Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 634
Filtrar
1.
J Agric Food Chem ; 72(28): 15523-15529, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38963614

RESUMO

The eggshell is a composite and highly ordered structure formed by biomineralization. Besides other functions, it has a vital and intricate role in the protection of an embryo from various potentially harsh environmental conditions. Solid-state nuclear magnetic resonance (SSNMR) has been used for detailed structural investigations of the chicken, tinamou, and flamingo eggshell materials. 31P NMR spectra reveal that hydroxyapatite and ß-tricalcium phosphate in the ratio 3:2 represent major constituents of phosphate species in the eggshells. All three eggshells exhibit similar spectra, except for the line widths, which implies different structural order of phosphate species in the chicken, tinamou, and flamingo eggshells. 1H NMR spectra for these materials are comparable, differentiating overlapped peaks in three spectral regions at around 7, 4-5, and 1-2 ppm. These spectral regions have been attributed to protons from NH or CaHCO3, water, and possibly isolated monomeric water molecules or hydroxyl groups in calcium-deficient hydroxyapatite. 1H-13C CP MAS NMR revealed the presence of organic matter in the form of lipids and proteins. Two overlapped resonances in the carbonyl region at around 173 and 169 ppm are assigned to the carbonyls of the peptide bonds and the bicarbonate unit in calcite, respectively. Fourier-transform infrared spectroscopy (FTIR) spectra confirmed the presence of structural units detected in the NMR spectra.


Assuntos
Galinhas , Casca de Ovo , Espectroscopia de Ressonância Magnética , Animais , Casca de Ovo/química , Espectroscopia de Ressonância Magnética/métodos , Durapatita/química , Aves , Fosfatos de Cálcio/química
2.
ACS Appl Mater Interfaces ; 16(26): 32957-32970, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885611

RESUMO

Three-dimensional (3D) printing, an additive manufacturing technique, is increasingly used in the field of tissue engineering. The ability to create complex structures with high precision makes the 3D printing of this material a preferred method for constructing personalized and functional materials. However, the challenge lies in developing affordable and accessible materials with the desired physiochemical and biological properties. In this study, we used eggshell microparticles (ESPs), an example of bioceramic and unconventional biomaterials, to reinforce thermoplastic poly(ε-caprolactone) (PCL) scaffolds via extrusion-based 3D printing. The goal was to conceive a sustainable, affordable, and unique personalized medicine approach. The scaffolds were fabricated with varying concentrations of eggshells, ranging from 0 to 50% (w/w) in the PCL scaffolds. To assess the physicochemical properties, we employed scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and X-ray diffraction analysis. Mechanical properties were evaluated through compression testing, and degradation kinetics were studied through accelerated degradation with the remaining mass ranging between 89.4 and 28.3%. In vitro, we evaluated the characteristics of the scaffolds using the MC3T3-E1 preosteoblasts over a 14 day period. In vitro characterization involved the use of the Alamar blue assay, confocal imaging, and real-time quantitative polymerase chain reaction. The results of this study demonstrate the potential of 3D printed biocomposite scaffolds, consisting of thermoplastic PCL reinforced with ESPs, as a promising alternative for bone-graft applications.


Assuntos
Casca de Ovo , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Animais , Camundongos , Casca de Ovo/química , Poliésteres/química , Osso e Ossos , Linhagem Celular , Materiais Biocompatíveis/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos
3.
ACS Biomater Sci Eng ; 10(7): 4510-4524, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38826128

RESUMO

Eggshell membrane-based biomedical applications have recently received great attention for their wound-healing properties. However, there are limited studies on diabetic wound healing. In this regard, we devised four types of composite eggshell membrane mats with nanoscale coatings of bioactive glass/Zn/Co-doped bioactive glass (ESM + BAG, ESM + ZnBAG, ESM + CoBAG, and ESM + ZnCoBAG) as wound-dressing materials for chronic nonhealing diabetic wounds. A detailed study of the physicochemical properties of the mats was conducted. In vitro studies demonstrated cytocompatibility and viability of human dermal fibroblasts on all four types of mats. The cells also attached finely on the mats with the help of cellular extensions, as evident from scanning electron microscopy (SEM) and rhodamine-phalloidin and Hoechst 33342 staining of cellular components. Endowed with bioactive properties, these mats influenced all aspects of full-thickness skin wound healing in diabetic animal model studies. All of the mats, especially the ESM + ZnCoBAG mat, showed the earliest wound closure, effective renewal, and restructuring of the extracellular matrix in terms of an accurate and timely accumulation of collagen, elastin, and reticulin fibers. Hydroxyproline and sulfated glycosaminoglycans were significantly (p < 0.01, p < 0.05) higher in ESM-ZnCoBAG-treated wounds in comparison to ESM-BAG-treated wounds, which suggests that these newly developed mats have potential as an affordable diabetic wound care solution in biomedical research.


