Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.120
Filtrar
1.
Biointerphases ; 19(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39051723

RESUMO

Once damaged, cartilage has poor intrinsic capacity to repair itself. Current cartilage repair strategies cannot restore the damaged tissue sufficiently. It is hypothesized that biomimetic scaffolds, which can recapitulate important properties of the cartilage extracellular matrix, play a beneficial role in supporting cell behaviors such as growth, cartilage differentiation, and integration with native cartilage, ultimately facilitating tissue recovery. Adipose-derived stem cells regenerated cartilage upon the sequential release of transforming growth factor ß1(TGFß1) and fibroblast growth factor 2(FGF2) using a nanofibrous scaffold, in order to get the recovery of functional cartilage. Experiments in vitro have demonstrated that the release sequence of growth factors FGF2 to TGFß1 is the most essential to promote adipose-derived stem cells into chondrocytes that then synthesize collagen II. Mouse subcutaneous implantation indicated that the treatment sequence of FGF2 to TGFß1 was able to significantly induce multiple increase in cartilage regeneration in vivo. This result demonstrates that the group treated with FGF2 to TGFß1 released from a nanofibrous scaffold provides a good strategy for cartilage regeneration by making a favorable microenvironment for cell growth and cartilage regeneration.


Assuntos
Diferenciação Celular , Fator 2 de Crescimento de Fibroblastos , Nanofibras , Células-Tronco , Alicerces Teciduais , Fator de Crescimento Transformador beta1 , Animais , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Camundongos , Nanofibras/química , Diferenciação Celular/efeitos dos fármacos , Alicerces Teciduais/química , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Condrogênese/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Cartilagem/citologia , Cartilagem/fisiologia , Tecido Adiposo/citologia , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Células Cultivadas , Engenharia Tecidual/métodos
2.
J Mech Behav Biomed Mater ; 157: 106658, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39018919

RESUMO

Although the sacroiliac (SI) joint can be a source of lower back and buttock pain, no comprehensive characterization studies on SI cartilage have been conducted. Using the minipig as a large animal model, this study conducted the first biomechanical, biochemical, and histological characterization of SI joint cartilage. Because previous literature has reported that sacral cartilage and iliac cartilage within the SI joint are histologically distinct, concomitantly it was expected that functional properties of the sacral cartilage would differ from those of the iliac cartilage. Creep indentation, uniaxial tension, biochemical, and histological analyses were conducted on the sacral and iliac cartilage of skeletally mature female Yucatan minipigs (n = 6-8 for all quantitative tests). Concurring with prior literature, the iliac cartilage appeared to be more fibrous than the sacral cartilage. Glycosaminoglycan content was 2.2 times higher in the sacral cartilage. The aggregate modulus of the sacral cartilage was 133 ± 62 kPa, significantly higher than iliac cartilage, which only had an aggregate modulus of 51 ± 61 kPa. Tensile testing was conducted in both cranial-caudal and ventral-dorsal axes, and Young's modulus values ranged from 2.5 ± 1.5 MPa to 13.6 ± 1.5 MPa, depending on anatomical structure (i.e., sacral vs. iliac) and orientation of the tensile test. The Young's modulus of sacral cartilage was 5.5 times higher in the cranial-caudal axis and 2.0 times higher in the ventral-dorsal axis than the iliac cartilage. The results indicate that the sacral and iliac cartilages are functionally distinct from each other. Understanding the distinct differences between sacral and iliac cartilage provides insight into the structure and function of the SI joint, which may inform future research aimed at repairing SI joint cartilage.


Assuntos
Fenômenos Mecânicos , Articulação Sacroilíaca , Porco Miniatura , Animais , Suínos , Fenômenos Biomecânicos , Feminino , Cartilagem/fisiologia , Cartilagem/citologia , Teste de Materiais , Cartilagem Articular/fisiologia , Cartilagem Articular/citologia , Testes Mecânicos , Glicosaminoglicanos/metabolismo
3.
J Morphol ; 285(7): e21745, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877975

