis. Furthermore, treatment with erastin, a ferroptosis inducer, markedly reduced cell viability, exacerbated ER stress, and induced mitochondrial dysfunction in SNX3-depleted cardiomyocytes upon doxorubicin exposure. In summary, our results demonstrate that SNX3 deficiency shielded the heart from doxorubicin-induced myocardial dysfunction by modulating GPX4-associated ferroptosis.


Assuntos
Cardiomiopatias , Doxorrubicina , Ferroptose , Camundongos Knockout , Miócitos Cardíacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Nexinas de Classificação , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Animais , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/patologia , Cardiomiopatias/genética , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos
2.
BMC Cardiovasc Disord ; 24(1): 339, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965461

RESUMO

BACKGROUND: Zolpidem is a non-benzodiazepine hypnotic widely used to manage insomnia. Zolpidem-triggered atrial fibrillation (AF) in patients with cardiomyopathy has never been reported before. CASE PRESENTATION: A 40-year-old man with Duchenne muscular dystrophy-related cardiomyopathy attempted suicide and developed new-onset AF after zolpidem overdose. One year before admission, the patient visited our clinic due to chest discomfort and fatigue after daily walks for 1 month; both electrocardiography (ECG) and 24-hour Holter ECG results did not detect AF. After administration of cardiac medication (digoxin 0.125 mg/day, spironolactone 40 mg/day, furosemide 20 mg/day, bisoprolol 5 mg/day, sacubitril/valsartan 12/13 mg/day), he felt better. AF had never been observed before this admission via continuous monitoring during follow-up. Sixteen days before admission, the patient saw a sleep specialist and started zolpidem tartrate tablets (10 mg/day) due to insomnia for 6 months; ECG results revealed no significant change. The night before admission, the patient attempted suicide by overdosing on 40 mg of zolpidem after an argument, which resulted in severe lethargy. Upon admission, his ECG revealed new-onset AF, necessitating immediate cessation of zolpidem. Nine hours into admission, AF spontaneously terminated into normal sinus rhythm. Results from the ECG on the following days and the 24-hour Holter ECG at 1-month follow-up showed that AF was not detected. CONCLUSIONS: This study provides valuable clinical evidence indicating that zolpidem overdose may induce AF in patients with cardiomyopathy. It serves as a critical warning for clinicians when prescribing zolpidem, particularly for patients with existing heart conditions. Further large-scale studies are needed to validate this finding and to explore the mechanisms between zolpidem and AF.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Zolpidem , Humanos , Zolpidem/efeitos adversos , Masculino , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/induzido quimicamente , Adulto , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/fisiopatologia , Cardiomiopatias/diagnóstico , Tentativa de Suicídio , Overdose de Drogas/diagnóstico , Frequência Cardíaca/efeitos dos fármacos , Piridinas/efeitos adversos
3.
Cancer Rep (Hoboken) ; 7(7): e2140, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39041627

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have led to improved outcomes for many cancer types. However, their use can also precipitate immune-related adverse events (irAEs) that can affect any organ system. While irAEs are often mild, they rarely affect multiple organ systems concurrently and can be fatal. CASE: We report a fatal case of myasthenia gravis, myositis, and cardiotoxicity overlap syndrome precipitated by the ICI pembrolizumab along with a brief review of available literature. CONCLUSION: Early recognition of high grade irAEs and prompt intervention is essential. Despite the poor prognosis of these overlap syndromes, current recommendations offer little guidance for severe cases and warrant a call for increased awareness and expansion of available therapeutics.


Assuntos
Anticorpos Monoclonais Humanizados , Inibidores de Checkpoint Imunológico , Miastenia Gravis , Miosite , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Miosite/induzido quimicamente , Miosite/diagnóstico , Miosite/imunologia , Miosite/patologia , Miastenia Gravis/induzido quimicamente , Miastenia Gravis/diagnóstico , Anticorpos Monoclonais Humanizados/efeitos adversos , Evolução Fatal , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/diagnóstico , Masculino , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Idoso , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/patologia
4.
J Pharmacol Sci ; 156(1): 9-18, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068035

RESUMO

Necroptosis, necrosis characterized by RIPK3-MLKL activation, has been proposed as a mechanism of doxorubicin (DOX)-induced cardiomyopathy. We showed that rapamycin, an mTORC1 inhibitor, attenuates cardiomyocyte necroptosis. Here we examined role of MLKL in DOX-induced myocardial damage and protective effects of rapamycin. Cardiomyopathy was induced in mice by intraperitoneal injections of DOX (10 mg/kg, every other day) and followed for 7 days. DOX-treated mice showed a significant decline in LVEF assessed by cardiac MRI (45.5 ± 5.1% vs. 65.4 ± 4.2%), reduction in overall survival rates, and increases in myocardial RIPK3 and MLKL expression compared with those in vehicle-treated mice, and those changes were prevented by administration of rapamycin (0.25 mg/kg) before DOX injection. In immunohistochemical analyses, p-MLKL signals were detected in the cardiomyocytes of DOX-treated mice, and the signals were reduced by rapamycin. Mlkl+/- and Mlkl-/- mice were similarly resistant to DOX-induced cardiac dysfunction, indicating that a modest reduction in MLKL level is sufficient to prevent the development of DOX-induced cardiomyopathy. However, evidence of cardiomyocyte necrosis assessed by C9 immunostaining, presence of replacement fibrosis, and electron microscopic analyses was negligible in the myocardium of DOX-treated mice. Thus, MLKL-mediated signaling contributes to DOX-induced cardiac dysfunction primarily by a necrosis-independent mechanism, which is inhibitable by rapamycin.