Assuntos
Bandagens , Cobalto , Diabetes Mellitus Experimental , Casca de Ovo , Vidro , Cicatrização , Zinco , Animais , Cicatrização/efeitos dos fármacos , Zinco/química , Zinco/farmacologia , Casca de Ovo/química , Diabetes Mellitus Experimental/patologia , Vidro/química , Coelhos , Cobalto/química , Cobalto/farmacologia , Humanos , Pele/patologia , Pele/efeitos dos fármacos , Pele/lesões , Fibroblastos/efeitos dos fármacos
4.
Int J Biol Macromol ; 270(Pt 1): 132359, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754678

RESUMO

The objective of this study was to evaluate the synergistic effect of eggshell-derived nanohydroxyapatite (EnHA) and carboxymethyl chitosan (CMC) in remineralizing artificially induced dentinal lesions. EnHA and CMC were synthesized using simple chemical processes and characterized using FTIR, XRD, HRSEM-EDX, TEM, DLS and TGA/DTA analyses. A total of 64 pre-demineralized coronal dentin specimens were randomly subjected to following treatments (n = 16):artificial saliva (AS), EnHA, CMC, and EnHA-CMC, followed by pH cycling for 7 days. HRSEM-EDX, Vickers-indenter, and micro-Raman analyses were used to assess surface-topography, microhardness, and chemical analysis, respectively. All tested materials demonstrated non-cytotoxicity when assessed on hDPSCs using MTT assay. FTIR, XRD and thermal analyses confirmed the characteristics of both EnHA and CMC. EnHA showed irregular rod-shaped nanoparticles (30-70 nm) with the presence of Ca,P,Na, and Mg ions. Dentin treated with EnHA-CMC exhibited complete tubular occlusion and highest microhardness whereas the AS group revealed the least mineral deposits (p < 0.05). No significant differences were observed between EnHA and CMC groups (p > 0.05). In addition, molecular conformation analysis revealed peak intensities in collagen's polypeptide chains in dentin treated with CMC and EnHA-CMC, whereas other groups showed poor collagen stability. The results highlighted that EnHA-CMC aided in rapid and effective biomineralization, suggesting its potential as a therapeutic solution for treating dentin caries.


Assuntos
Quitosana , Dentina , Durapatita , Casca de Ovo , Quitosana/análogos & derivados , Quitosana/química , Quitosana/farmacologia , Durapatita/química , Durapatita/farmacologia , Dentina/química , Dentina/efeitos dos fármacos , Casca de Ovo/química , Animais , Humanos , Remineralização Dentária/métodos , Nanopartículas/química , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/química , Concentração de Íons de Hidrogênio
5.
Int J Biol Macromol ; 271(Pt 1): 132620, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795888