RESUMO

The jaws and their supporting cartilages are tessellated in elasmobranchs and exhibit an abrupt increase in stiffness under compression. The major jaw-supporting cartilage, the hyomandibula, varies widely by shape and size and the extent of the load-bearing role is hypothesized to be inversely related to the number of craniopalatine articulations. Here, we test this hypothesis by evaluating the strength of the hyomandibular cartilage under compression in 13 species that represent all four jaw suspension systems in elasmobranchs (amphistyly, orbitostyly, hyostyly, and euhyostyly). The strength of the hyomandibular cartilages was measured directly using a material testing machine under compressive load, and indirectly by measuring morphological variables putatively associated with strength. The first measure of strength is force to yield (Fy), which was the peak force (N) exerted on the hyomandibula before plastic deformation. The second measure was compressive yield strength (σy, also called yield stress), which is calculated as peak force (N) before plastic deformation/cross-sectional area (mm2) of the specimen. Our results show that the load-bearing role of the hyomandibular cartilage, as measured by yield strength, is inversely related to the number of craniopalatine articulations, as predicted. Force to yield was lower for euhyostylic jaw suspensions and similar for the others. We also found that mineralization is associated with greater yield strength, while the second moment of area is associated with greater force to yield.


Assuntos
Cartilagem , Elasmobrânquios , Arcada Osseodentária , Animais , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/fisiologia , Elasmobrânquios/fisiologia , Elasmobrânquios/anatomia & histologia , Cartilagem/fisiologia , Força Compressiva/fisiologia , Fenômenos Biomecânicos , Estresse Mecânico
4.
Int J Biol Macromol ; 274(Pt 2): 133495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944089

RESUMO

Cartilage repair and regeneration have become a global issue that millions of patients from all over the world need surgical intervention to repair the articular cartilage annually due to the limited self-healing capability of the cartilage tissues. Cartilage tissue engineering has gained significant attention in cartilage repair and regeneration by integration of the chondrocytes (or stem cells) and the artificial scaffolds. Recently, polysaccharide-protein based scaffolds have demonstrated unique and promising mechanical and biological properties as the artificial extracellular matrix of natural cartilage. In this review, we summarize the modification methods for polysaccharides and proteins. The preparation strategies for the polysaccharide-protein based hydrogel scaffolds are presented. We discuss the mechanical, physical and biological properties of the polysaccharide-protein based scaffolds. Potential clinical translation and challenges on the artificial scaffolds are also discussed.


Assuntos
Cartilagem Articular , Polissacarídeos , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Humanos , Polissacarídeos/química , Regeneração/efeitos dos fármacos , Engenharia Tecidual/métodos , Animais , Cartilagem Articular/fisiologia , Proteínas/química , Hidrogéis/química , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cartilagem/fisiologia , Cicatrização/efeitos dos fármacos
5.
J Biomech ; 169: 112131, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739987

RESUMO

Cartilage endplates (CEPs) act as protective mechanical barriers for intervertebral discs (IVDs), yet their heterogeneous structure-function relationships are poorly understood. This study addressed this gap by characterizing and correlating the regional biphasic mechanical properties and biochemical composition of human lumbar CEPs. Samples from central, lateral, anterior, and posterior portions of the disc (n = 8/region) were mechanically tested under confined compression to quantify swelling pressure, equilibrium aggregate modulus, and hydraulic permeability. These properties were correlated with CEP porosity and glycosaminoglycan (s-GAG) content, which were obtained by biochemical assays of the same specimens. Both swelling pressure (142.79 ± 85.89 kPa) and aggregate modulus (1864.10 ± 1240.99 kPa) were found to be regionally dependent (p = 0.0001 and p = 0.0067, respectively) in the CEP and trended lowest in the central location. No significant regional dependence was observed for CEP permeability (1.35 ± 0.97 * 10-16 m4/Ns). Porosity measurements correlated significantly with swelling pressure (r = -0.40, p = 0.0227), aggregate modulus (r = -0.49, p = 0.0046), and permeability (r = 0.36, p = 0.0421), and appeared to be the primary indicator of CEP biphasic mechanical properties. Second harmonic generation microscopy also revealed regional patterns of collagen fiber anchoring, with fibers inserting the CEP perpendicularly in the central region and at off-axial directions in peripheral regions. These results suggest that CEP tissue has regionally dependent mechanical properties which are likely due to the regional variation in porosity and matrix structure. This work advances our understanding of healthy baseline endplate biomechanics and lays a groundwork for further understanding the role of CEPs in IVD degeneration.