Assuntos
Cardiomiopatias , Doxorrubicina , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Necroptose , Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Sirolimo , Animais , Doxorrubicina/efeitos adversos , Proteínas Quinases/metabolismo , Sirolimo/farmacologia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Necroptose/efeitos dos fármacos , Masculino , Camundongos , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/toxicidade
5.
J Am Heart Assoc ; 13(12): e033733, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38860414

RESUMO

BACKGROUND: Chronic sympathetic stimulation drives desensitization and downregulation of ß1 adrenergic receptor (ß1AR) in heart failure. We aim to explore the differential downregulation subcellular pools of ß1AR signaling in the heart. METHODS AND RESULTS: We applied chronic infusion of isoproterenol to induced cardiomyopathy in male C57BL/6J mice. We applied confocal and proximity ligation assay to examine ß1AR association with L-type calcium channel, ryanodine receptor 2, and SERCA2a ((Sarco)endoplasmic reticulum calcium ATPase 2a) and Förster resonance energy transfer-based biosensors to probe subcellular ß1AR-PKA (protein kinase A) signaling in ventricular myocytes. Chronic infusion of isoproterenol led to reduced ß1AR protein levels, receptor association with L-type calcium channel and ryanodine receptor 2 measured by proximity ligation (puncta/cell, 29.65 saline versus 14.17 isoproterenol, P<0.05), and receptor-induced PKA signaling at the plasma membrane (Förster resonance energy transfer, 28.9% saline versus 1.9% isoproterenol, P<0.05) and ryanodine receptor 2 complex (Förster resonance energy transfer, 30.2% saline versus 10.6% isoproterenol, P<0.05). However, the ß1AR association with SERCA2a was enhanced (puncta/cell, 51.4 saline versus 87.5 isoproterenol, P<0.05), and the receptor signal was minimally affected. The isoproterenol-infused hearts displayed decreased PDE4D (phosphodiesterase 4D) and PDE3A and increased PDE2A, PDE4A, and PDE4B protein levels. We observed a reduced role of PDE4 and enhanced roles of PDE2 and PDE3 on the ß1AR-PKA activity at the ryanodine receptor 2 complexes and myocyte shortening. Despite the enhanced ß1AR association with SERCA2a, the endogenous norepinephrine-induced signaling was reduced at the SERCA2a complexes. Inhibiting monoamine oxidase A rescued the norepinephrine-induced PKA signaling at the SERCA2a and myocyte shortening. CONCLUSIONS: This study reveals distinct mechanisms for the downregulation of subcellular ß1AR signaling in the heart under chronic adrenergic stimulation.


Assuntos
Canais de Cálcio Tipo L , Proteínas Quinases Dependentes de AMP Cíclico , Regulação para Baixo , Isoproterenol , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Receptores Adrenérgicos beta 1 , Canal de Liberação de Cálcio do Receptor de Rianodina , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Transdução de Sinais , Animais , Receptores Adrenérgicos beta 1/metabolismo , Masculino , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Isoproterenol/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/fisiopatologia , Cardiomiopatias/metabolismo , Cardiomiopatias/induzido quimicamente , Transferência Ressonante de Energia de Fluorescência
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167208, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701956

RESUMO

OBJECTIVE: This study aims to investigate the cardiac protective effects and molecular mechanisms of electroacupuncture (EA) pre-treatment in lipopolysaccharide (LPS)-Induced Cardiomyopathy. METHODS AND RESULTS: Pre-treatment with EA was performed 30 min before intraperitoneal injection of LPS. Cardiac function changes in mice of the EA + LPS group were observed using electrocardiography, echocardiography, and enzyme linked immunosorbent assay (ELISA) and compared with the LPS group. The results demonstrated that EA pre-treatment significantly improved the survival rate of septic mice, alleviated the severity of endotoxemia, and exhibited notable cardiac protective effects. These effects were characterized by a reduction in ST-segment elevation on electrocardiography, an increase in ejection fraction (EF) and fraction shortening (FS) on echocardiography and a decrease in the expression of serum cardiac troponin I (cTn-I) levels. Serum exosomes obtained after EA pre-treatment were extracted and administered to septic mice, revealing significant cardiac protective effects of EA-derived exosomes. Furthermore, the antagonism of circulating exosomes in mice markedly suppressed the cardiac protective effects conferred by EA pre-treatment. Analysis of serum exosomes using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant upregulation of miR-381 expression after EA pre-treatment. Inhibition or overexpression of miR-381 through serotype 9 adeno-associated virus (AAV9)-mediated gene delivery demonstrated that overexpression of miR-381 exerted a cardiac protective effect, while inhibition of miR-381 significantly attenuated the cardiac protective effects conferred by EA pre-treatment. CONCLUSIONS: Our research findings have revealed a novel endogenous cardiac protection mechanism, wherein circulating exosomes derived from EA pre-treatment mitigate LPS-induced cardiac dysfunction via miR-381.


