Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
1.
Dev Comp Immunol ; 159: 105212, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38878874

RESUMO

CD83 is a costimulatory molecule of antigen-presenting cells (APCs) that plays an important role in eliciting adaptive responses. It is also a well-known surface protein on mature dendritic cells (DCs). Furthermore, monocytes have been reported to differentiate into macrophages and monocyte-derived dendritic cells, which play an important role in innate immunity. CD83 expression affects the activation and maturation of DCs and stimulates cell-mediated immune responses. This study aims to reveal the CD83 expression during monocyte differentiation in teleosts, and the CD83 homologs evolutionary relationship. This study found two distinct CD83 homologs (GbCD83 and GbCD83-L) in ginbuna crucian carp (Gb) and investigated the evolutionary relationship among GbCD83 homologs and other vertebrates and the gene and protein expression levels of the homologs during 4 days of monocyte culture. The phylogenetic tree showed that the two GbCD83 homologs are classified into two distinct branches. Interestingly, only ostariophysians (Gb, common carp, rohu, fathead minnow and channel catfish), but not neoteleosts, mammals, and others, have two CD83 homologs. Morphological observation and colony-stimulating factor-1 receptor (CSF-1R), CD83, CD80/86, and CCR7 gene expressions illustrated that there is a differentiation of monocytes isolated from peripheral blood leukocytes after 4 days. Specifically, gene expression and immunocytochemistry revealed that GbCD83 is mainly expressed on monocytes at the early stage of cell culture, whereas GbCD83-L is expressed in the latter stage. These findings provided the first evidence of differential expression of CD83 homologs during monocytes differentiation in teleost.


Assuntos
Antígenos CD , Antígeno CD83 , Diferenciação Celular , Proteínas de Peixes , Imunoglobulinas , Glicoproteínas de Membrana , Monócitos , Filogenia , Animais , Monócitos/imunologia , Monócitos/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imunoglobulinas/metabolismo , Imunoglobulinas/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Células Dendríticas/imunologia , Células Cultivadas , Carpas/imunologia , Carpas/genética , Carpa Dourada/imunologia , Carpa Dourada/genética , Imunidade Inata
2.
Genes (Basel) ; 15(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927687

RESUMO

Crucian carp (Carassius auratus) is widely distributed in the world and has become an economically freshwater fish. The population in Lake Dali Nur can tolerate the extreme alkaline environment with alkalinity over 50 mmol/L (pH 9.6), thus providing a special model for exploring alkali-tolerant molecular markers in an extremely alkaline environment. In this study, we constructed a high-density and high-resolution linkage map with 16,224 SNP markers based on genotyping-by-sequencing (GBS) consisting of 152 progenies and conducted QTL studies for alkali-tolerant traits. The total length of the linkage map was 3918.893 cM, with an average distance of 0.241 cM. Two QTLs for the ammonia-N-tolerant trait were detected on LG27 and LG45. A QTL for the urea-N-tolerant trait was detected on LG27. Interestingly, mapping the two QTLs on LG27 revealed that the mapped genes were both located in the intron of CDC42. GO functional annotation and KEGG enrichment analysis results indicated that the biological functions might be involved in the cell cycle, cellular senescence, MAPK, and Ras signaling pathways. These findings suggest that CDC42 may play an important role in the process of dealing with extremely alkaline environments.


Assuntos
Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico/métodos , Carpa Dourada/genética , Carpas/genética , Álcalis
3.
FASEB J ; 38(13): e23722, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38934365

RESUMO

Hypoxia has become one of the most critical factors limiting the development of aquaculture. Crucian carp (Carassius auratus) is widely consumed fish in China, with excellent tolerance to hypoxic environment. However, the molecular mechanisms underlying hypoxia adaptation and tolerance in crucian carp remain unclear. Compared with the control, increased T-SOD, CAT, GSH-Px, T-AOC, ALT, and AST activities and MDA, TCHO, and TG contents, and decreased TP and ATP contents were observed after hypoxia stress. Based on RNA-seq, 2479 differentially expressed (DE) mRNAs and 60 DE miRNAs were identified, and numerous DE mRNAs involved in HIF signaling pathway (hif-1α, epo, vegfa, and ho), anaerobic metabolism (hk1/hk2, pfk, gapdh, pk, and ldh) and immune response (nlrp12, cxcr1, cxcr4, ccr9, and cxcl12) were significantly upregulated after hypoxia exposure. Integrated analysis found that ho, igfbp1, hsp70, and hk2 were predicted to be regulated by novel_867, dre-miR-125c-3p/novel_173, dre-miR-181b-5p, and dre-miR-338-5p/dre-miR-17a-3p, respectively, and targets of DE miRNAs were significantly enriched in MAPK signaling pathway, FoxO signaling pathway, and glycolysis/gluconeogenesis. Expression analysis showed that the mRNA levels of vegfa, epo, ho, hsp70, hsp90aa.1, igfbp1, ldh, hk1, pfk, pk, and gapdh exhibited a remarkable increase, whereas sdh and mdh were downregulated in the H3h, H12h, and H24h groups compared with the control. Furthermore, research found that hk2 is a target of dre-miR-17a-3p, overexpression of dre-miR-17a-3p significantly decreased the expression level of hk2, while the opposite results were obtained after dre-miR-17a-3p silencing. These results contribute to our understanding of the molecular mechanisms of hypoxia tolerance in crucian carp.