Assuntos
Disco Intervertebral , Vértebras Lombares , Humanos , Vértebras Lombares/fisiologia , Disco Intervertebral/fisiologia , Pessoa de Meia-Idade , Masculino , Feminino , Porosidade , Adulto , Idoso , Glicosaminoglicanos/metabolismo , Fenômenos Biomecânicos , Cartilagem/fisiologia , Estresse Mecânico
6.
Biofabrication ; 16(3)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38697073

RESUMO

Osteochondral tissue (OC) repair remains a significant challenge in the field of musculoskeletal tissue engineering. OC tissue displays a gradient structure characterized by variations in both cell types and extracellular matrix components, from cartilage to the subchondral bone. These functional gradients observed in the native tissue have been replicated to engineer OC tissuein vitro. While diverse fabrication methods have been employed to create these microenvironments, emulating the natural gradients and effective regeneration of the tissue continues to present a significant challenge. In this study, we present the design and development of CMC-silk interpenetrating (IPN) hydrogel with opposing dual biochemical gradients similar to native tissue with the aim to regenerate the complete OC unit. The gradients of biochemical cues were generated using an in-house-built extrusion system. Firstly, we fabricated a hydrogel that exhibits a smooth transition of sulfated carboxymethyl cellulose (sCMC) and TGF-ß1 (SCT gradient hydrogel) from the upper to the lower region of the IPN hydrogel to regenerate the cartilage layer. Secondly, a hydrogel with a hydroxyapatite (HAp) gradient (HAp gradient hydrogel) from the lower to the upper region was fabricated to facilitate the regeneration of the subchondral bone layer. Subsequently, we developed a dual biochemical gradient hydrogel with a smooth transition of sCMC + TGF-ß1 and HAp gradients in opposing directions, along with a blend of both biochemical cues in the middle. The results showed that the dual biochemical gradient hydrogels with biochemical cues corresponding to the three zones (i.e. cartilage, interface and bone) of the OC tissue led to differentiation of bone-marrow-derived mesenchymal stem cells to zone-specific lineages, thereby demonstrating their efficacy in directing the fate of progenitor cells. In summary, our study provided a simple and innovative method for incorporating gradients of biochemical cues into hydrogels. The gradients of biochemical cues spatially guided the differentiation of stem cells and facilitated tissue growth, which would eventually lead to the regeneration of the entire OC tissue with a smooth transition from cartilage (soft) to bone (hard) tissues. This promising approach is translatable and has the potential to generate numerous biochemical and biophysical gradients for regeneration of other interface tissues, such as tendon-to-muscle and ligament-to-bone.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/química , Animais , Alicerces Teciduais/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Condrogênese/efeitos dos fármacos , Cartilagem/citologia , Cartilagem/fisiologia , Diferenciação Celular/efeitos dos fármacos , Osso e Ossos/citologia , Durapatita/química , Durapatita/farmacologia
7.
Colloids Surf B Biointerfaces ; 239: 113959, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772085

RESUMO

Cartilage repair remains a major challenge in clinical trials. These current cartilage repair materials can not effectively promote chondrocyte generation, limiting their practical application in cartilage repair. In this work, we develop an implantable scaffold of RADA-16 peptide hydrogel incorporated with TGF-ß1 to provide a microenvironment for stem cell-directed differentiation and chondrocyte adhesion growth. The longest release of growth factor TGF-ß1 release can reach up to 600 h under physiological conditions. TGF-ß1/RADA-16 hydrogel was demonstrated to be a lamellar porous structure. Based on the cell culture with hBMSCs, TGF-ß1/RADA-16 hydrogel showed excellent ability to promote cell proliferation, directed differentiation into chondrocytes, and functional protein secretion. Within 14 days, 80% of hBMSCs were observed to be directed to differentiate into vigorous chondrocytes in the co-culture of TGF-ß1/RADA-16 hydrogels with hBMSCs. Specifically, these newly generated chondrocytes can secrete and accumulate large amounts of collagen II within 28 days, which can effectively promote the formation of cartilage tissue. Finally, the exploration of RADA-16 hydrogel-based scaffolds incorporated with TGF-ß1 bioactive species would further greatly promote the practical clinical trials of cartilage remediation, which might have excellent potential to promote cartilage regeneration in areas of cartilage damage.