RESUMO

Hybrid nanohydroxyapatite/carboxymethyl chitosan (nHAp-CMC) scaffolds have garnered significant attention in the field of regenerative engineering. The current study comparatively analyzed the physicochemical and biological properties of synthetic nanohydroxyapatite (SnHA)- and eggshell-sourced nanohydroxyapatite (EnHA)- based CMC biocomposites for pulp-dentin regeneration. EnHA and CMC were synthesized through a chemical process, whereas SnHA was commercially obtained. Composite scaffolds of SnHA-CMC and EnHA-CMC (1:5 w/w) were prepared using freeze-drying method. All biomaterials were characterized by FTIR, micro-Raman, XRD, HRSEM-EDX, and TEM analyses, and their in vitro bioactivity was assessed by immersing them in simulated body fluid for 21 days. The biological properties of the composite scaffolds were evaluated by assessing cytocompatibility using MTT assay and biomineralization potential by analyzing the odontogenic gene expressions (ALP, DSPP, DMP-1 and VEGF) in human dental pulp stem cells (DPSCs) using RT-qPCR method. Characterization studies revealed that EnHA displayed higher crystallinity and superior surface morphology compared to SnHA. The composite scaffolds showed a highly interconnected porous microstructure with pore sizes ranging between 60 and 220 µm, ideal for cell seeding. All tested materials, SnHA, EnHA, and their respective composites, displayed high cytocompatibility, increased ALP activity and degree of mineralization with significant upregulation of odontogenic-related genes on DPSCs (p < 0.05). Nevertheless, the odontogenic differentiation potential of EnHA-CMC on DPSCs was significantly higher when compared to SnHA-CMC. The findings from this study highlight the potential of EnHA-CMC as a promising candidate for pulp-dentin engineering.


Assuntos
Quitosana , Polpa Dentária , Durapatita , Casca de Ovo , Engenharia Tecidual , Alicerces Teciduais , Quitosana/química , Quitosana/análogos & derivados , Engenharia Tecidual/métodos , Polpa Dentária/citologia , Casca de Ovo/química , Humanos , Durapatita/química , Alicerces Teciduais/química , Animais , Dentina/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Nanocompostos/química , Fenômenos Químicos
6.
Int J Biol Macromol ; 269(Pt 2): 131879, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692527

RESUMO

Multifunctional polysaccharide hydrogels with strong tissue adhesion, and antimicrobial and hemostatic properties are attractive wound healing materials. In this study, a chitosan-based hydrogel (HCS) was designed, and its properties were enhanced by incorporating oxidized eggshell membrane (OEM). Hydrogel characterization and testing results showed that the hydrogel had excellent antimicrobial properties, cytocompatibility, satisfactory adhesion properties on common substrates, and wet-state adhesion capacity. A rat liver injury model confirmed the significant hemostatic effect of the hydrogel. Finally, the ability of the hydrogel to promote wound healing was verified using rat skin wound repair experiments. Our findings indicate that HCS/OEM hydrogels with added eggshell membrane fibers have better self-healing properties, mechanical strength, adhesion, hemostatic properties, and biocompatibility than HCS hydrogels, in addition to having superior repair performance in wound repair experiments. Overall, the multifunctional polysaccharide hydrogels fabricated in this study are ideal for wound repair.


Assuntos
Casca de Ovo , Hidrogéis , Polissacarídeos , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Casca de Ovo/química , Ratos , Polissacarídeos/química , Polissacarídeos/farmacologia , Quitosana/química , Quitosana/farmacologia , Pós , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos Sprague-Dawley
7.
Acta Odontol Scand ; 83: 264-272, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709122

RESUMO

PURPOSE: The purpose of the present in vitro study is to investigate and compare the remineralising potential of Moringa Oleifera extract, eggshell, and sodium fluoride varnish on microhardness of artificially demineralised enamel of primary teeth with biomimetic minimally invasive approach following the world paradigm shift towards natural products in paediatric dentistry. MATERIAL AND METHODS: Sample size included 44 primary molars. The mineral content and surface microhardness of all specimens were initially assessed using energy dispersive x-ray examination (EDX) and Vickers microhardness. The specimens were artificially demineralised for 96 h at a temperature of 37°C and then reassessed directly after demineralisation. The demineralised enamel specimens were randomly divided into four groups according to the remineralisation regimen utilised. Group 1: Artificial saliva (control); Group 2: Sodium fluoride varnish; Group 3: Eggshell hydrogel; and Group 4: Moringa Oleifera hydrogel. The specimens were stored for 8 days and then subsequently evaluated using EDX and microhardness assessment by Vickers microhardness test and scanning electron microscope (SEM).  Results: Regarding the microhardness test, there was a significant difference between the Moringa Oleifera group and Eggshell group compared to fluoride varnish (p < 0.05). Regarding EDX analysis, there was a statistically significant difference (p < 0.05) between Moringa Oleifera group and Eggshell group compared to fluoride varnish as the highest values were for Moringa Oleifera and Eggshell. On the other hand, there was no statistically significant difference (p > 0.05) between Moringa Oleifera and Eggshell in both the measurements. CONCLUSION: Moringa Oleifera and Eggshell might be considered as a biomimetic natural material capable of guiding enamel tissue remineralisation in early carious lesion of primary teeth. CLINICAL RELEVANCE: This research demonstrated the capability for early enamel caries to be remineralised using novel materials with a naturally counterpart implicated in biomineralisation as proved to be more effective than traditionally used fluoride varnish in primary teeth.