Assuntos
MicroRNAs , RNA Mensageiro , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carpas/genética , Carpas/metabolismo , Hipóxia/metabolismo , Hipóxia/genética , Estresse Fisiológico , Transdução de Sinais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Carpa Dourada/genética , Carpa Dourada/metabolismo
4.
Front Immunol ; 15: 1319698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646543

RESUMO

This study explored the impacts of supplementation of different levels of coated methionine (Met) in a high-plant protein diet on growth, blood biochemistry, antioxidant capacity, digestive enzymes activity and expression of genes related to TOR signaling pathway in gibel carp (Carassius auratus gibeilo). A high-plant protein diet was formulated and used as a basal diet and supplemented with five different levels of coated Met at 0.15, 0.30, 0.45, 0.60 and 0.75%, corresponding to final analyzed Met levels of 0.34, 0.49, 0.64, 0.76, 0.92 and 1.06%. Three replicate groups of fish (initial mean weight, 11.37 ± 0.02 g) (20 fish per replicate) were fed the test diets over a 10-week feeding period. The results indicated that with the increase of coated Met level, the final weight, weight gain (WG) and specific growth rate initially boosted and then suppressed, peaking at 0.76% Met level (P< 0.05). Increasing dietary Met level led to significantly increased muscle crude protein content (P< 0.05) and reduced serum alanine aminotransferase activity (P< 0.05). Using appropriate dietary Met level led to reduced malondialdehyde concentration in hepatopancreas (P< 0.05), improved superoxide dismutase activity (P< 0.05), and enhanced intestinal amylase and protease activities (P< 0.05). The expression levels of genes associated with muscle protein synthesis such as insulin-like growth factor-1, protein kinase B, target of rapamycin and eukaryotic initiation factor 4E binding protein-1 mRNA were significantly regulated, peaking at Met level of 0.76% (P< 0.05). In conclusion, supplementing optimal level of coated Met improved on fish growth, antioxidant capacity, and the expression of TOR pathway related genes in muscle. The optimal dietary Met level was determined to be 0.71% of the diet based on quadratic regression analysis of WG.


Assuntos
Ração Animal , Antioxidantes , Suplementos Nutricionais , Metionina , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Metionina/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Antioxidantes/metabolismo , Ração Animal/análise , Carpa Dourada/crescimento & desenvolvimento , Carpa Dourada/genética , Carpa Dourada/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38608489

RESUMO

Oxygen is essential to fuel aerobic metabolism. Some species evolved mechanisms to tolerate periods of severe hypoxia and even anoxia in their environment. Among them, goldfish (Carassius auratus) are unique, in that they do not enter a comatose state under severely hypoxic conditions. There is thus significant interest in the field of comparative physiology to uncover the mechanistic basis underlying hypoxia tolerance in goldfish, with a particular focus on the brain. Taking advantage of the recently published and annotated goldfish genome, we profile the transcriptomic response of the goldfish brain under normoxic (21 kPa oxygen saturation) and, following gradual reduction, constant hypoxic conditions after 1 and 4 weeks (2.1 kPa oxygen saturation). In addition to analyzing differentially expressed protein-coding genes and enriched pathways, we also profile differentially expressed microRNAs (miRs). Using in silico approaches, we identify possible miR-mRNA relationships. Differentially expressed transcripts compared to normoxia were either common to both timepoints of hypoxia exposure (n = 174 mRNAs; n = 6 miRs), or exclusive to 1-week (n = 441 mRNAs; n = 23 miRs) or 4-week hypoxia exposure (n = 491 mRNAs; n = 34 miRs). Under chronic hypoxia, an increasing number of transcripts, including those of paralogous genes, was downregulated over time, suggesting a decrease in transcription. GO-terms related to the vascular system, oxidative stress, stress signalling, oxidoreductase activity, nucleotide- and intermediary metabolism, and mRNA posttranscriptional regulation were found to be enriched under chronic hypoxia. Known 'hypoxamiRs', such as miR-210-3p/5p, and miRs such as miR-29b-3p likely contribute to posttranscriptional regulation of these pathways under chronic hypoxia in the goldfish brain.