Assuntos
Cartilagem , Diferenciação Celular , Condrócitos , Hidrogéis , Regeneração , Alicerces Teciduais , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Condrócitos/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Cartilagem/metabolismo , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Células Cultivadas , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Animais , Condrogênese/efeitos dos fármacos , Peptídeos
8.
Tissue Cell ; 88: 102380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615643

RESUMO

The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-ß, BMP, Wnt/ß-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Regeneração , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Regeneração/fisiologia , Animais , Condrogênese/fisiologia , Cartilagem/metabolismo , Cartilagem/fisiologia , Diferenciação Celular , Condrócitos/metabolismo , Condrócitos/citologia , Transdução de Sinais
9.
Adv Healthc Mater ; 13(18): e2400043, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569577

RESUMO

Biomimetic stress-relaxing hydrogels with reversible crosslinks attract significant attention for stem cell tissue regeneration compared with elastic hydrogels. However, stress-relaxing hyaluronic acid (HA)-based hydrogels fabricated using conventional technologies lack stability, biocompatibility, and mechanical tunability. Here, it is aimed to address these challenges by incorporating calcium or phosphate components into the HA backbone, which allows reversible crosslinking of HA with alginate to form interpenetrating networks, offering stability and mechanical tunability for mimicking cartilage. Diverse stress-relaxing hydrogels (τ1/2; SR50, 60-2000 s) are successfully prepared at ≈3 kPa stiffness with self-healing and shear-thinning abilities, favoring hydrogel injection. In vitro cell experiments with RNA sequencing analysis demonstrate that hydrogels tune chondrogenesis in a biphasic manner (hyaline or calcified) depending on the stress-relaxation properties and phosphate components. In vivo studies confirm the potential for biphasic chondrogenesis. These results indicate that the proposed stress-relaxing HA-based hydrogel with biphasic chondrogenesis (hyaline or calcified) is a promising material for cartilage regeneration.


Assuntos
Cartilagem , Condrogênese , Ácido Hialurônico , Hidrogéis , Regeneração , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Condrogênese/efeitos dos fármacos , Animais , Regeneração/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Humanos , Estresse Mecânico , Engenharia Tecidual/métodos , Camundongos
10.
Acta Biomater ; 179: 121-129, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494083

RESUMO

Reconstruction of the human auricle remains a formidable challenge for plastic surgeons. Autologous costal cartilage grafts and alloplastic implants are technically challenging, and aesthetic and/or tactile outcomes are frequently suboptimal. Using a small animal "bioreactor", we have bioengineered full-scale ears utilizing decellularized cartilage xenograft placed within a 3D-printed external auricular scaffold that mimics the size, shape, and biomechanical properties of the native human auricle. The full-scale polylactic acid ear scaffolds were 3D-printed based upon data acquired from 3D photogrammetry of an adult ear. Ovine costal cartilage was processed either through mincing (1 mm3) or zesting (< 0.5 mm3), and then fully decellularized and sterilized. At explantation, both the minced and zested neoears maintained the size and contour complexities of the scaffold topography with steady tissue ingrowth through 6 months in vivo. A mild inflammatory infiltrate at 3 months was replaced by homogenous fibrovascular tissue ingrowth enveloping individual cartilage pieces at 6 months. All ear constructs were pliable, and the elasticity was confirmed by biomechanical analysis. Longer-term studies of the neoears with faster degrading biomaterials will be warranted for future clinical application. STATEMENT OF SIGNIFICANCE: Accurate reconstruction of the human auricle has always been a formidable challenge to plastic surgeons. In this article, we have bioengineered full-scale ears utilizing decellularized cartilage xenograft placed within a 3D-printed external auricular scaffold that mimic the size, shape, and biomechanical properties of the native human auricle. Longer-term studies of the neoears with faster degrading biomaterials will be warranted for future clinical application.


Assuntos
Pavilhão Auricular , Xenoenxertos , Impressão Tridimensional , Alicerces Teciduais , Alicerces Teciduais/química , Animais , Ovinos , Humanos , Engenharia Tecidual/métodos , Cartilagem da Orelha/fisiologia , Bioengenharia/métodos , Cartilagem/fisiologia
11.
Adv Mater ; 36(27): e2401009, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548296