Assuntos
Cardiomiopatias , Eletroacupuntura , Exossomos , Lipopolissacarídeos , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo , Exossomos/genética , Eletroacupuntura/métodos , Camundongos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/terapia , Cardiomiopatias/patologia , Cardiomiopatias/genética , Cardiomiopatias/prevenção & controle , Lipopolissacarídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
7.
Mol Cell Biochem ; 479(7): 1817-1831, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696001

RESUMO

Doxorubicin (DOX) is a potent chemotherapeutic drug; however, its clinical use is limited due to its cardiotoxicity. Mitochondrial dysfunction plays a vital role in the pathogenesis of DOX-induced cardiomyopathy. Follistatin-like protein 1 (FSTL1) is a potent cardiokine that protects the heart from diverse cardiac diseases, such as myocardial infarction, cardiac ischemia/reperfusion injury, and heart failure. However, its role in DOX-induced cardiomyopathy is unclear. Therefore, the present study investigated whether administering recombinant FSTL1 could mitigate DOX-induced cardiomyopathy and clarified the underlying molecular mechanisms. FSTL1 treatment attenuated DOX-induced cardiac dysfunction, cardiac fibrosis, and cellular apoptosis by inhibiting excess mitochondrial matrix protein methionine sulfoxide reductase B2 (MsrB2)-mediated mitophagy. Furthermore, FSTL1 administration reduced the expression of apoptotic proteins, including MsrB2, Bax, caspase 3, mitochondrial Parkin, and LC3-II, increased myocardial ATP content, and decreased cardiac malondialdehyde levels, thus protecting mitochondrial function against DOX-induced cardiac injury. Furthermore, FSTL1 treatment protected the contractile properties of adult cardiomyocytes against DOX-induced injury in vitro. Furthermore, carbonyl cyanide m-chlorophenylhydrazone, a mitophagy inducer, impaired the protective effects of FSTL1 in DOX-treated H9c2 cardiomyocytes. In conclusion, these results show that FSTL1 is a novel therapeutic agent against DOX-induced cardiotoxicity that improves mitochondrial function and decreases mitophagy.


Assuntos
Cardiomiopatias , Doxorrubicina , Proteínas Relacionadas à Folistatina , Mitofagia , Miócitos Cardíacos , Mitofagia/efeitos dos fármacos , Animais , Doxorrubicina/efeitos adversos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/prevenção & controle , Ratos , Proteínas Relacionadas à Folistatina/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Masculino , Linhagem Celular , Apoptose/efeitos dos fármacos
8.
Clin Cardiol ; 47(5): e24278, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767024

RESUMO

Olanzapine, an atypical antipsychotic medication, has gained prominence in the treatment of schizophrenia and related psychotic disorders due to its effectiveness and perceived safety profile. However, emerging evidence suggests a potential link between olanzapine use and adverse cardiovascular effects, including cardiomyopathy. This narrative review explores the mechanisms, clinical implications, and management strategies associated with olanzapine-induced cardiomyopathy. A comprehensive review of the literature was conducted to investigate the relationship between olanzapine and cardiomyopathy. The search included epidemiological studies, clinical case reports, and mechanistic research focusing on the pathophysiology of olanzapine-induced cardiomyopathy. The review also examined treatment strategies for managing this potential complication. Olanzapine-induced cardiomyopathy is hypothesized to be associated with metabolic disturbances and receptor antagonism. The metabolic effects of olanzapine, such as weight gain, insulin resistance, and dyslipidemia, share similarities with obesity-related cardiomyopathy. Additionally, olanzapine's antagonism of certain receptors may contribute to cardiovascular stress. The review highlighted that patients with new-onset heart failure and significant weight gain while on olanzapine should be closely monitored for signs of cardiomyopathy. Early detection and prompt withdrawal of olanzapine, along with initiation of goal-directed medical therapy, are crucial for mitigating this potentially life-threatening condition. The relationship between olanzapine and cardiomyopathy is complex and not yet fully understood. However, the potential for significant cardiovascular risk necessitates vigilance among healthcare providers. Early identification and management of olanzapine-induced cardiomyopathy can improve patient outcomes. Further research is needed to elucidate the precise mechanisms behind this adverse effect and to develop optimized treatment strategies for patients requiring antipsychotic therapy.


