Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3714-3724, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39099346

RESUMO

Diabetic cardiomyopathy(DCM) is a chronic complication of diabetes mellitus that leads to cardiac damage in the later stages of the disease, and its pathogenesis is complex, involving metabolic disorders brought about by a variety of aberrant alterations such as endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis, defects in cardiomyocyte Ca~(2+) transporter, and myocardial fibrosis. Currently, there is a lack of specific diagnosis and treatment in the clinic. Autophagy is a highly conserved scavenging mechanism that removes proteins, damaged organelles or foreign contaminants and converts them into energy and amino acids to maintain the stability of the intracellular environment. Inhibition of autophagy can cause harmful metabolites to accumulate in the cell, while over-activation of autophagy can disrupt normal cellular structures and cause cell death. Prolonged high glucose levels disrupt cardiomyocyte autophagy levels and exacerbate the development of DCM. The protective or detrimental effects of autophagy on cells ring true with the traditional Chinese medicine theory of healthy Qi and pathogenic Qi. Autophagy in the physiological state of the removal of intracellular substances and the generation of substances beneficial to the survival of cells is the inhibition of pathogenic Qi to help the performance of healthy Qi, so the organism is healthy. In the early stages of the disease, when autophagy is impaired and incapable of removing waste substances, pathogenic Qi is prevalent; In the later stages of the disease, excessive activation of autophagy can destroy normal cells, leading to a weakening of healthy Qi. Traditional Chinese medicine has the advantage of targeting multiple sites and pathways. Studies in recent years have confirmed that traditional Chinese medicine monomers or formulas can target autophagy, promote the restoration of autophagy levels, maintain mitochondrial and endoplasmic reticulum homeostasis, and reduce oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis in order to prevent and control DCM. This study provides a review of the relationship between autophagy and DCM and the intervention of traditional Chinese medicine in autophagy for the treatment of DCM, with a view to providing new clinical ideas and methods for the treatment of DCM with traditional Chinese medicine.


Assuntos
Autofagia , Cardiomiopatias Diabéticas , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Autofagia/efeitos dos fármacos , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/fisiopatologia , Humanos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos
3.
Biomed Pharmacother ; 177: 117048, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959606

RESUMO

BACKGROUND AND OBJECTIVES: Diabetic cardiomyopathy (DCM) is a cardiac condition resulting from myocardial damage caused by diabetes mellitus (DM), currently lacking specific therapeutic interventions. Fuzhengkangfu decoction (FZK) plays an important role in the prevention and treatment of various cardiovascular diseases. However, the efficacy and potential mechanisms of FZK are not fully understood. This study aims to investigate the protective effect and mechanisms of FZK against DCM. METHODOLOGIES: Rats were given a high-calorie diet along with a low dosage of streptozotocin (STZ) to establish a rat model of DCM. The diabetic rats received FZK or normal saline subcutaneously for 12 weeks. Echocardiography was conducted to evaluate their heart function characteristics. Rat heart morphologies were assessed using Sirius Red staining and H&E staining. Transcriptome sequencing analysis and network pharmacology were used to reveal possible targets and mechanisms. Molecular docking was conducted to validate the association between the primary components of FZK and the essential target molecules. Finally, both in vitro and in vivo studies were conducted on the cardioprotective properties and mechanism of FZK. RESULTS: According to the results of network pharmacology, FZK may prevent DCM by reducing oxidative stress and preventing apoptosis. Transcriptomics confirmed that FZK protected against DCM-induced myocardial fibrosis and remodelling, as predicted by network pharmacology, and suggested that FZK regulated the expression of oxidative stress and apoptosis-related proteins. Integrating network pharmacology and transcriptome analysis results revealed that the AGE-RAGE signalling pathway-associated MMP2, SLC2A1, NOX4, CCND1, and CYP1A1 might be key targets. Molecular docking showed that Poricoic acid A and 5-O-Methylvisammioside had the highest docking activities with these targets. We further conducted in vivo experiments, and the results showed that FZK significantly attenuated left ventricular remodelling, reduced myocardial fibrosis, and improved cardiac contractile function. And, our study demonstrated that FZK effectively reduced oxidative stress and apoptosis of cardiomyocytes. The data showed that Erk, NF-κB, and Caspase 3 phosphorylation was significantly inhibited, and Bcl-2/Bax was significantly increased after FZK treatment. In vitro, FZK significantly reduced AGEs-induced ROS increase and apoptosis in cardiomyocytes. Furthermore, FZK significantly inhibited the phosphorylation of Erk and NF-κB proteins and decreased the expression of MMP2. All the results confirmed that FZK inhibited the activation of the Erk/NF-κB pathway in AGE-RAGE signalling and alleviated oxidative stress and apoptosis of cardiomyocytes. In summary, we verified that FZK protects against DCM by inhibiting myocardial apoptotic remodelling through the suppression of the AGE-RAGE signalling pathway. CONCLUSION: In conclusion, our research indicates that FZK demonstrates anti-cardiac dysfunction properties by reducing oxidative stress and cardiomyocyte apoptosis through the AGE-RAGE pathway in DCM, showing potential for therapeutic use.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Ratos Sprague-Dawley , Transcriptoma , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Ratos , Transcriptoma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fibrose , Estreptozocina , Perfilação da Expressão Gênica , Cardiotônicos/farmacologia
5.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000117