RESUMO

Tissue engineering and electrotherapy are two promising methods to promote tissue repair. However, their integration remains an underexplored area, because their requirements on devices are usually distinct. Triboelectric nanogenerators (TENGs) have shown great potential to develop self-powered devices. However, due to their susceptibility to moisture, TENGs have to be encapsulated in vivo. Therefore, existing TENGs cannot be employed as tissue engineering scaffolds, which require direct interaction with surrounding cells. Here, the concept of triboelectric scaffolds (TESs) is proposed. Poly(glycerol sebacate), a biodegradable and relatively hydrophobic elastomer, is selected as the matrix of TESs. Each hydrophobic micropore in multi-hierarchical porous TESs efficiently serves as a moisture-resistant working unit of TENGs. Integration of tons of micropores ensures the electrotherapy ability of TESs in vivo without encapsulation. Originally hydrophobic TESs are degraded by surface erosion and transformed into hydrophilic surfaces, facilitating their role as tissue engineering scaffolds. Notably, TESs seeded with chondrocytes obtain dense and large matured cartilages after subcutaneous implantation in nude mice. Importantly, rabbits with osteochondral defects receiving TES implantation show favorable hyaline cartilage regeneration and complete cartilage healing. This work provides a promising electronic biomedical device and will inspire a series of new in vivo applications.


Assuntos
Decanoatos , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Animais , Porosidade , Coelhos , Engenharia Tecidual/métodos , Decanoatos/química , Polímeros/química , Camundongos , Glicerol/química , Glicerol/análogos & derivados , Cartilagem/fisiologia , Condrócitos/citologia , Camundongos Nus , Materiais Biocompatíveis/química
12.
Bioelectromagnetics ; 45(5): 226-234, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546158

RESUMO

Pulsed electromagnetic field (PEMF) stimulation has been widely applied clinically to promote bone healing; however, its detailed mechanism of action, particularly in endochondral ossification, remains elusive, and long-term stimulation is required for its satisfactory effect. The aim of this study was to investigate the involvement of the mammalian target of rapamycin (mTOR) pathway in chondrocyte differentiation and proliferation using a mouse prechondroblast cell line (ATDC5), and establish an efficient PEMF stimulation strategy for endochondral ossification. The changes in cell differentiation (gene expression levels of aggrecan, type II collagen, and type X collagen) and proliferation (cellular uptake of bromodeoxyuridine [BrdU]) in ATDC5 cells in the presence or absence of rapamycin, an mTOR inhibitor, was measured. The effects of continuous and intermittent PEMF stimulation on changes in cell differentiation and proliferation were compared. Rapamycin significantly suppressed the induction of cell differentiation markers and the cell proliferation activity. Furthermore, only intermittent PEMF stimulation continuously activated the mTOR pathway in ATDC5 cells, significantly promoting cell proliferation. These results demonstrate the involvement of the mTOR pathway in chondrocyte differentiation and proliferation and suggest that intermittent PEMF stimulation could be effective as a stimulus for endochondral ossification during fracture healing process, thereby reducing stimulation time.


Assuntos
Diferenciação Celular , Proliferação de Células , Condrócitos , Campos Eletromagnéticos , Osteogênese , Serina-Treonina Quinases TOR , Animais , Camundongos , Osteogênese/efeitos da radiação , Condrócitos/citologia , Condrócitos/metabolismo , Condrócitos/fisiologia , Linhagem Celular , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Cartilagem/metabolismo , Cartilagem/citologia , Cartilagem/fisiologia , Transdução de Sinais , Regulação da Expressão Gênica/efeitos da radiação
13.
Nat Commun ; 15(1): 1488, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374253

RESUMO

The assembly of oligopeptide and polypeptide molecules can reconstruct various ordered advanced structures through intermolecular interactions to achieve protein-like biofunction. Here, we develop a "molecular velcro"-inspired peptide and gelatin co-assembly strategy, in which amphiphilic supramolecular tripeptides are attached to the molecular chain of gelatin methacryloyl via intra-/intermolecular interactions. We perform molecular docking and dynamics simulations to demonstrate the feasibility of this strategy and reveal the advanced structural transition of the co-assembled hydrogel, which brings more ordered ß-sheet content and 10-fold or more compressive strength improvement. We conduct transcriptome analysis to reveal the role of co-assembled hydrogel in promoting cell proliferation and chondrogenic differentiation. Subcutaneous implantation evaluation confirms considerably reduced inflammatory responses and immunogenicity in comparison with type I collagen. We demonstrate that bone mesenchymal stem cells-laden co-assembled hydrogel can be stably fixed in rabbit knee joint defects by photocuring, which significantly facilitates hyaline cartilage regeneration after three months. This co-assembly strategy provides an approach for developing cartilage regenerative biomaterials.