Assuntos
Antipsicóticos , Cardiomiopatias , Obesidade , Olanzapina , Humanos , Olanzapina/efeitos adversos , Antipsicóticos/efeitos adversos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/diagnóstico , Obesidade/complicações , Esquizofrenia/tratamento farmacológico , Diagnóstico Diferencial , Fatores de Risco
9.
Int J Med Sci ; 21(6): 983-993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774750

RESUMO

Previous studies have highlighted the protective effects of pyruvate kinase M2 (PKM2) overexpression in septic cardiomyopathy. In our study, we utilized cardiomyocyte-specific PKM2 knockout mice to further investigate the role of PKM2 in attenuating LPS-induced myocardial dysfunction, focusing on mitochondrial biogenesis and prohibitin 2 (PHB2). Our findings confirmed that the deletion of PKM2 in cardiomyocytes significantly exacerbated LPS-induced myocardial dysfunction, as evidenced by impaired contractile function and relaxation. Additionally, the deletion of PKM2 intensified LPS-induced myocardial inflammation. At the molecular level, LPS triggered mitochondrial dysfunction, characterized by reduced ATP production, compromised mitochondrial respiratory complex I/III activities, and increased ROS production. Intriguingly, the absence of PKM2 further worsened LPS-induced mitochondrial damage. Our molecular investigations revealed that LPS disrupted mitochondrial biogenesis in cardiomyocytes, a disruption that was exacerbated by the absence of PKM2. Given that PHB2 is known as a downstream effector of PKM2, we employed PHB2 adenovirus to restore PHB2 levels. The overexpression of PHB2 normalized mitochondrial biogenesis, restored mitochondrial integrity, and promoted mitochondrial function. Overall, our results underscore the critical role of PKM2 in regulating the progression of septic cardiomyopathy. PKM2 deficiency impeded mitochondrial biogenesis, leading to compromised mitochondrial integrity, increased myocardial inflammation, and impaired cardiac function. The overexpression of PHB2 mitigated the deleterious effects of PKM2 deletion. This discovery offers a novel insight into the molecular mechanisms underlying septic cardiomyopathy and suggests potential therapeutic targets for intervention.


Assuntos
Cardiomiopatias , Mitocôndrias Cardíacas , Biogênese de Organelas , Proibitinas , Piruvato Quinase , Sepse , Animais , Humanos , Masculino , Camundongos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Cardiomiopatias/patologia , Modelos Animais de Doenças , Lipopolissacarídeos , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sepse/metabolismo , Sepse/patologia , Sepse/genética
10.
Environ Toxicol ; 39(8): 4134-4147, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38651543

RESUMO

Doxorubicin (DOX) is a broad-spectrum antibiotic with potent anti-cancer activity. Nevertheless, despite having effective anti-neoplasm activity, its use has been clinically restricted due to its life-threatening side effects, such as cardiotoxicity. It is evident that betaine has anti-oxidant, and anti-inflammatory activity and has several beneficial effects, such as decreasing the amyloid-ß generation, reducing obesity, improving steatosis and fibrosis, and activating AMP-activated protein kinase (AMPK). However, whether betaine could mitigate DOX-induced cardiomyopathy is still unexplored. Cardiomyopathy was induced in male Sprague Dawley rats using DOX (4 mg/kg dose with a cumulative dose of 20 mg/kg, i.p.). Further, betaine (200 and 400 mg/kg) was co-treated with DOX through oral gavage for 28 days. After the completion of the study, several biochemical, oxidative stress parameters, histopathology, western blotting, and qRT-PCR were performed. Betaine treatment significantly reduced CK-MB, LDH, SGOT, and triglyceride levels, which are associated with cardiotoxicity. DOX-induced increased oxidative stress was also mitigated by betaine intervention as the SOD, catalase, MDA, and nitrite levels were restored. The histopathological investigation also confirmed the cardioprotective effect of betaine against DOX-induced cardiomyopathy as the tissue injury was reversed. Further, molecular analysis revealed that betaine suppressed the DOX-induced increased expression of phospho-p53, phospho-p38 MAPK, NF-kB p65, and PINK 1 with an upregulation of AMPK and downregulation of Nrf2 expression. Interestingly, qRT-PCR experiments show that betaine treatment alleviates the DOX-induced increase in inflammatory (TNF-α, NLRP3, and IL-6) and fibrosis (TGF-ß and Acta2) related gene expression, halting the cardiac injury. Interestingly, betaine also improves the mRNA expression of Nrf2, thus modulating the expression of antioxidant proteins and preventing oxidative damage. Here, we provide the first evidence that betaine treatment prevents DOX-induced cardiomyopathy by inhibiting oxidative stress, inflammation, and fibrosis by regulating AMPK/Nrf2/TGF-ß expression. We believe that betaine can be utilized as a potential novel therapeutic strategy for preventing DOX-induced cardiotoxicity.