Assuntos
Casca de Ovo , Hidrogéis , Moringa oleifera , Fluoreto de Sódio , Dente Decíduo , Fluoreto de Sódio/administração & dosagem , Dente Decíduo/efeitos dos fármacos , Casca de Ovo/química , Humanos , Moringa oleifera/química , Remineralização Dentária/métodos , Animais , Técnicas In Vitro , Fluoretos Tópicos/administração & dosagem , Microscopia Eletrônica de Varredura , Esmalte Dentário/efeitos dos fármacos , Dureza/efeitos dos fármacos , Espectrometria por Raios X , Desmineralização do Dente/prevenção & controle , Desmineralização do Dente/tratamento farmacológico
8.
Chemosphere ; 358: 142226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704039

RESUMO

Cellulosic substrates, including wood and thatch, have become icons for sustainable architecture and construction, however, they suffer from high flammability because of their inherent cellulosic composition. Current control measures for such hazards include applying intumescent fire-retardant (IFR) coatings that swell and form a char layer upon ignition, protecting the underlying substrate from burning. Typically, conventional IFR coatings are opaque and are made of halogenated compounds that release toxic fumes when ignited, compromising the roofing's aesthetic value and sustainability. In this work, phytic acid, a naturally occurring phosphorus source extracted from rice bran, was used to synthesize phytic acid-based fire-retardants (PFR) via esterification under reflux, along with powdered chicken eggshells (CES) as calcium carbonate (CaCO3) bio-filler. These components were incorporated into melamine formaldehyde resin to produce the transparent IFR coating. It was revealed that the developed IFR coatings achieved the highest fire protection rating based on UL94 flammability standards compared to the control. The coatings also yielded increased LOI values, indicative of self-extinguishing properties. A 17 °C elevation of the IFR coating's melting temperature and a significant ∼172% increase in enthalpy change from the control were observed, indicating enhanced fire-retardancy. The thermal stability of the coatings was improved, denoted by reduced mass losses, and increased residual masses after thermal degradation. As validated by microscopy and spectroscopy, the abundance of phosphorus and carbon groups in the coatings' condensed phase after combustion indicates enhanced char formation. In the gas phase, TG-FTIR showed the evolution of non-flammable CO2, and fire-retardant PO and P-O-C. Mechanical property testing confirmed no reduction in the adhesion strength of the IFR coating. With these results, the developed IFR coating exhibited enhanced fire-retardancy whilst remaining optically transparent, suggestive of a dual-phase IFR protective mechanism involving the release of gaseous combustion diluents and the formation of a thermally insulating char layer.


Assuntos
Casca de Ovo , Retardadores de Chama , Ácido Fítico , Casca de Ovo/química , Ácido Fítico/química , Animais , Incêndios , Celulose/química , Carbonato de Cálcio/química , Galinhas
9.
Integr Comp Biol ; 64(1): 107-119, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38755009

RESUMO

The amniotic egg fulfils a critical role in reproduction by serving as an interface between the external environment and the embryo. Because non-avian reptiles are rarely incubated, they must be heated by, and absorb water from, the oviposition site for the developing embryo. The mechanisms by which they absorb sufficient, but not excess, water and how these mechanisms vary with local habitat is largely unknown, despite its significance to their evolution. Here, we first performed histology, Fourier-transform infrared spectroscopy and dynamic vapor sorption experiments to elucidate the mechanisms of eggshell absorption for 56 reptile species. Then, we used phylogenetic comparative analysis to test the hypothesis that the absorptive capacity of reptile eggshells increases with aridity of the environment. We found that water absorption increases in the presence of a superficial mucopolysaccharide layer and decreases with increased calcium content. We found that eggs from arid environments have highly absorbent eggshells, but only in species with weakly calcified shells. Our results suggest that reptile eggshells have over evolutionary time tuned absorptive capacity to environmental moisture level. Since these eggs often must sustain conflicting constraints, they may serve as inspirations for new biomimetic materials, such as water filtering membranes or humidity sensors.