RESUMO

Diabetic cardiomyopathy (DCM) is a major determinant of mortality in diabetic populations, and the potential strategies are insufficient. Canagliflozin has emerged as a potential cardioprotective agent in diabetes, yet its underlying molecular mechanisms remain unclear. We employed a high-glucose challenge (60 mM for 48 h) in vitro to rat cardiomyocytes (H9C2), with or without canagliflozin treatment (20 µM). In vivo, male C57BL/6J mice were subjected to streptozotocin and a high-fat diet to induce diabetes, followed by canagliflozin administration (10, 30 mg·kg-1·d-1) for 12 weeks. Proteomics and echocardiography were used to assess the heart. Histopathological alterations were assessed by the use of Oil Red O and Masson's trichrome staining. Additionally, mitochondrial morphology and mitophagy were analyzed through biochemical and imaging techniques. A proteomic analysis highlighted alterations in mitochondrial and autophagy-related proteins after the treatment with canagliflozin. Diabetic conditions impaired mitochondrial respiration and ATP production, alongside decreasing the related expression of the PINK1-Parkin pathway. High-glucose conditions also reduced PGC-1α-TFAM signaling, which is responsible for mitochondrial biogenesis. Canagliflozin significantly alleviated cardiac dysfunction and improved mitochondrial function both in vitro and in vivo. Specifically, canagliflozin suppressed mitochondrial oxidative stress, enhancing ATP levels and sustaining mitochondrial respiratory capacity. It activated PINK1-Parkin-dependent mitophagy and improved mitochondrial function via increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Notably, PINK1 knockdown negated the beneficial effects of canagliflozin on mitochondrial integrity, underscoring the critical role of PINK1 in mediating these protective effects. Canagliflozin fosters PINK1-Parkin mitophagy and mitochondrial function, highlighting its potential as an effective treatment for DCM.


Assuntos
Canagliflozina , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Camundongos Endogâmicos C57BL , Mitofagia , Proteínas Quinases , Ubiquitina-Proteína Ligases , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Mitofagia/efeitos dos fármacos , Masculino , Camundongos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Ratos , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos
6.
Cardiovasc Toxicol ; 24(9): 942-954, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39023814

RESUMO

Diabetic cardiomyopathy (DCM) is one of the serious complications of type 2 diabetes mellitus. Vasant Kusumakar Rasa (VKR) is a Herbo-metallic formulation reported in Ayurveda, an Indian system of medicine. The present work was designed to study the effect of VKR in cardiomyopathy in type 2 diabetic rats. Diabetes was induced by feeding a high-fat diet (HFD) for 2 weeks followed by streptozotocin (STZ) administration (35 mg/kg i.p.). VKR was administered orally at dose of 28 and 56 mg/kg once a day for 16 weeks. The results of the study indicated that VKR treatment significantly improved the glycemic and lipid profile, serum insulin, CK-MB, LDH, and cardiac troponin-I when compared to diabetic control animals. VKR treatment in rats significantly improved the hemodynamic parameters and cardiac tissue levels of TNF-α, IL-1ß, and IL- 6 were also reduced. Antioxidant enzymes such as GSH, SOD, and catalase were improved in all treatment groups. Heart sections stained with H & E and Masson's trichome showed decreased damage to histoarchitecture of the myocardium. Expression of PI3K, Akt, and GLUT4 in the myocardium was upregulated after 16 weeks of VKR treatment. The study data suggested the cardioprotective capability of VKR in the management of diabetic cardiomyopathy in rats.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Estresse Oxidativo , Animais , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Masculino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Miocárdio/patologia , Miocárdio/metabolismo , Antioxidantes/farmacologia , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Biomarcadores/sangue , Ayurveda , Ratos , Mediadores da Inflamação/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Citocinas/metabolismo , Transdução de Sinais
7.
Physiol Res ; 73(3): 351-367, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39027953