Assuntos
Proteínas Quinases Ativadas por AMP , Betaína , Cardiomiopatias , Doxorrubicina , Fibrose , Inflamação , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta , Animais , Betaína/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Doxorrubicina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Ratos , Fator de Crescimento Transformador beta/metabolismo , Antibióticos Antineoplásicos/toxicidade
11.
Arch Toxicol ; 98(6): 1781-1794, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573338

RESUMO

Doxorubicin (DOX) is one of the most frequently used chemotherapeutic drugs belonging to the class of anthracyclines. However, the cardiotoxic effects of anthracyclines limit their clinical use. Recent studies have suggested that ferroptosis is the main underlying pathogenetic mechanism of DOX-induced cardiomyopathy (DIC). BTB-and-CNC homology 1 (Bach1) acts as a key role in the regulation of ferroptosis. However, the mechanistic role of Bach1 in DIC remains unclear. Therefore, this study aimed to investigate the underlying mechanistic role of Bach1 in DOX-induced cardiotoxicity using the DIC mice in vivo (DOX at cumulative dose of 20 mg/kg) and the DOX-treated H9c2 cardiomyocytes in vitro (1 µM). Our results show a marked upregulation in the expression of Bach1 in the cardiac tissues of the DOX-treated mice and the DOX-treated cardiomyocytes. However, Bach1-/- mice exhibited reduced lipid peroxidation and less severe cardiomyopathy after DOX treatment. Bach1 knockdown protected against DOX-induced ferroptosis in both in vivo and in vitro models. Ferrostatin-1 (Fer-1), a potent inhibitor of ferroptosis, significantly alleviated DOX-induced cardiac damage. However, the cardioprotective effects of Bach1 knockdown were reversed by pre-treatment with Zinc Protoporphyrin (ZnPP), a selective inhibitor of heme oxygenase-1(HO-1). Taken together, these findings demonstrated that Bach1 promoted oxidative stress and ferroptosis through suppressing the expression of HO-1. Therefore, Bach1 may present as a promising new therapeutic target for the prevention and early intervention of DOX-induced cardiotoxicity.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Cardiomiopatias , Doxorrubicina , Ferroptose , Heme Oxigenase-1 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos , Estresse Oxidativo , Animais , Ferroptose/efeitos dos fármacos , Doxorrubicina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Masculino , Camundongos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Linhagem Celular , Ratos , Cardiotoxicidade , Antibióticos Antineoplásicos/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Protoporfirinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Cicloexilaminas , Proteínas de Membrana , Fenilenodiaminas
12.
Biomed Pharmacother ; 174: 116534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565062

RESUMO

The isoproterenol (ISO)-induced myocardial fibrosis is considered a reliable and repeatable experimental model characterized by a relatively low mortality rate. Although is well-known that ISO stimulates the ß1 adrenergic receptors at the myocardial level, a high degree of heterogeneity emerges around the doses and duration of the treatment generating unclear results. Therefore, we propose to gain insights into the progression of ISO-induced myocardial fibrosis, in order to critically analyze and optimize the experimental model. Male Wistar rats (12-14-week-old) were submitted to subcutaneous injection of ISO, in particular, two doses were selected: the commonly used dose of 5 mg/kg and a lower dose of 1 mg/kg, administered for 3 and 6 days. Biochemical and histological examinations were conducted either immediately after the last administration or after a recovering period of 7 or 14 days from the initial administration. Noteworthy, from our investigation emerged that even the lower dose of ISO was able to induce the maximal biochemical and histological alterations, suggesting that lower doses should be considered to control the progression of the damage more precisely and to identify a prodromic phase in which intervention with pharmacological or nutraceutical tools can be effectively attempted.


Assuntos
Fibrose , Isoproterenol , Miocárdio , Ratos Wistar , Animais , Masculino , Miocárdio/patologia , Miocárdio/metabolismo , Ratos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Cardiomiopatias/prevenção & controle , Relação Dose-Resposta a Droga , Modelos Animais de Doenças
13.
J Nanobiotechnology ; 22(1): 195, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643173