Assuntos
Encéfalo , Carpa Dourada , Hipóxia , MicroRNAs , Transcriptoma , Animais , Carpa Dourada/genética , Encéfalo/metabolismo , Hipóxia/genética , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica
6.
Zoolog Sci ; 41(1): 117-123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587524

RESUMO

Melanin-concentrating hormone (MCH), melanocyte-stimulating hormone (MSH), and somatolactin (SL) in the hypothalamus-pituitary axis are associated with body color regulation in teleost fish. Although these hormones' production and secretion respond well to light environments, such as background color, little is known about the effects of different water temperatures. We investigated the effects of water temperature, 10°C, 20°C, and 30°C, on body color and the expression of these genes and corresponding receptor genes in goldfish. The body color in white background (WBG) becomes paler at the higher water temperature, although no difference was observed in black background (BBG). Brain mRNA contents of proMCH genes (pmch1 and pmch2) increased at 30°C and 20°C compared to 10°C in WBG, respectively. Apparent effects of background color and temperature on the pituitary mRNA contents of a POMC gene (pomc) were not observed. The pituitary mRNA contents of the SLα gene were almost double those on a WBG at any temperature, while those of the SLß gene (slb) at 30°C tended to be higher than those at 10°C and 20°C on WBG and BBG. The scale mRNA contents of the MCH receptor gene (mchr2) in WBG were higher than those in BBG at 30°C. The highest scale mRNA contents of MSH receptor (mc1r and mc5r) on BBG were observed at 20°C, while the lowest respective mRNA levels were observed at 30°C on WBG. These results highlight the importance of temperature for the endocrinological regulation of body color, and darker background color may stabilize those endocrine functions.


Assuntos
Carpa Dourada , Pró-Opiomelanocortina , Animais , Temperatura , Carpa Dourada/genética , Encéfalo , RNA Mensageiro/genética
7.
Sci Rep ; 14(1): 8716, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622170

RESUMO

Artificial selection has been widely applied to genetically fix rare phenotypic features in ornamental domesticated animals. For many of these animals, the mutated loci and alleles underlying rare phenotypes are known. However, few studies have explored whether these rare genetic mutations might have been fixed due to competition among related mutated alleles or if the fixation occurred due to contingent stochastic events. Here, we performed genetic crossing with twin-tail ornamental goldfish and CRISPR/Cas9-mutated goldfish to investigate why only a single mutated allele-chdS with a E127X stop codon (also called chdAE127X)-gives rise to the twin-tail phenotype in the modern domesticated goldfish population. Two closely related chdS mutants were generated with CRISPR/Cas9 and compared with the E127X allele in F2 and F3 generations. Both of the CRISPR/Cas9-generated alleles were equivalent to the E127X allele in terms of penetrance/expressivity of the twin-tail phenotype and viability of carriers. These findings indicate that multiple truncating mutations could have produced viable twin-tail goldfish. Therefore, the absence of polymorphic alleles for the twin-tail phenotype in modern goldfish likely stems from stochastic elimination or a lack of competing alleles in the common ancestor. Our study is the first experimental comparison of a singular domestication-derived allele with CRISPR/Cas9-generated alleles to understand how genetic fixation of a unique genotype and phenotype may have occurred. Thus, our work may provide a conceptual framework for future investigations of rare evolutionary events in domesticated animals.