RESUMO

Diabetic cardiomyopathy may result from the overproduction of ROS, TRPM2 and TRPV2. Moreover, the therapeutic role of ginger, omega-3 fatty acids, and their combinations on the expression of TRPM2 and TRPV2 and their relationship with apoptosis, inflammation, and oxidative damage in heart tissue of rats with type 2 diabetes have not yet been determined. Therefore, this study aimed to investigate the therapeutic effects of ginger and omega-3 fatty acids on diabetic cardiomyopathy by evaluating the cardiac gene expression of TRPM2 and TRPV2, oxidative damage, inflammation, and apoptosis in male rats. Ninety adult male Wistar rats were equally divided into nine control, diabetes, and treated diabetes groups. Ginger extract (100 mg/kg) and omega-3 fatty acids (50, 100, and 150 mg/kg) were orally administrated in diabetic rats for 6 weeks. Type 2 diabetes was induced by feeding a high-fat diet and a single dose of STZ (40 mg/kg). Glucose, cardiac troponin I (cTnI), lipid profile, insulin in serum, and TNF-alpha IL-6, SOD, MDA, and CAT in the left ventricle of the heart were measured. The cardiac expression of TRPM2, TRPV2, NF-kappaB, Bcl2, Bax, Cas-3, and Nrf-2 genes was also measured in the left ventricle of the heart. An electrocardiogram (ECG) was continuously recorded to monitor arrhythmia at the end of the course. The serum levels of cTnI, glucose, insulin, and lipid profile, and the cardiac levels of MDA, IL-6, and TNF-alpha increased in the diabetic group compared to the control group (p<0.05). Moreover, the cardiac levels of SOD and CAT decreased in the diabetic group compared to the control group (p<0.05). The cardiac expression of TRPM2, TRPV2, NF-kappaB, Bax, and Cas-3 increased and Bcl2 and Nrf-2 expression decreased in the diabetic group compared to the control group (p<0.05). However, simultaneous and separate treatment with ginger extract and omega-3 fatty acids (50, 100, and 150 mg/kg) could significantly moderate these changes (p<0.05). The results also showed that the simultaneous treatment of ginger extract and different doses of omega-3 fatty acids have improved therapeutic effects than their individual treatments (p<0.05). It can be concluded that ginger and omega-3 fatty acids showed protective effects against diabetic cardiomyopathy by inhibiting inflammation, apoptosis and oxidative damage of the heart and reducing blood glucose and cardiac expression of TRPM2 and TRPV2. Combining ginger and omega-3 in the diet may provide a natural approach to reducing the risk or progression of diabetic cardiomyopathy while preserving heart structure and function.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Ácidos Graxos Ômega-3 , Extratos Vegetais , Ratos Wistar , Zingiber officinale , Animais , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/administração & dosagem , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/uso terapêutico , Zingiber officinale/química , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Suplementos Nutricionais , Estresse Oxidativo/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética
8.
Cardiovasc Diabetol ; 23(1): 273, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049086