RESUMO

Doxorubicin (DOX) is a chemotherapeutic agent widely used for tumor treatment. Nonetheless its clinical application is heavily limited by its cardiotoxicity. There is accumulated evidence that transplantation of mesenchymal stem cell-derived exosomes (MSC-EXOs) can protect against Dox-induced cardiomyopathy (DIC). This study aimed to examine the cardioprotective effects of EXOs isolated from human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) against DIC and explore the potential mechanisms. EXOs were isolated from the cultural supernatant of human BM-MSCs (BM-MSC-EXOs) and iPSC-MSCs (iPSC-MSC-EXOs) by ultracentrifugation. A mouse model of DIC was induced by intraperitoneal injection of Dox followed by tail vein injection of PBS, BM-MSC-EXOs, or iPSC-MSC-EXOs. Cardiac function, cardiomyocyte senescence and mitochondrial dynamics in each group were assessed. In vitro, neonatal mouse cardiomyocytes (NMCMs) were subjected to Dox and treated with BM-MSC-EXOs or iPSC-MSC-EXOs. The mitochondrial morphology and cellular senescence of NMCMs were examined by Mitotracker staining and senescence-associated-ß-galactosidase assay, respectively. Compared with BM-MSC-EXOs, mice treated with iPSC-MSC-EXOs displayed improved cardiac function and decreased cardiomyocyte mitochondrial fragmentation and senescence. In vitro, iPSC-MSC-EXOs were superior to BM-MSC-EXOs in attenuation of cardiomyocyte mitochondrial fragmentation and senescence caused by DOX. MicroRNA sequencing revealed a higher level of miR-9-5p in iPSC-MSC-EXOs than BM-MSC-EXOs. Mechanistically, iPSC-MSC-EXOs transported miR-9-5p into DOX-treated cardiomyocytes, thereby suppressing cardiomyocyte mitochondrial fragmentation and senescence via regulation of the VPO1/ERK signal pathway. These protective effects and cardioprotection against DIC were largely reversed by knockdown of miR-9-5p in iPSC-MSC-EXOs. Our results showed that miR-9-5p transferred by iPSC-MSC-EXOs protected against DIC by alleviating cardiomyocyte senescence via inhibition of the VPO1/ERK pathway. This study offers new insight into the application of iPSC-MSC-EXOs as a novel therapeutic strategy for DIC treatment.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiomiopatias/induzido quimicamente , Transdução de Sinais , Doxorrubicina
14.
Cardiovasc Res ; 120(9): 1024-1036, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38646672

RESUMO

AIMS: The anthracycline family of anticancer agents such as doxorubicin (DOX) can induce apoptotic death of cardiomyocytes and cause cardiotoxicity. We previously reported that DOX-induced apoptosis is accompanied by cardiomyocyte cell cycle re-entry. Cell cycle progression requires cyclin-dependent kinase 7 (CDK7)-mediated activation of downstream cell cycle CDKs. This study aims to determine whether CDK7 can be targeted for cardioprotection during anthracycline chemotherapy. METHODS AND RESULTS: DOX exposure induced CDK7 activation in mouse heart and isolated cardiomyocytes. Cardiac-specific ablation of Cdk7 attenuated DOX-induced cardiac dysfunction and fibrosis. Treatment with the covalent CDK7 inhibitor THZ1 also protected against DOX-induced cardiomyopathy and apoptosis. DOX treatment induced activation of the proapoptotic CDK2-FOXO1-Bim axis in a CDK7-dependent manner. In response to DOX, endogenous CDK7 directly bound and phosphorylated CDK2 at Thr160 in cardiomyocytes, leading to full CDK2 kinase activation. Importantly, inhibition of CDK7 further suppressed tumour growth when used in combination with DOX in an immunocompetent mouse model of breast cancer. CONCLUSION: Activation of CDK7 is necessary for DOX-induced cardiomyocyte apoptosis and cardiomyopathy. Our findings uncover a novel proapoptotic role for CDK7 in cardiomyocytes. Moreover, this study suggests that inhibition of CDK7 attenuates DOX-induced cardiotoxicity but augments the anticancer efficacy of DOX. Therefore, combined administration of CDK7 inhibitor and DOX may exhibit diminished cardiotoxicity but superior anticancer activity.


Assuntos
Apoptose , Cardiotoxicidade , Quinase 2 Dependente de Ciclina , Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Doxorrubicina , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Inibidores de Proteínas Quinases , Animais , Doxorrubicina/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Feminino , Fenilenodiaminas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fosforilação , Camundongos Knockout , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/enzimologia , Cardiomiopatias/prevenção & controle , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Antibióticos Antineoplásicos/toxicidade , Pirimidinas/farmacologia , Humanos , Fibrose , Linhagem Celular Tumoral , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
15.
ESC Heart Fail ; 11(4): 2410-2414, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38616291

RESUMO

The prevention and management of cancer therapy-related cardiac dysfunction (CTRCD) have become increasingly important. Recent studies have revealed the crucial role of genetics in determining the susceptibility to development of CTRCD. We present a case of a 65-year-old woman with breast cancer who developed recurrent CTRCD following low-dose chemotherapy, despite lacking conventional cardiovascular risk factors. Her medical history included anthracycline-associated cardiomyopathy, and her condition deteriorated significantly after treatment with HER2-targeted therapies. Through the use of multimodal imaging, we detected severe left ventricular systolic dysfunction. Further investigation with genetic testing revealed a likely pathogenic variant in the TNNT2 gene, suggesting a genetic predisposition to CTRCD. This case implies the potential role of genetic screening in identifying patients at risk for CTRCD and advocates for personalized chemotherapy and cardioprotective strategies.