Assuntos
Sistemas CRISPR-Cas , Carpa Dourada , Animais , Carpa Dourada/genética , Alelos , Evolução Biológica , Mutação , Fenótipo , Animais Domésticos/genética
8.
J Hazard Mater ; 470: 134147, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565017

RESUMO

Microplastics and antibiotics are prevalent and emerging pollutants in aquatic ecosystems, but their interactions in aquatic food chains remain largely unexplored. This study investigated the impact of polypropylene microplastics (PP-MPs) on oxytetracycline (OTC) trophic transfer from the shrimp (Neocaridina denticulate) to crucian carp (Carassius auratus) by metagenomic sequencing. The carrier effects of PP-MPs promoted OTC bioaccumulation and trophic transfer, which exacerbated enterocyte vacuolation and hepatocyte eosinophilic necrosis. PP-MPs enhanced the inhibitory effect of OTC on intestinal lysozyme activities and complement C3 levels in shrimp and fish, and hepatic immunoglobulin M levels in fish (p < 0.05). Co-exposure of MPs and OTC markedly increased the abundance of Actinobacteria in shrimp and Firmicutes in fish, which caused disturbances in carbohydrate, amino acid, and energy metabolism. Moreover, OTC exacerbated the enrichment of antibiotic resistance genes (ARGs) in aquatic animals, and PP-MPs significantly increased the diversity and abundance of ARGs and facilitated the trophic transfer of teta and tetm. Our findings disclosed the impacts of PP-MPs on the mechanism of antibiotic toxicity in aquatic food chains and emphasized the importance of gut microbiota for ARGs trophic transfer, which contributed to a deeper understanding of potential risks posed by complex pollutants on aquatic ecosystems.


Assuntos
Antibacterianos , Cadeia Alimentar , Microbioma Gastrointestinal , Microplásticos , Oxitetraciclina , Poluentes Químicos da Água , Animais , Oxitetraciclina/toxicidade , Microplásticos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Polipropilenos , Carpa Dourada/genética , Carpa Dourada/metabolismo , Penaeidae/microbiologia , Penaeidae/efeitos dos fármacos , Muramidase/metabolismo
9.
Gene ; 917: 148448, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38583817

RESUMO

This study embarked on an exploration into the genetic structure and evolutionary history of the Chrysichthys auratus species, leveraging PCR amplification, phylogenetic trees, and haplotype networks. Specific DNA segments were successfully amplified and visualized through electrophoresis. Newly obtained sequences were Bank into GenBank and given accession numbers (OR730807-OR730808-OR730809). The Neighbor-Joining method provided insights into the evolutionary relationships among taxa, further augmented by bootstrap values and the Tamura 3-parameter method. A comprehensive geographical haplotype network showcased pronounced genetic differentiation, especially between remote populations. Nonetheless, shared haplotypes between proximate regions indicated either ancestral genetic connections or ongoing gene flow. Employing the COI-DNA barcodes, an in-depth understanding of intra- and inter-populational genetic diversity was achieved. The study's findings unravel the intricate genetic landscape and evolutionary dynamics of C. auratus, offering novel perspectives into its demographic history across its vast native habitat.


Assuntos
Código de Barras de DNA Taxonômico , Haplótipos , Filogenia , Filogeografia , Animais , Código de Barras de DNA Taxonômico/métodos , Evolução Molecular , Variação Genética , Carpa Dourada/genética , Carpa Dourada/classificação , Fluxo Gênico , Complexo IV da Cadeia de Transporte de Elétrons/genética
10.
Anim Genet ; 55(3): 484-489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38500412

RESUMO

China was the first country in the world to breed goldfish and has generated many unique goldfish varieties, including the most aristocratic Chinese palace goldfish. Due to the lack of scientific research on Chinese palace goldfish, their selection and breeding are mainly carried out through traditional hybridization, leading to serious inbreeding and the degradation of germplasm resources. To this end, whole-genome resequencing was performed to understand the genetic variation among three different varieties (eggpompons, goosehead, and tigerhead) from nine core conserved populations in China. A total of 15 polymorphic SSRs were developed for population genetics, and all tested populations were considered moderately polymorphic with an average polymorphism information content value of 0.4943. Genetic diversity in different varieties showed that all conserved populations were well protected with the potential for continued exploitation. This study provides reliable molecular tools and a basis for designing conservation and management programs in Chinese palace goldfish.