RESUMO

BACKGROUND: Extracellular matrix (ECM) stiffness is closely related to the progress of diabetic cardiomyopathy (DCM) and the response of treatment of DCM to anti-diabetic drugs. Dapagliflozin (Dapa) has been proven to have cardio-protective efficacy for diabetes and listed as the first-line drug to treat heart failure. But the regulatory relationship between ECM stiffness and treatment efficacy of Dapa remains elusive. MATERIALS AND METHODS: This work investigated the effect of ECM stiffness on DCM progression and Dapa efficacy using both in vivo DCM rat model and in vitro myocardial cell model with high glucose injury. First, through DCM rat models with various levels of myocardial injury and administration with Dapa treatment for four weeks, the levels of myocardial injury, myocardial oxidative stress, expressions of AT1R (a mechanical signal protein) and the stiffness of myocardial tissues were obtained. Then for mimicking the stiffness of myocardial tissues at early and late stages of DCM, we constructed cell models through culturing H9c2 myocardial cells on the polyacrylamide gels with two stiffness and exposed to a high glucose level and without/with Dapa intervention. The cell viability, reactive oxygen species (ROS) levels and expressions of mechanical signal sensitive proteins were obtained. RESULTS: The DCM progression is accompanied by the increased myocardial tissue stiffness, which can synergistically exacerbate myocardial cell injury with high glucose. Dapa can improve the ECM stiffness-induced DCM progression and its efficacy on DCM is more pronounced on the soft ECM, which is related to the regulation pathway of AT1R-FAK-NOX2. Besides, Dapa can inhibit the expression of the ECM-induced integrin ß1, but without significant impact on piezo 1. CONCLUSIONS: Our study found the regulation and effect of biomechanics in the DCM progression and on the Dapa efficacy on DCM, providing the new insights for the DCM treatment. Additionally, our work showed the better clinical prognosis of DCM under early Dapa intervention.


Assuntos
Compostos Benzidrílicos , Cardiomiopatias Diabéticas , Matriz Extracelular , Glucosídeos , Miócitos Cardíacos , Estresse Oxidativo , Ratos Sprague-Dawley , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Glucosídeos/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Compostos Benzidrílicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo , Ratos , Quinase 1 de Adesão Focal/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1306-1314, 2024 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-39051076

RESUMO

OBJECTIVE: To explore the therapeutic mechanism of compound Yuye Decoction against diabetic cardiomyopathy (DCM). METHODS: Drugbank, Gene Cards, OMIM and PharmGKb databases were used to obtain DCM-related targets, and the core targets were identified and functionally annotated by protein-protein interaction network analysis followed by GO and KEGG enrichment analysis. The "Traditional Chinese Medicine-Key Component-Key Target-Key Pathway" network was constructed using Cytoscape 3.9.1, and molecular docking was carried out for the key components and the core targets. In the animal experiment, Wistar rat models of DCM were treated with normal saline or Yuye Decoction by gavage at low (0.29 g/kg) and high (1.15 g/kg) doses for 8 weeks, and the changes in cardiac electrophysiology and histopathology were evaluated. The changes in serum levels of LDH, CK, and CK-MB were examined, and myocardial expressions of PI3K, P-PI3K, Akt, P-AKT, BAX, IL-6, and TNF-α were detected using Western blotting. RESULTS: We identified 61 active compounds in Yuye Decoction with 1057 targets, 3682 DCM-related disease targets, and 551 common targets between them. Enrichment of the core targets suggested that apoptosis, inflammation and the PI3K/Akt pathways were the key signaling pathways for DCM treatment. Molecular docking studies showed that the active components in Yuye Decoction including gold amidohydroxyethyl ester and kaempferol had strong binding activities with AKT1 and PIK3R1. In DCM rat models, treatment with Yuye Decoction significantly alleviated myocardial pathologies, reduced serum levels of LDH, CK and CK-MB, lowered myocardial expressions of BAX, IL-6 and TNF-α, and increased the expressions of P-PI3K and P-AKT. CONCLUSION: The therapeutic effect of compound Yuye Decoction against DCM is mediated by its multiple active components that act on multiple targets and pathways to inhibit cardiomyocyte apoptosis and inflammatory response by regulating the PI3K/Akt signaling pathway.


Assuntos
Apoptose , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Medicamentos de Ervas Chinesas , Inflamação , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Transdução de Sinais , Animais , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Inflamação/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Masculino , Interleucina-6/metabolismo
10.
Cells ; 13(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39056777