Assuntos
Neoplasias da Mama , Cardiomiopatias , Predisposição Genética para Doença , Humanos , Feminino , Idoso , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Ecocardiografia , Antineoplásicos/efeitos adversos , Troponina T/genética
16.
Eur Rev Med Pharmacol Sci ; 28(5): 1641-1650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497849

RESUMO

OBJECTIVE: The pathogenesis of doxorubicin (DOX) induced cardiomyopathy (DCM) is still uncertain. We aimed to identify the critical genes and pathways involved in DCM based on bioinformatics analysis. MATERIALS AND METHODS: The GSE59672 and GSE23598 mice heart tissue microarray data were obtained from Gene Expression Omnibus (GEO) database. The "limma" package of R software was used to screen the differently expressed genes (DEGs). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses were performed on DEGs by using "clusterProfiler" package in R software. The PPI (Protein - Protein Interaction) network of DEGs constructed by STRING online database and thereby the top 15 hub genes selected by cytoHubba in Cytoscape software. The hub genes interaction was performed by GeneMANIA online database. The "Corrplot" R package was employed to assess hub genes correlation. RESULTS: Finally, a total of 492 and 501 DEGs were screened in GSE59672 and GSE23598 datasets, respectively. GO analyses revealed that DEGs were mainly involved in the regulation of extracellular matrix organization, metabolic process, regulation of collagen-containing extracellular matrix. KEGG pathway analyses indicated that DEGs were mainly involved in protein digestion and absorption, ECM-receptor interaction, phagosome, and p53 signaling pathway. Finally, the 8 hub genes were identified, including Col1a1, Col3a1, Col1a2, Col6a1, Ptprc, Tyrobp, Itgb2, and Ctss. CONCLUSIONS: The present study identified a series of key genes, including Col1a1, Col3a1, Col1a2, Col6a1, Ptprc, Tyrobp, Itgb2, and Ctss. In addition, important pathways were also discovered. The results of this study may provide a novel molecular mechanism and potential therapeutic targets for DCM.


Assuntos
Cardiomiopatias , Animais , Camundongos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Antígenos CD18 , Biologia Computacional , Bases de Dados Factuais , Doxorrubicina/efeitos adversos
17.
Sci Rep ; 14(1): 6971, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521855

RESUMO

Doxorubicin has been used extensively as a potent anticancer agent, but its clinical use is limited by its cardiotoxicity. However, the underlying mechanisms remain to be fully elucidated. In this study, we tested whether NADPH oxidase 2 (Nox2) mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced heart failure. Nox2 knockout (KO) and wild-type (WT) mice were randomly assigned to receive a single injection of doxorubicin (15 mg/kg, i.p.) or saline. WT doxorubicin mice exhibited the decreases in survival rate, left ventricular (LV) wall thickness and LV fractional shortening and the increase in the lung wet-to-dry weight ratio 1 week after the injections. These alterations were attenuated in Nox2 KO doxorubicin mice. In WT doxorubicin mice, myocardial oxidative stress was increased, myocardial noradrenergic nerve fibers were reduced, myocardial expression of PGP9.5, GAP43, tyrosine hydroxylase and norepinephrine transporter was decreased, and these changes were prevented in Nox2 KO doxorubicin mice. Myocyte autophagy was increased and myocyte size was decreased in WT doxorubicin mice, but not in Nox2 KO doxorubicin mice. Nox2 mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy-both of which contribute to cardiac atrophy and failure after doxorubicin treatment.


Assuntos
Cardiomiopatias , Miócitos Cardíacos , NADPH Oxidase 2 , Animais , Camundongos , Autofagia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Doxorrubicina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Estresse Oxidativo , Simpatectomia
18.
Sci Rep ; 14(1): 7227, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538694

RESUMO

There is a scarcity of information on the population with diabetes mellitus type 2 and cardiomyopathy (PDMC) in COVID-19, especially on the association between anti-diabetic medications and COVID-19 outcomes. Study is designed as a retrospective cohort analysis covering 2020 and 2021. Data from National Diabetes Registry (CroDiab) were linked to hospital data, primary healthcare data, the SARS-CoV-2 vaccination database, and the SARS-CoV-2 test results database. Study outcomes were cumulative incidence of SARS-CoV-2 positivity, COVID-19 hospitalizations, and COVID-19 deaths. For outcome predictors, logistic regression models were developed. Of 231 796 patients with diabetes mellitus type 2 in the database, 14 485 patients had cardiomyopathy. The two2-year cumulative incidence of all three studies' COVID-19 outcomes was higher in PDMC than in the general diabetes population (positivity 15.3% vs. 14.6%, p = 0.01; hospitalization 7.8% vs. 4.4%, p < 0.001; death 2.6% vs. 1.2%, p < 0.001). Sodium-Glucose Transporter 2 (SGLT-2) inhibitors therapy was found to be protective of SARS-CoV-2 infections [OR 0.722 (95% CI 0.610-0.856)] and COVID-19 hospitalizations [OR 0.555 (95% CI 0.418-0.737)], sulfonylureas to be risk factors for hospitalization [OR 1.184 (95% CI 1.029-1.362)] and insulin to be a risk factor for hospitalization [OR 1.261 (95% CI 1.046-1.520)] and death [OR 1.431 (95% CI 1.080-1.897)]. PDMC are at greater risk of acquiring SARS-CoV-2 infection and having worse outcomes than the general diabetic population. SGLT-2 inhibitors therapy was a protective factor against SARS-CoV-2 infection and against COVID-19 hospitalization, sulfonylurea was the COVID-19 hospitalization risk factor, while insulin was a risk factor for all outcomes. Further research is needed in this diabetes sub-population.