Assuntos
Carpa Dourada , Polimorfismo Genético , Sequenciamento Completo do Genoma , Animais , Cruzamento , China , Conservação dos Recursos Naturais , Marcadores Genéticos , Genética Populacional , Carpa Dourada/genética , Repetições de Microssatélites , Sequenciamento Completo do Genoma/veterinária
11.
Front Immunol ; 15: 1335602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426108

RESUMO

Infection by an emerging bacterial pathogen Rahnella aquatilis caused enteritis and septicemia in fish. However, the molecular pathogenesis of enteritis induced by R. aquatilis infection and its interacting mechanism of the intestinal microflora associated with microRNA (miRNA) immune regulation in crucian carp Carassius auratus are still unclear. In this study, C. auratus intraperitoneally injected with R. aquatilis KCL-5 was used as an experimental animal model, and the intestinal pathological changes, microflora, and differentially expressed miRNAs (DEMs) were investigated by multi-omics analysis. The significant changes in histopathological features, apoptotic cells, and enzyme activities (e.g., lysozyme (LYS), alkaline phosphatase (AKP), alanine aminotransferase (ALT), aspartate transaminase (AST), and glutathione peroxidase (GSH-Px)) in the intestine were examined after infection. Diversity and composition analysis of the intestinal microflora clearly demonstrated four dominant bacteria: Proteobacteria, Fusobacteria, Bacteroidetes, and Firmicutes. A total of 87 DEMs were significantly screened, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the potential target genes were mainly involved in the regulation of lipid, glutathione, cytosine, and purine metabolism, which participated in the local immune response through the intestinal immune network for IgA production, lysosome, and Toll-like receptor (TLR) pathways. Moreover, the expression levels of 11 target genes (e.g., TLR3, MyD88, NF-κB, TGF-ß, TNF-α, MHC II, IL-22, LysC, F2, F5, and C3) related to inflammation and immunity were verified by qRT-PCR detection. The correlation analysis indicated that the abundance of intestinal Firmicutes and Proteobacteria was significantly associated with the high local expression of miR-203/NF-κB, miR-129/TNF-α, and miR-205/TGF-ß. These findings will help to elucidate the molecular regulation mechanism of the intestinal microflora, inflammation, and immune response-mediated miRNA-target gene axis in cyprinid fish.


Assuntos
Carpas , Enterite , Microbioma Gastrointestinal , MicroRNAs , Rahnella , Animais , Carpa Dourada/genética , Carpas/genética , Rahnella/genética , NF-kappa B , Multiômica , Fator de Necrose Tumoral alfa , Inflamação , Fator de Crescimento Transformador beta , MicroRNAs/genética
12.
Fish Shellfish Immunol ; 148: 109521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552889

RESUMO

In mammals, ß-catenin participates in innate immune process through interaction with NF-κB signaling pathway. However, its role in teleost immune processes remains largely unknown. We aimed to clarify the function of ß-catenin in the natural defense mechanism of Qi river crucian carp (Carassius auratus). ß-catenin exhibited a ubiquitous expression pattern in adult fish, as indicated by real-time PCR analysis. Following lipopolysaccharide (LPS), Polyinosinic-polycytidylic acid (polyI: C) and Aeromonas hydrophila (A. hydrophila) challenges, ß-catenin increased in gill, intestine, liver and kidney, indicating that ß-catenin likely plays a pivotal role in the immune response against pathogen infiltration. Inhibition of the ß-catenin pathway using FH535, an inhibitor of Wnt/ß-catenin pathway, resulting in pathological damage of the gill, intestine, liver and kidney, significant decrease of innate immune factors (C3, defb3, LYZ-C, INF-γ), upregulation of inflammatory factors (NF-κB, TNF-α, IL-1, IL-8), and downregulation of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities, increase of Malondialdehyde (MDA) content. Following A. hydrophila invasion, the mortality rate in the FH535 treatment group exceeded that of the control group. In addition, the diversity of intestinal microflora decreased and the community structure was uneven after FH535 treatment. In summary, our findings strongly suggest that ß-catenin plays a vital role in combating pathogen invasion and regulating intestinal flora in Qi river crucian carp.


Assuntos
Carpas , Doenças dos Peixes , Microbioma Gastrointestinal , Infecções por Bactérias Gram-Negativas , Sulfonamidas , Animais , Carpa Dourada/genética , Carpa Dourada/metabolismo , Carpas/genética , Carpas/metabolismo , NF-kappa B , Rios , beta Catenina/genética , Qi , Imunidade Inata/genética , Antioxidantes , Aeromonas hydrophila/fisiologia , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas/veterinária , Mamíferos/metabolismo
13.
Zool Res ; 45(2): 381-397, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485507