RESUMO

The incidence of cardiovascular disorders is continuously rising, and there are no effective drugs to treat diabetes-associated heart failure. Thus, there is an urgent need to explore alternate approaches, including natural plant extracts, which have been successfully exploited for therapeutic purposes. The current study aimed to explore the cardioprotective potential of Phoenix dactylifera (PD) extract in experimental diabetic cardiomyopathy (DCM). Following in vitro phytochemical analyses, Wistar albino rats (N = 16, male; age 2-3 weeks) were fed with a high-fat or standard diet prior to injection of streptozotocin (35 mg/kg i.p.) after 2 months and separation into the following four treatment groups: healthy control, DCM control, DCM metformin (200 mg/kg/day, as the reference control), and DCM PD treatment (5 mg/kg/day). After 25 days, glucolipid and myocardial blood and serum markers were assessed along with histopathology and gene expression of both heart and pancreatic tissues. The PD treatment improved glucolipid balance (FBG 110 ± 5.5 mg/dL; insulin 17 ± 3.4 ng/mL; total cholesterol 75 ± 8.5 mg/dL) and oxidative stress (TOS 50 ± 7.8 H2O2equiv./L) in the DCM rats, which was associated with preserved structural integrity of both the pancreas and heart compared to the DCM control (FBG 301 ± 10 mg/dL; insulin 27 ± 3.4 ng/mL; total cholesterol 126 ± 10 mg/dL; TOS 165 ± 12 H2O2equiv./L). Gene expression analyses revealed that PD treatment upregulated the expression of insulin signaling genes in pancreatic tissue (INS-I 1.69 ± 0.02; INS-II 1.3 ± 0.02) and downregulated profibrotic gene expression in ventricular tissue (TGF-ß 1.49 ± 0.04) compared to the DCM control (INS-I 0.6 ± 0.02; INS-II 0.49 ± 0.03; TGF-ß 5.7 ± 0.34). Taken together, these data indicate that Phoenix dactylifera may offer cardioprotection in DCM by regulating glucolipid balance and metabolic signaling.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Metabolismo dos Lipídeos , Phoeniceae , Extratos Vegetais , Ratos Wistar , Animais , Phoeniceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Masculino , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/prevenção & controle , Ratos , Metabolismo dos Lipídeos/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Metanol/química , Estresse Oxidativo/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Miocárdio/metabolismo , Miocárdio/patologia
11.
BMC Cardiovasc Disord ; 24(1): 333, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961333

RESUMO

BACKGROUND: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS: Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS: There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS: These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.


Assuntos
Antioxidantes , Apoptose , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Ginsenosídeos , Miócitos Cardíacos , Estresse Oxidativo , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina , Estreptozocina , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Ginsenosídeos/farmacologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/etiologia , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Fosforilação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Insulina , Malondialdeído/metabolismo
12.
J Endocrinol ; 262(2)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38860519

RESUMO

Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist used for the treatment of T2D, has been shown to alleviate diabetic cardiomyopathy (DbCM) in experimental T2D, which was associated with increased myocardial glucose oxidation. To determine whether this increase in glucose oxidation is necessary for cardioprotection, we hypothesized that liraglutide's ability to alleviate DbCM would be abolished in mice with cardiomyocyte-specific deletion of pyruvate dehydrogenase (PDH; Pdha1CM-/- mice), the rate-limiting enzyme of glucose oxidation. Male Pdha1CM-/- mice and their α-myosin heavy chain Cre expressing littermates (αMHCCre mice) were subjected to experimental T2D via 10 weeks of high-fat diet supplementation, with a single low-dose injection of streptozotocin (75 mg/kg) provided at week 4. All mice were randomized to treatment with either vehicle control or liraglutide (30 µg/kg) twice daily during the final 2.5 weeks, with cardiac function assessed via ultrasound echocardiography. As expected, liraglutide treatment improved glucose homeostasis in both αMHCCre and Pdha1CM-/- mice with T2D, in the presence of mild weight loss. Parameters of systolic function were unaffected by liraglutide treatment in both αMHCCre and Pdha1CM-/- mice with T2D. However, liraglutide treatment alleviated diastolic dysfunction in αMHCCre mice, as indicated by an increase and decrease in the e'/a' and E/e' ratios, respectively. Conversely, liraglutide failed to rescue these indices of diastolic dysfunction in Pdha1CM-/- mice. Our findings suggest that increases in glucose oxidation are necessary for GLP-1R agonist mediated alleviation of DbCM. As such, strategies aimed at increasing PDH activity may represent a novel approach for the treatment of DbCM.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Liraglutida , Animais , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Masculino , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Camundongos Knockout , Complexo Piruvato Desidrogenase/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/metabolismo
13.
Cardiovasc Diabetol ; 23(1): 197, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849829