Assuntos
Casca de Ovo , Répteis , Animais , Casca de Ovo/química , Casca de Ovo/fisiologia , Répteis/fisiologia , Filogenia , Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ecossistema
10.
Biomolecules ; 14(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38672456

RESUMO

The chicken egg, an excellent natural source of proteins, has been an overlooked native biomaterial with remarkable physicochemical, structural, and biological properties. Recently, with significant advances in biomedical engineering, particularly in the development of 3D in vitro platforms, chicken egg materials have increasingly been investigated as biomaterials due to their distinct advantages such as their low cost, availability, easy handling, gelling ability, bioactivity, and provision of a developmentally stimulating environment for cells. In addition, the chicken egg and its by-products can improve tissue engraftment and stimulate angiogenesis, making it particularly attractive for wound healing and tissue engineering applications. Evidence suggests that the egg white (EW), egg yolk (EY), and eggshell membrane (ESM) are great biomaterial candidates for tissue engineering, as their protein composition resembles mammalian extracellular matrix proteins, ideal for cellular attachment, cellular differentiation, proliferation, and survivability. Moreover, eggshell (ES) is considered an excellent calcium resource for generating hydroxyapatite (HA), making it a promising biomaterial for bone regeneration. This review will provide researchers with a concise yet comprehensive understanding of the chicken egg structure, composition, and associated bioactive molecules in each component and introduce up-to-date tissue engineering applications of chicken eggs as biomaterials.


Assuntos
Materiais Biocompatíveis , Galinhas , Casca de Ovo , Engenharia Tecidual , Animais , Materiais Biocompatíveis/química , Casca de Ovo/química , Clara de Ovo/química , Gema de Ovo/química , Óvulo/química , Engenharia Tecidual/métodos
11.
An Acad Bras Cienc ; 96(1): e20230640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656056

RESUMO

The current research intended to examine the impact of dietary lemon peel powder (LPP) on laying quail performance, egg quality criteria, and the antioxidant capacity of the yolk. A total of 120 female Japanese quails (272.6±9.3 g), aged 21 weeks, were allotted to 6 trial groups, each with 5 replicates of 4 quails. Additions of 0, 1, 2, 3, 4, or 5 g/kg of LPP to the basal diet were used to create the treatment groups. Quails were fed ad libitum for 70 days. Neither performance parameters nor egg production was affected by LPP. However, eggshell-breaking strength improved by adding 2 g/kg LPP to the diet, but worsened at 5 g/kg. Moreover, the relative weight of eggshell and yolk L* value decreased with the treatments. Dietary LPP enhanced oxidative stability, reducing malondialdehyde (MDA) and increasing 1,1-diphenyl-2-picrylhydrazyl (DPPH) yolk values. The current study demonstrated that LPP, a safe and easily accessible agricultural by-product, enhanced eggshell quality when it was included in the diet of laying quails at doses of 2 g/kg. In contrast, improvement of yolk antioxidant capacity required increased amounts of LPP (4 g/kg). LPP could be advantageous to animal nutrition as an adequate substitute to reduce waste by-products.


Assuntos
Ração Animal , Antioxidantes , Citrus , Coturnix , Suplementos Nutricionais , Pós , Animais , Citrus/química , Feminino , Antioxidantes/análise , Antioxidantes/farmacologia , Ração Animal/análise , Casca de Ovo/efeitos dos fármacos , Casca de Ovo/química , Gema de Ovo/química
12.
Food Chem ; 450: 139314, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636383

RESUMO

Food waste occurs frequently worldwide, though hunger and malnutrition issues have received global attention. Short-term spoilage of perishable foods causes a significant proportion of food waste. Developing simple, green, and low-cost strategies to preserve the freshness of perishable foods is important to address this issue and improving food safety. By using strawberries as the model perishable fruit, this study reported a pectin/carboxy methyl starch sodium (PC) based coating using epigallocatechin gallate-loaded eggshell powder (ES@EGCG) as the functional fillers. In comparison to PC coating, the PC-ES@EGCG coating displayed much-enhanced performance, such as enhanced mechanical (2 folds) and barrier (water vapor & oxygen) properties. This composite coating reduced the weight loss of strawberries from over 60% to around 30% after 7-day storage. Coated strawberries exhibit better freshness retention, which achieves the purpose of preserving strawberries during storage. This study provided a cost-effective and eco-friendly coating strategy for reducing food waste.