Assuntos
COVID-19 , Cardiomiopatias , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Hipoglicemiantes/uso terapêutico , Estudos Retrospectivos , Vacinas contra COVID-19/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , COVID-19/complicações , SARS-CoV-2 , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Compostos de Sulfonilureia/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Insulina/uso terapêutico , Cardiomiopatias/induzido quimicamente
19.
J Colloid Interface Sci ; 663: 1064-1073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458046

RESUMO

Doxorubicin (DOX) is widely used in clinic as a broad-spectrum chemotherapy drug, which can enhance the efficacy of chemodynamic therapy (CDT) by interfering tumor-related metabolize to increase H2O2 content. However, DOX can induce serious cardiomyopathy (DIC) due to its oxidative stress in cardiomyocytes. Eliminating oxidative stress would create a significant opportunity for the clinical application of DOX combined with CDT. To address this issue, we introduced sodium ascorbate (AscNa), the main reason is that AscNa can be catalyzed to produce H2O2 by the abundant Fe3+ in the tumor site, thereby enhancing CDT. While the content of Fe3+ in heart tissue is relatively low, so the oxidation of AscNa had tumor specificity. Meanwhile, due to its inherent reducing properties, AscNa could also eliminate the oxidative stress generated by DOX, preventing cardiotoxicity. Due to the differences between myocardial tissue and tumor microenvironment, a novel nanomedicine was designed. MoS2 was employed as a carrier and CDT catalyst, loaded with DOX and AscNa, coating with homologous tumor cell membrane to construct an acid-responsive nanomedicine MoS2-DOX/AscNa@M (MDA@M). In tumor cells, AscNa enhances the synergistic therapy of DOX and MoS2. In cardiomyocytes, AscNa could effectively reduce the cardiomyopathy induced by DOX. Overall, this study enhanced the clinical potential of chemotherapy synergistic CDT.


Assuntos
Cardiomiopatias , Neoplasias , Humanos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Nanomedicina , Peróxido de Hidrogênio/metabolismo , Molibdênio/metabolismo , Doxorrubicina/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/patologia , Ácido Ascórbico/farmacologia , Linhagem Celular Tumoral , Neoplasias/metabolismo , Microambiente Tumoral
20.
Int Immunopharmacol ; 131: 111897, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513575

RESUMO

BACKGROUND: Esculin, a main active ingredient from Cortex fraxini, possesses biological activities such as anti-thrombosis, anti-inflammatory, and anti-oxidation effects. However, the effects of Esculin on septic cardiomyopathy remains unclear. This study aimed to explore the protective properties and mechanisms of Esculin in countering sepsis-induced cardiac trauma and dysfunction. METHODS AND RESULTS: In lipopolysaccharide (LPS)-induced mice model, Esculin could obviously improve heart injury and function. Esculin treatment also significantly reduced the production of inflammatory and apoptotic cells, the release of inflammatory cytokines, and the expression of oxidative stress-associated and apoptosis-associated markers in hearts compared to LPS injection alone. These results were consistent with those of in vitro experiments based on neonatal rat cardiomyocytes. Database analysis and molecular docking suggested that TLR4 was targeted by Esculin, as shown by stable hydrogen bonds formed between Esculin with VAL-308, ASN-307, CYS-280, CYS-304 and ASP-281 of TLR4. Esculin reversed LPS-induced upregulation of TLR4 and phosphorylation of NF-κB p65 in cardiomyocytes. The plasmid overexpressing TLR4 abolished the protective properties of Esculin in vitro. CONCLUSION: We concluded that Esculin could alleviate LPS-induced septic cardiomyopathy via binding to TLR4 to attenuate cardiomyocyte inflammation, oxidative stress and apoptosis.


Assuntos
Cardiomiopatias , Lipopolissacarídeos , Camundongos , Ratos , Animais , Lipopolissacarídeos/farmacologia , Esculina/farmacologia , Receptor 4 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/tratamento farmacológico , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...