RESUMO

OBJECTIVE: Sodium glucose cotransporter 2 (SGLT2) inhibitors significantly improve cardiovascular outcomes in diabetic patients; however, the mechanism is unclear. We hypothesized that dapagliflozin improves cardiac outcomes via beneficial effects on systemic and cardiac inflammation and cardiac fibrosis. RESEARCH AND DESIGN METHODS: This randomized placebo-controlled clinical trial enrolled 62 adult patients (mean age 62, 17% female) with type 2 diabetes (T2D) without known heart failure. Subjects were randomized to 12 months of daily 10 mg dapagliflozin or placebo. For all patients, blood/plasma samples and cardiac magnetic resonance imaging (CMRI) were obtained at time of randomization and at the end of 12 months. Systemic inflammation was assessed by plasma IL-1B, TNFα, IL-6 and ketone levels and PBMC mitochondrial respiration, an emerging marker of sterile inflammation. Global myocardial strain was assessed by feature tracking; cardiac fibrosis was assessed by T1 mapping to calculate extracellular volume fraction (ECV); and cardiac tissue inflammation was assessed by T2 mapping. RESULTS: Between the baseline and 12-month time point, plasma IL-1B was reduced (- 1.8 pg/mL, P = 0.003) while ketones were increased (0.26 mM, P = 0.0001) in patients randomized to dapagliflozin. PBMC maximal oxygen consumption rate (OCR) decreased over the 12-month period in the placebo group but did not change in patients receiving dapagliflozin (- 158.9 pmole/min/106 cells, P = 0.0497 vs. - 5.2 pmole/min/106 cells, P = 0.41), a finding consistent with an anti-inflammatory effect of SGLT2i. Global myocardial strain, ECV and T2 relaxation time did not change in both study groups. GOV REGISTRATION: NCT03782259.


Assuntos
Compostos Benzidrílicos , Biomarcadores , Diabetes Mellitus Tipo 2 , Glucosídeos , Mediadores da Inflamação , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Compostos Benzidrílicos/uso terapêutico , Compostos Benzidrílicos/efeitos adversos , Glucosídeos/uso terapêutico , Glucosídeos/efeitos adversos , Feminino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Masculino , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Mediadores da Inflamação/sangue , Biomarcadores/sangue , Fatores de Tempo , Anti-Inflamatórios/uso terapêutico , Fibrose , Inflamação/tratamento farmacológico , Inflamação/sangue , Inflamação/diagnóstico , Método Duplo-Cego , Miocárdio/patologia , Miocárdio/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/sangue
14.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732253

RESUMO

Diabetes mellitus (DM) is known as the first non-communicable global epidemic. It is estimated that 537 million people have DM, but the condition has been properly diagnosed in less than half of these patients. Despite numerous preventive measures, the number of DM cases is steadily increasing. The state of chronic hyperglycaemia in the body leads to numerous complications, including diabetic cardiomyopathy (DCM). A number of pathophysiological mechanisms are behind the development and progression of cardiomyopathy, including increased oxidative stress, chronic inflammation, increased synthesis of advanced glycation products and overexpression of the biosynthetic pathway of certain compounds, such as hexosamine. There is extensive research on the treatment of DCM, and there are a number of therapies that can stop the development of this complication. Among the compounds used to treat DCM are antiglycaemic drugs, hypoglycaemic drugs and drugs used to treat myocardial failure. An important element in combating DCM that should be kept in mind is a healthy lifestyle-a well-balanced diet and physical activity. There is also a group of compounds-including coenzyme Q10, antioxidants and modulators of signalling pathways and inflammatory processes, among others-that are being researched continuously, and their introduction into routine therapies is likely to result in greater control and more effective treatment of DM in the future. This paper summarises the latest recommendations for lifestyle and pharmacological treatment of cardiomyopathy in patients with DM.


Assuntos
Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/terapia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Hipoglicemiantes/uso terapêutico , Estresse Oxidativo , Antioxidantes/uso terapêutico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/tratamento farmacológico , Animais
15.
Sci Rep ; 14(1): 12119, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802644