RESUMO

The autotetraploid Carassius auratus (4nRR, 4 n=200, RRRR) is derived from whole-genome duplication of Carassius auratus red var. (RCC, 2 n=100, RR). In the current study, we demonstrated that chromatophores and pigment changes directly caused the coloration and variation of 4nRR skin (red in RCC, brownish-yellow in 4nRR). To further explore the molecular mechanisms underlying coloration formation and variation in 4nRR, we performed transcriptome profiling and molecular functional verification in RCC and 4nRR. Results revealed that scarb1, associated with carotenoid metabolism, underwent significant down-regulation in 4nRR. Efficient editing of this candidate pigment gene provided clear evidence of its significant role in RCC coloration. Subsequently, we identified four divergent scarb1 homeologs in 4nRR: two original scarb1 homeologs from RCC and two duplicated ones. Notably, three of these homeologs possessed two highly conserved alleles, exhibiting biased and allele-specific expression in the skin. Remarkably, after precise editing of both the original and duplicated scarb1 homeologs and/or alleles, 4nRR individuals, whether singly or multiply mutated, displayed a transition from brownish-yellow skin to a cyan-gray phenotype. Concurrently, the proportional areas of the cyan-gray regions displayed a gene-dose correlation. These findings illustrate the subfunctionalization of duplicated scarb1, with all scarb1 genes synergistically and equally contributing to the pigmentation of 4nRR. This is the first report concerning the functional differentiation of duplicated homeologs in an autopolyploid fish, substantially enriching our understanding of coloration formation and change within this group of organisms.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Carpa Dourada/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/veterinária , Pigmentação/genética , Genoma , Neoplasias Renais/genética , Neoplasias Renais/veterinária
14.
Front Endocrinol (Lausanne) ; 15: 1336679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410696

RESUMO

Introduction: In the Dongting water system, the Carassius auratus (Crucian carp) complex is characterized by the coexistence of diploid forms (2n=100, 2nCC) and polyploidy forms. The diploid (2nCC) and triploid C.auratus (3n=150, 3nCC) had the same fertility levels, reaching sexual maturity at one year. Methods: The nucleotide sequence, gene expression, methylation, and immunofluorescence of the gonadotropin releasing hormone 2(Gnrh2), Gonadotropin hormone beta(Gthß), and Gonadotropin-releasing hormone receptor(Gthr) genes pivotal genes of the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Results: The analysis results indicated that Gnrh2, follicle-stimulating hormone receptor(Fshr), and Lethal hybrid rescue(Lhr) genes increased the copy number and distinct structural differentiation in 3nCC compared to that in 2nCC. The transcript levels of HPG axis genes in 3nCC were higher than 2nCC (P<0.05), which could promote the production and secretion of sex steroid hormones conducive to the gonadal development of 3nCC. Meanwhile, the DNA methylation levels in the promoter regions of the HPG axis genes were lower in 3nCC than in 2nCC. These results suggested that methylation of the promoter region had a potential regulatory effect on gene expression after triploidization. Immunofluorescence showed that the localization of the Fshß, Lhß, and Fshr genes between 3nCC and 2nCC remained unchanged, ensuring the normal expression of these genes at the corresponding sites after triploidization. Discussion: Relevant research results provide cell and molecular biology evidence for normal reproductive activities such as gonad development and gamete maturation in triploid C. auratus, and contribute to further understanding of the genetic basis for fertility restoration in triploid C. auratus.


Assuntos
Carpas , Carpa Dourada , Animais , Carpa Dourada/genética , Triploidia , Eixo Hipotalâmico-Hipofisário-Gonadal , Ploidias , Hormônio Liberador de Gonadotropina/genética
15.
J Fish Dis ; 47(4): e13906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115621

RESUMO

The live attenuated vaccine P7-P8 strain against herpesviral haematopoietic necrosis, which is caused by cyprinid herpesvirus 2 (CyHV-2), exhibits high protective efficacy in goldfish at 25°C, the predominant temperature for this disease; however, the effect of water temperature during the vaccination period on efficacy has not been determined. In this study, an in vitro experiment revealed that the vaccine strain grew between 15 and 30°C in the goldfish cell line RyuF-2. Subsequent in vivo efficacy tests were conducted with vaccination temperatures ranging from 15 to 30°C. During the vaccination period, organs were sampled to determine the vaccine growth dynamics. Blood plasma was collected to assess anti-CyHV-2 antibody titres. The protective efficacy of the vaccine at 15, 20, 25, and 30°C after subsequent virulent CyHV-2 challenge resulted in a relative percentage survival of 73.3%, 77.8%, 100%, and 77.8%, respectively, which indicated that the vaccine is effective over this temperature range. The vaccine virus load in the spleen was lowest at 15°C (103.7 DNA copies/mg) and highest at 25°C (106.5 DNA copies/mg). This indicates that the vaccine virus load over 104 DNA copies/mg may elicit sufficient acquired immunity. No significant differences in antibody titre were observed between groups, which suggests that cell-mediated immunity can be fundamentally involved in protection.