Assuntos
Cartilagem Articular , Cartilagem , Animais , Coelhos , Simulação de Acoplamento Molecular , Cartilagem/fisiologia , Hidrogéis/química , Materiais Biocompatíveis/química , Diferenciação Celular , Peptídeos , Conformação Proteica , Engenharia Tecidual , Condrogênese
14.
Curr Osteoporos Rep ; 22(2): 290-298, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38358401

RESUMO

PURPOSE OF REVIEW: Interfacial tissue exists throughout the body at cartilage-to-bone (osteochondral interface) and tendon-to-bone (enthesis) interfaces. Healing of interfacial tissues is a current challenge in regenerative approaches because the interface plays a critical role in stabilizing and distributing the mechanical stress between soft tissues (e.g., cartilage and tendon) and bone. The purpose of this review is to identify new directions in the field of interfacial tissue development and physiology that can guide future regenerative strategies for improving post-injury healing. RECENT FINDINGS: Cues from interfacial tissue development may guide regeneration including biological cues such as cell phenotype and growth factor signaling; structural cues such as extracellular matrix (ECM) deposition, ECM, and cell alignment; and mechanical cues such as compression, tension, shear, and the stiffness of the cellular microenvironment. In this review, we explore new discoveries in the field of interfacial biology related to ECM remodeling, cellular metabolism, and fate. Based on emergent findings across multiple disciplines, we lay out a framework for future innovations in the design of engineered strategies for interface regeneration. Many of the key mechanisms essential for interfacial tissue development and adaptation have high potential for improving outcomes in the clinic.


Assuntos
Regeneração Óssea , Matriz Extracelular , Humanos , Matriz Extracelular/fisiologia , Regeneração Óssea/fisiologia , Osso e Ossos/fisiologia , Tendões/fisiologia , Engenharia Tecidual/métodos , Cartilagem/fisiologia , Regeneração/fisiologia , Cicatrização/fisiologia
15.
Mater Horiz ; 11(6): 1465-1483, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38221872

RESUMO

Osteoarthritis (OA) is a common joint disease known for cartilage degeneration, leading to a substantial burden on individuals and society due to its high disability rate. However, current clinical treatments for cartilage defects remain unsatisfactory due to the unclear mechanisms underlying cartilage regeneration. Tissue engineering hydrogels have emerged as an attractive approach in cartilage repair. Recent research studies have indicated that stem cells can sense the mechanical strength of hydrogels, thereby regulating their differentiation fate. In this study, we present the groundbreaking construction of dual-network DNA-silk fibroin (SF) hydrogels with controllable surface rigidity. The supramolecular networks, formed through DNA base-pairing, induce the development of ß-sheet structures by constraining and aggregating SF molecules. Subsequently, SF was cross-linked via horseradish peroxidase (HRP)-mediated enzyme reactions to form the second network. Experimental results demonstrated a positive correlation between the surface rigidity of dual-network DNA-SF hydrogels and the DNA content. Interestingly, it was observed that dual-network DNA-SF hydrogels with moderate surface rigidity exhibited the highest effectiveness in facilitating the migration of bone marrow mesenchymal stem cells (BMSCs) and their chondrogenic differentiation. Transcriptome sequencing further confirmed that dual-network DNA-SF hydrogels primarily enhanced chondrogenic differentiation of BMSCs by upregulating the Wnt and TGF-ß signaling pathways while accelerating collagen II synthesis. Furthermore, in vivo studies revealed that dual-network DNA-SF hydrogels with moderate surface rigidity significantly accelerated cartilage regeneration. In summary, the dual-network DNA-SF hydrogels represent a promising and novel therapeutic strategy for cartilage regeneration.


Assuntos
Doenças das Cartilagens , Fibroínas , Humanos , Fibroínas/química , Hidrogéis , Cartilagem/fisiologia , Engenharia Tecidual/métodos , Diferenciação Celular/genética
16.
Nat Commun ; 14(1): 7771, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012159

RESUMO

Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration.