RESUMO

Despite its effectiveness in treating diabetic cardiomyopathy (DCM), Qigui Qiangxin Mixture (QGQXM) remains unclear in terms of its active ingredients and specific mechanism of action. The purpose of this study was to explore the active ingredients and mechanism of action of QGQXM in the treatment of DCM through the comprehensive strategy of serum pharmacology, network pharmacology and combined with experimental validation. The active ingredients of QGQXM were analyzed using Ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q/TOF-MS). Network pharmacology was utilized to elucidate the mechanism of action of QGQXM for the treatment of DCM. Finally, in vivo validation was performed by intraperitoneal injection of STZ combined with high-fat feeding-induced DCM rat model. A total of 25 active compounds were identified in the drug-containing serum of rats, corresponding to 121 DCM-associated targets. GAPDH, TNF, AKT1, PPARG, EGFR, CASP3, and HIF1 were considered as the core therapeutic targets. Enrichment analysis showed that QGQXM mainly treats DCM by regulating PI3K-AKT, MAPK, mTOR, Insulin, Insulin resistance, and Apoptosis signaling pathways. Animal experiments showed that QGQXM improved cardiac function, attenuated the degree of cardiomyocyte injury and fibrosis, and inhibited apoptosis in DCM rats. Meanwhile, QGQXM also activated the PI3K/AKT signaling pathway, up-regulated Bcl-2, and down-regulated Caspase9, which may be an intrinsic mechanism for its anti-apoptotic effect. This study preliminarily elucidated the mechanism of QGQXM in the treatment of DCM and provided candidate compounds for the development of new drugs for DCM.


Assuntos
Cardiomiopatias Diabéticas , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Animais , Medicamentos de Ervas Chinesas/farmacologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Ratos , Masculino , Cromatografia Líquida de Alta Pressão , Ratos Sprague-Dawley , Modelos Animais de Doenças , Espectrometria de Massas/métodos , Transdução de Sinais/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico
16.
Am J Chin Med ; 52(3): 841-864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716618

RESUMO

A high-glucose environment is involved in the progression of diabetes mellitus (DM). This study aims to explore the regulatory effects of quercetin (QUE) on autophagy and apoptosis after myocardial injury in rats with DM. The type 2 DM rat models were constructed using low-dose streptozotocin (STZ) treatment combined with a high-carbohydrate (HC) diet in vivo. Compared with the control group, the body weight was decreased, whereas blood pressure, blood glucose, and the LVW/BW ratio were increased in the diabetic group. The results showed that the myocardial fibers were disordered in the diabetic group. Moreover, we found that the myocardial collagen fibers, PAS-positive cells, and apoptosis were increased, whereas the mitochondrial structure was destroyed and autophagic vacuoles were significantly reduced in the diabetic group compared with the control group. The expression levels of autophagy-related proteins LC3 and Beclin1 were decreased, whereas the expression levels of P62, Caspae-3, and Bax/Bcl-2 were increased in the diabetic group in vitro and in vivo. Moreover, QUE treatment alleviated the cellular oxidative stress reaction under high-glucose environments. The results of immunoprecipitation (IP) showed that the autophagy protein Beclin1 was bound to Bcl-2, and the binding capacity increased in the HG group, whereas it decreased after QUE treatment, suggesting that QUE inhibited the binding capacity between Beclin1 and Bcl-2, thus leading to the preservation of Beclin1-induced autophagy. In addition, the blood pressure, blood glucose, and cardiac function of rats were improved following QUE treatment. In conclusion, QUE suppressed diabetic myocardial injury and ameliorated cardiac function by regulating myocardial autophagy and inhibition of apoptosis in diabetes through the AMPK/mTOR signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Apoptose , Autofagia , Diabetes Mellitus Experimental , Quercetina , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Quercetina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Sprague-Dawley , Ratos , Modelos Animais de Doenças , Miocárdio/metabolismo , Miocárdio/patologia , Estreptozocina , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/prevenção & controle , Fitoterapia , Proteína Beclina-1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações
17.
J Transl Med ; 22(1): 494, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790051