Assuntos
Conservação de Alimentos , Fragaria , Pectinas , Amido , Fragaria/química , Pectinas/química , Amido/química , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Casca de Ovo/química , Animais , Frutas/química , Catequina/química , Catequina/análogos & derivados
13.
J Environ Manage ; 359: 120782, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669884

RESUMO

Capturing CO2 using clamshell/eggshell-derived CaO adsorbent can not only reduce carbon emissions but also alleviate the impact of trash on the environment. However, organic acid was usually used, high-temperature calcination was often performed, and CO2 was inevitably released during preparing CaO adsorbents from shell wastes. In this work, CaO-based CO2 adsorbent was greenly prepared by calcium-induced hydrogenation of clamshell and eggshell wastes in one pot at room/moderate temperature. CO2 adsorption experiments were performed in a thermogravimetric analyzer (TGA). The adsorption performance of the adsorbents obtained from the mechanochemical reaction (BM-C/E-CaO) was superior to that of the adsorbents obtained from the thermochemical reaction (Cal-C/E-CaO). The CO2 adsorption capacity of BM-C-CaO at 650 °C is up to 36.82 wt%, but the adsorption decay rate of the sample after 20 carbonation/calcination cycles is only 30.17%. This study offers an alternative energy-saving method for greenly preparing CaO-based adsorbent from shell wastes.


Assuntos
Dióxido de Carbono , Química Verde , Eliminação de Resíduos , Química Verde/métodos , Dióxido de Carbono/análise , Dióxido de Carbono/química , Hidrogenação , Temperatura , Exoesqueleto/química , Casca de Ovo/química , Eliminação de Resíduos/métodos , Adsorção
14.
Acta Biomater ; 178: 244-256, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460930

RESUMO

Guinea fowl eggshells have an unusual structural arrangement that is different from that of most birds, consisting of two distinct layers with different microstructures. This bilayered organization, and distinct microstructural characteristics, provides it with exceptional mechanical properties. The inner layer, constituting about one third of the eggshell thickness, contains columnar calcite crystal units arranged vertically as in most bird shells. However, the thicker outer layer has a more complex microstructural arrangement formed by a switch to smaller calcite domains with diffuse/interlocking boundaries, partly resembling the interfaces seen in mollusk shell nacre. The switching process that leads to this remarkable second-layer microstructure is unknown. Our results indicate that the microstructural switching is triggered by changes in the inter- and intracrystalline organic matrix. During production of the outer microcrystalline layer in the later stages of eggshell formation, the interactions of organic matter with mineral induce an accumulation of defects that increase crystal mosaicity, instill anisotropic lattice distortions in the calcite structure, interrupt epitaxial growth, reduce crystallite size, and induce nucleation events which increase crystal misorientation. These structural changes, together with the transition between the layers and each layer having different microstructures, enhance the overall mechanical strength of the Guinea fowl eggshell. Additionally, our findings provide new insights into how biogenic calcite growth may be regulated to impart unique functional properties. STATEMENT OF SIGNIFICANCE: Avian eggshells are mineralized to protect the embryo and to provide calcium for embryonic chick skeletal development. Their thickness, structure and mechanical properties have evolved to resist external forces throughout brooding, yet ultimately allow them to crack open during chick hatching. One particular eggshell, that of the Guinea fowl, has structural features very different from other galliform birds - it is bilayered, with an inner columnar mineral structure (like in most birds), but it also has an outer layer with a complex microstructure which contributes to its superior mechanical properties. This work provides novel and new fundamental information about the processes and mechanisms that control and change crystal growth during the switch to microcrystalline domains when the second outer layer forms.