Assuntos
Hidrogéis , Osteoartrite , Humanos , Hidrogéis/química , Liberação Controlada de Fármacos , Cartilagem/fisiologia
17.
Biomed Mater ; 18(6)2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37827163

RESUMO

With the advancement of tissue engineering technologies, implantable materials have been developed for use in facial plastic surgery, including auriculoplasty and rhinoplasty. Tissue-engineered cartilage comprising only cells and cell-produced extracellular matrix is considered valuable as there is no need to consider problems associated with scaffold absorption or immune responses commonly related to conventional artificial materials. However, it is exceedingly difficult to produce large-sized complex shapes of cartilage without the use of scaffolds. In this study, we describe the production of shape-designable cartilage using a novel cell self-aggregation technique (CAT) and chondroprogenitor cells derived from human induced pluripotent stem cells as the source. The method described does not require special equipment such as bio-3D printers, and the produced tissue can be induced into well-matured cartilage with abundant cartilage matrixin vitro. Using CAT, we were able to generate cartilage in the form of rings or tubes with adjustable inner diameter and curvature, over a range of several centimeters, without the use of scaffolds. Thein vitrofabrication of shape-designable cartilage using CAT is a promising development in facial plastic surgery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Alicerces Teciduais , Humanos , Cartilagem/fisiologia , Engenharia Tecidual/métodos , Matriz Extracelular , Condrogênese
18.
Biofabrication ; 15(3)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37201517

RESUMO

Endochondral ossification (EO) is an essential biological process than underpins how human bones develop, grow, and heal in the event of a fracture. So much is unknown about this process, thus clinical manifestations of dysregulated EO cannot be adequately treated. This can be partially attributed to the absence of predictivein vitromodels of musculoskeletal tissue development and healing, which are integral to the development and preclinical evaluation of novel therapeutics. Microphysiological systems, or organ-on-chip devices, are advancedin vitromodels designed for improved biological relevance compared to traditionalin vitroculture models. Here we develop a microphysiological model of vascular invasion into developing/regenerating bone, thereby mimicking the process of EO. This is achieved by integrating endothelial cells and organoids mimicking different stages of endochondral bone development within a microfluidic chip. This microphysiological model is able to recreate key events in EO, such as the changing angiogenic profile of a maturing cartilage analogue, and vascular induced expression of the pluripotent transcription factors SOX2 and OCT4 in the cartilage analogue. This system represents an advancedin vitroplatform to further EO research, and may also serve as a modular unit to monitor drug responses on such processes as part of a multi-organ system.


Assuntos
Células Endoteliais , Osteogênese , Humanos , Cartilagem/fisiologia , Osso e Ossos , Organoides , Dispositivos Lab-On-A-Chip
19.
Biomaterials ; 296: 122078, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921442

RESUMO

Gradient scaffolds are isotropic/anisotropic three-dimensional structures with gradual transitions in geometry, density, porosity, stiffness, etc., that mimic the biological extracellular matrix. The gradient structures in biological tissues play a major role in various functional and metabolic activities in the body. The designing of gradients in the scaffold can overcome the current challenges in the clinic compared to conventional scaffolds by exhibiting excellent penetration capacity for nutrients & cells, increased cellular adhesion, cell viability & differentiation, improved mechanical stability, and biocompatibility. In this review, the recent advancements in designing gradient scaffolds with desired biomimetic properties, and their implication in tissue regeneration applications have been briefly explained. Furthermore, the gradients in native tissues such as bone, cartilage, neuron, cardiovascular, skin and their specific utility in tissue regeneration have been discussed in detail. The insights from such advances using gradient-based scaffolds can widen the horizon for using gradient biomaterials in tissue regeneration applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Cartilagem/fisiologia , Porosidade , Regeneração Óssea
20.
Macromol Biosci ; 23(7): e2200539, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802277

RESUMO

Numerous factors, such as degeneration and accidents, frequently cause cartilage deterioration. Owing to the absence of blood vessels and nerves in cartilage tissue, the ability of cartilage tissue to heal itself after an injury is relatively low. Hydrogels are beneficial for cartilage tissue engineering owing to their cartilage-like structure and advantageous properties. Due to the disruption of its mechanical structure, the bearing capacity and shock absorption of cartilage are diminished. The tissue should possess excellent mechanical properties to ensure the efficacy of cartilage tissue repair. This paper discusses the application of hydrogels in the fields of cartilage repair, the mechanical properties of hydrogels used for cartilage repair, and the materials used for hydrogels in cartilage tissue engineering. In addition, the challenges faced by hydrogels and future research directions are discussed.


Assuntos
Cartilagem Articular , Hidrogéis , Hidrogéis/uso terapêutico , Hidrogéis/química , Cartilagem/fisiologia , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...