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM), a serious complication of diabetes, leads to structural and functional abnormalities of the heart and ultimately evolves to heart failure. IL-37 exerts a substantial influence on the regulation of inflammation and metabolism. Whether IL-37 is involved in DCM is unknown. METHODS: The plasma samples were collected from healthy controls, diabetic patients and DCM patients, and the level of IL-37 and its relationship with heart function were observed. The changes in cardiac function, myocardial fibrosis and mitochondrial injury in DCM mice with or without IL-37 intervention were investigated in vivo. By an in vitro co-culture approach involving HG challenge of cardiomyocytes and fibroblasts, the interaction carried out by cardiomyocytes on fibroblast profibrotic activation was studied. Finally, the possible interactive mediator between cardiomyocytes and fibroblasts was explored, and the intervention role of IL-37 and its relevant molecular mechanisms. RESULTS: We showed that the level of plasma IL-37 in DCM patients was upregulated compared to that in healthy controls and diabetic patients. Both recombinant IL-37 administration or inducing IL-37 expression alleviated cardiac dysfunction and myocardial fibrosis in DCM mice. Mechanically, hyperglycemia impaired mitochondria through SIRT1/AMPK/PGC1α signaling, resulting in significant cardiomyocyte apoptosis and the release of extracellular vesicles containing mtDNA. Fibroblasts then engulfed these mtDNA-enriched vesicles, thereby activating TLR9 signaling and the cGAS-STING pathway to initiate pro-fibrotic process and adverse remodeling. However, the presence of IL-37 ameliorated mitochondrial injury by preserving the activity of SIRT1-AMPK-PGC1α axis, resulting in a reduction in release of mtDNA-enriched vesicle and ultimately attenuating the progression of DCM. CONCLUSIONS: Collectively, our study demonstrates a protective role of IL-37 in DCM, offering a promising therapeutic agent for this disease.


Assuntos
DNA Mitocondrial , Cardiomiopatias Diabéticas , Fibrose , Interleucina-1 , Miócitos Cardíacos , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Apoptose/efeitos dos fármacos , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , DNA Mitocondrial/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Interleucina-1/metabolismo , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
18.
Front Immunol ; 15: 1393392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774880

RESUMO

This review provides a comprehensive analysis of the critical role played by macrophages and their underlying mechanisms in the progression of diabetic cardiomyopathy (DCM). It begins by discussing the origins and diverse subtypes of macrophages, elucidating their spatial distribution and modes of intercellular communication, thereby emphasizing their significance in the pathogenesis of DCM. The review then delves into the intricate relationship between macrophages and the onset of DCM, particularly focusing on the epigenetic regulatory mechanisms employed by macrophages in the context of DCM condition. Additionally, the review discusses various therapeutic strategies aimed at targeting macrophages to manage DCM. It specifically highlights the potential of natural food components in alleviating diabetic microvascular complications and examines the modulatory effects of existing hypoglycemic drugs on macrophage activity. These findings, summarized in this review, not only provide fresh insights into the role of macrophages in diabetic microvascular complications but also offer valuable guidance for future therapeutic research and interventions in this field.


Assuntos
Cardiomiopatias Diabéticas , Macrófagos , Animais , Humanos , Cardiomiopatias Diabéticas/imunologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Hipoglicemiantes/uso terapêutico , Macrófagos/imunologia , Macrófagos/metabolismo
19.
Biomed Pharmacother ; 175: 116790, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776677

RESUMO

Diabetic cardiomyopathy (DCM) is a cardiac microvascular complication caused by metabolic disorders. It is characterized by myocardial remodeling and dysfunction. The pathogenesis of DCM is associated with abnormal cellular metabolism and organelle accumulation. Autophagy is thought to play a key role in the diabetic heart, and a growing body of research suggests that modulating autophagy may be a potential therapeutic strategy for DCM. Here, we have summarized the major signaling pathways involved in the regulation of autophagy in DCM, including Adenosine 5'-monophosphate-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), Forkhead box subfamily O proteins (FOXOs), Sirtuins (SIRTs), and PTEN-inducible kinase 1 (PINK1)/Parkin. Given the significant role of autophagy in DCM, we further identified natural products and chemical drugs as regulators of autophagy in the treatment of DCM. This review may help to better understand the autophagy mechanism of drugs for DCM and promote their clinical application.


Assuntos
Autofagia , Cardiomiopatias Diabéticas , Transdução de Sinais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Humanos , Autofagia/efeitos dos fármacos , Animais , Transdução de Sinais/efeitos dos fármacos
20.
Cardiovasc Diabetol ; 23(1): 169, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750502

RESUMO

Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.


Assuntos
Cardiomiopatias Diabéticas , Macrófagos , Estresse Oxidativo , Transdução de Sinais , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Cardiomiopatias Diabéticas/imunologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Fibrose , Anti-Inflamatórios/uso terapêutico , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologia , Resistência à Insulina , Mediadores da Inflamação/metabolismo , Terapia de Alvo Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...