Assuntos
Galinhas , Casca de Ovo , Animais , Casca de Ovo/química , Carbonato de Cálcio/química , Minerais
15.
Int J Biol Macromol ; 266(Pt 1): 131089, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521340

RESUMO

Herein, for the very first time, we report a paper-like biomass, eggshell membrane (ESM), as a suitable platform for the fabrication of a colorimetric sensor (E-Cot). Green ethanolic extract, curcumin (CUR), was used as a sensing material to coat with the ESM. The present E-Cot effectively changed its color (yellow to red) in the real-time monitoring for chicken spoilage. The E-Cot exhibits barrier properties due to its inherent semi-permeability characteristics. Interestingly, the E-Cot showed a significant change in total color difference value (ΔE, 0 days - 0.0-39.6, after 1 day - 39.6-42.1, after 2 days - 42.1-53.6, after 3 days- 53.6-60.1, and after 4 days - 60.1-66.3, detectable by the naked eye) in the real-time monitoring for chicken freshness. In addition, the present E-Cot smart colorimetric sensor is reversible with a change in pH, and the sensor can be reused. Further, the hydrophobic nature of the E-Cot was confirmed by water contact angle analysis (WCA, contact angle of 101.21 ± 8.39). Good antibacterial, barrier, and optical properties of the present E-Cot were also found. Owing to the advantages such as green, efficient, cost-effective, biodegradable, reusable, sustainable, and simple preparation, we believe that the present E-Cot would be a more attractive candidate.


Assuntos
Galinhas , Colorimetria , Curcumina , Casca de Ovo , Animais , Curcumina/química , Curcumina/análise , Colorimetria/métodos , Casca de Ovo/química , Cor , Química Verde/métodos
16.
Acta Biomater ; 178: 233-243, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423350

RESUMO

Biological materials exhibit complex structure-property relationships which are designed by nature's evolution over millions of years. Unlocking the fundamental physical principles behind these relationships is crucial for creating bioinspired materials and structures with advanced functionalities. The eggshell is a remarkable example with a well-designed structure to balance the trade-off as it provides mechanical protection while still being easy for hatching. In this study, we investigate the underlying mechanical design principles of chicken eggshells under various loading conditions through a combination of experiments and simulations. The unique geometry and structure of the eggshell play a critical role in achieving an excellent balance between mechanical toughness and ease of hatching. The effects of eggshell membranes are elucidated to tune the mechanical properties of the eggshell to further enhance this balance. Moreover, a mechanics-based three-index model is proposed based on these design principles, suggesting the optimal eggshell thickness design to improve survivability across a broad range of avian species with varying egg sizes. The survivability-design relationships hold great potential for the development of improved structural materials for applications in sports safety equipment and the packaging industry. STATEMENT OF SIGNIFICANCE: The fundamental physical principles underlying the complex structure-property relationships in biological materials are uncovered in this study, with a particular focus on chicken eggshells as a prime example. Through the investigation of their mechanical design, we reveal the critical role of eggshell geometry and structure in achieving a balance between toughness and ease of hatching. Specifically, the crack resting effect is observed, making the eggshell easier to break from the inside than from the outside. Additionally, we explore the influence of eggshell membranes on this balance, contributing to the enhancement of the eggshell's mechanical properties. For the first time, we propose a three-index model that uncovers the underlying principles governing the evolution of eggshell thickness. This model suggests optimal thickness designs for diverse avian species, with the goal of enhancing egg survivability. These findings can guide the development of improved structural materials with advanced functionalities, enabling greater safety and efficiency in a wide range of applications.