Assuntos
Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Carpa Dourada/genética , Temperatura , Vacinas Atenuadas , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Herpesviridae/genética , DNA Viral/genética , Necrose/prevenção & controle , Necrose/veterinária
16.
Mar Biotechnol (NY) ; 25(6): 1191-1207, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38079085

RESUMO

Schisandra chinensis (sc) is generally demonstrated to improve antioxidant and immune functions in mammal. The present study through physiological and transcriptome analysis revealed alterations in muscle metabolisms of triploid crucian carp (Carassius auratus) cultured at different concentrations of S. chinensis diets (sc0, sc0.125%, sc0.25%, sc0.5%, sc1%, sc2%) after 8 weeks. The serum antioxidant enzyme activities analysis showed that dietary S. chinensis could reduce oxidative stress and increase organismic antioxidant capacity. Meanwhile, the detected results of muscle components presented that the amino acids and two flavor nucleotides of GMP and IMP significantly elevated while muscle crude lipid significantly reduced in S. chinensis feeding groups. In addition, springiness, chewiness, and fiber density in S. chinensis feeding groups muscle were significantly upregulated while muscle fiber diameter and area showed an opposite trend. By comparative transcriptome analysis of the muscles, functional enrichments of differentially expressed genes showed that multiple terms were related to purine metabolism, glycerolipid metabolism, regulation of actin cytoskeleton, and peroxisome. Finally, some key hub genes such as egln, gst, ggct, su1b, pi3kr4, myh9, lpl, gcdh, mylk, and col4a were identified by weighted gene co-expression network analysis. Taken together, our findings facilitate the understanding of the molecular basis underlying the muscle quality effect of dietary S. chinensis in triploid crucian carp, which provides valuable insights into the nutritional strategies of the aquaculture industry.


Assuntos
Carpas , Schisandra , Animais , Carpa Dourada/genética , Carpas/genética , Triploidia , Schisandra/genética , Antioxidantes , Perfilação da Expressão Gênica , Transcriptoma , Músculos , Mamíferos/genética
17.
Mol Immunol ; 164: 134-142, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38007901

RESUMO

Apoptosis plays a pivotal role in the immune response to combat pathogen infections. In mammals, caspase-9, abbreviated as Casp9, plays an irreplaceable role in the initiation phase of the apoptotic cascade. To investigate the role of Casp9 in teleosts, we conducted a functional characterization of Casp9 in goldfish (Carassius auratus L.). The open reading frame of GfCasp9 spans 1296 base pairs (bp), encoding a protein composed of 431 amino acids. GfCasp9 was ubiquitously expressed in various tissues, with the spleen and brain showing the highest levels of expression. Subcellular localization analysis revealed that GfCasp9 is distributed in both the cytoplasm and nucleus. Overexpressing of GfCasp9 in HEK293 cells elicits a robust apoptotic response. Additionally, infection with Aeromonas hydrophila significantly increases the mRNA and protein expression of GfCasp9. These findings underscore the critical importance of GfCasp9 in immune responses and apoptosis against bacterial infections.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Humanos , Carpa Dourada/genética , Aeromonas hydrophila/fisiologia , Imunidade Inata/genética , Caspase 9/metabolismo , Células HEK293 , Infecções por Bactérias Gram-Negativas/veterinária , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Mamíferos
18.
Sci Adv ; 9(44): eadh7693, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910612

RESUMO

Teleost fish form the largest group of vertebrates and show a tremendous variety of adaptive behaviors, making them critically important for the study of brain evolution and cognition. The neural basis mediating these behaviors remains elusive. We performed a systematic comparative survey of the goldfish telencephalon. We mapped cell types using single-cell RNA sequencing and spatial transcriptomics, resulting in de novo molecular neuroanatomy parcellation. Glial cells were highly conserved across 450 million years of evolution separating mouse and goldfish, while neurons showed diversity and modularity in gene expression. Specifically, somatostatin interneurons, famously interspersed in the mammalian isocortex for local inhibitory input, were curiously aggregated in a single goldfish telencephalon nucleus but molecularly conserved. Cerebral nuclei including the striatum, a hub for motivated behavior in amniotes, had molecularly conserved goldfish homologs. We suggest elements of a hippocampal formation across the goldfish pallium. Last, aiding study of the teleostan everted telencephalon, we describe substantial molecular similarities between goldfish and zebrafish neuronal taxonomies.


Assuntos
Carpa Dourada , Peixe-Zebra , Animais , Camundongos , Carpa Dourada/genética , Córtex Cerebral , Hipocampo/metabolismo , Neurônios/metabolismo , Mamíferos
19.
Front Endocrinol (Lausanne) ; 14: 1283298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027109

RESUMO

Adiponectin (AdipoQ) is an adipokine involved in glucose homeostasis and lipid metabolism. In mammals, its role in appetite control is highly controversial. To shed light on the comparative aspects of AdipoQ in lower vertebrates, goldfish was used as a model to study feeding regulation by AdipoQ in fish species. As a first step, goldfish AdipoQ was cloned and found to be ubiquitously expressed at the tissue level. Using sequence alignment, protein modeling, phylogenetic analysis and comparative synteny, goldfish AdipoQ was shown to be evolutionarily related to its fish counterparts and structurally comparable with AdipoQ in higher vertebrates. In our study, recombinant goldfish AdipoQ was expressed in E. coli, purified by IMAC, and confirmed to be bioactive via activation of AdipoQ receptors expressed in HepG2 cells. Feeding in goldfish revealed that plasma levels of AdipoQ and its transcript expression in the liver and brain areas involved in appetite control including the telencephalon, optic tectum, and hypothalamus could be elevated by food intake. In parallel studies, IP and ICV injection of recombinant goldfish AdipoQ in goldfish was effective in reducing foraging behaviors and food consumption. Meanwhile, transcript expression of orexigenic factors (NPY, AgRP, orexin, and apelin) was suppressed with parallel rises in anorexigenic factors (POMC, CART, CCK, and MCH) in the telencephalon, optic tectum and/or hypothalamus. In these brain areas, transcript signals for leptin receptor were upregulated with concurrent drops in the NPY receptor and ghrelin receptors. In the experiment with IP injection of AdipoQ, transcript expression of leptin was also elevated with a parallel drop in ghrelin mRNA in the liver. These findings suggest that AdipoQ can act as a novel satiety factor in goldfish. In this case, AdipoQ signals (both central and peripheral) can be induced by feeding and act within the brain to inhibit feeding behaviors and food intake via differential regulation of orexigenic/anorexigenic factors and their receptors. The feeding inhibition observed may also involve the hepatic action of AdipoQ by modulation of feeding regulators expressed in the liver.


Assuntos
Ingestão de Alimentos , Carpa Dourada , Animais , Ingestão de Alimentos/fisiologia , Carpa Dourada/genética , Adiponectina/metabolismo , Distribuição Tecidual , Escherichia coli/metabolismo , Filogenia , Clonagem Molecular , Proteínas Recombinantes/metabolismo , Mamíferos/metabolismo
20.
Aquat Toxicol ; 263: 106709, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37793945

RESUMO

Perfluorocaproic acid (PFHxA) has received much attention as an emerging pollutant linked to neurological problems in humans and fish. However, the potential mechanism remains unknown. In this study, the pathological damage to tissue sections demonstrated that perfluorocaproic acid caused brain tissue damage, and the increased antioxidant index malondialdehyde (MDA) and decrease in superoxide Dismutase (SOD), acid phosphatase (ACP), alkaline phosphatase (AKP), glutathione peroxidase (GSH-Px), Catalase (CAT), and Lysozyme (LZM) that perfluorocaproic acid activated antioxidant stress and caused brain damage. Transcriptome sequencing discovered 1,532 divergent genes, 931 upregulated, and 601 down-regulated. Furthermore, according to GO enrichment analysis, the differently expressed genes were shown to be involved in biological processes, cellular components, and molecular functions. The MAPK, calcium, and Neuroactive ligand-receptor interaction were considerably enriched in the KEGG enrichment analysis. We then analyzed qRT-PCR and chose ten essential differentially expressed genes for validation. The qRT-PCR results followed the same pattern as the RNA-Seq results. In conclusion, our study shows that perfluorocaproic acid exposure causes oxidative stress in the brain. It establishes a theoretical foundation for future research into genes linked to perfluorocaproic acid toxicity.


Assuntos
Lesões Encefálicas , Poluentes Químicos da Água , Animais , Humanos , Carpa Dourada/genética , Carpa Dourada/metabolismo , Antioxidantes/metabolismo , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...