Assuntos
Materiais Biomiméticos , Casca de Ovo , Animais , Casca de Ovo/química , Galinhas
17.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 965-977, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38389325

RESUMO

A dose-response experiment was conducted to evaluate the effects of graded levels of dietary digestible threonine (dThr) during the first laying cycle on productive and reproductive performance, egg quality and immune responses of Japanese quail breeders (Coturnix coturnix japonica). Also, dThr requirements were determined based on nutrient dose-response data. A total of 450 (360 females and 90 males) 11-week-old breeders were allocated to five increment (+0.03%) levels of dThr (0.49%, 0.52%, 0.55%, 0.58%, 0.61% and 0.64%) with five replicates per treatment and 15 (12 females and three males) birds each. The experiment lasted for 12 weeks. In response to increasing dietary dThr levels, egg production, egg mass, feed efficiency, egg specific gravity, eggshell relative weight, eggshell thickness, egg fertility (EF) and immune response against sheep red blood cell (SRBC) inoculation were improved with quadratic trends and egg hatchability as set eggs was improved with linear trends. Japanese quail breeders fed a diet with 0.58% dThr concentration (threonine/lysine ratio of 59%) showed the productive performance traits, EF, eggshell quality and immune response against SRBC inoculation in the highest values. However, feed intake, egg weight, egg albumen and yolk relative weight, egg shape index, haugh unit and egg composition were not affected by increasing dietary dThr level. Based on the broken-line regression model, the dThr requirements to optimize productive performance, eggshell quality, EF and immune response against SRBC inoculation were estimated at 159-188, 169-183, 175 and 178 mg/bird per day, respectively. It is concluded, in the Japanese quail breeders during the first laying phase a daily dThr intake of 188 mg/bird, dietary dThr concentration at 0.58% (threonine/lysine ratio of 59%) is adequate for optimized productive and reproductive performance, eggshell quality and immune responses. The estimated requirements depend on what production parameter is taken into considered for optimization.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Coturnix , Dieta , Suplementos Nutricionais , Casca de Ovo , Reprodução , Treonina , Animais , Coturnix/fisiologia , Coturnix/sangue , Coturnix/imunologia , Feminino , Ração Animal/análise , Dieta/veterinária , Treonina/farmacologia , Treonina/administração & dosagem , Reprodução/efeitos dos fármacos , Masculino , Casca de Ovo/química , Casca de Ovo/efeitos dos fármacos
18.
Environ Res ; 247: 118279, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246301

RESUMO

The presence of hazardous dyes in wastewater poses significant threats to both ecosystems and the natural environment. Conventional methods for treating dye-contaminated water have several limitations, including high costs and complex operational processes. This study investigated a sustainable bio-sorbent composite derived from the Capparis decidua plant and eggshells, and evaluated its effectiveness in removing anionic dyes namely tartrazine (E-102), methyl orange (MO), and their mixed system. The research examines the influence of initial concentration, contact time, pH, adsorbent dosage, and temperature on the adsorption properties of anionic dyes. Optimal removal of tartrazine (E-102), methyl orange (MO), and their mixed system was achieved at a pH of 3. The equilibrium was achieved at 80 min for MO and mixed systems, and 100 min for E-102. The adsorption process showed an exothermic nature, indicating reduced capacity with increasing temperature, consistent with heat release during adsorption. Positive entropy values indicated increased disorder at the solid-liquid interface, attributed to molecular rearrangements and interactions between dye molecules and the adsorbent. Isotherm analysis using Langmuir, Freundlich, Temkin, and Redlich-Peterson models revealed that the Langmuir model best fit the experimental data. The maximum adsorption capacities of 50.97 mg/g, 52.24 mg/g, and 56.23 mg/g were achieved for E-102, MO, and the mixed system under optimized conditions, respectively. The pseudo-second-order kinetic model demonstrated the best fit, indicating that adsorption occurs through physical and chemical interactions such as electrostatic attraction, pore filling, and hydrogen bonding. Hence, the developed bio-sorbent could be a sustainable and cost-effective solution for the treatment of anionic dyes from industrial effluents.


Assuntos
Compostos Azo , Capparis , Poluentes Químicos da Água , Purificação da Água , Animais , Feminino , Corantes/química , Tartrazina , Casca de Ovo/química , Ecossistema , Purificação da Água/métodos , Indicadores e Reagentes , Decídua/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
19.
J Environ Manage ; 352: 120029, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38184877

RESUMO

Using biowaste-based adsorbents to remove phosphorus (P) from wastewater offers significant benefits concerning eutrophication mitigation and addressing waste management challenges. In this work, Ca-biocomposites were prepared by pyrolysis (700 °C) of a mixture of banana peel (BP) and eggshell (ES). The mass ratio of BP to ES was varied in 2:1, 1:1, and 1:2 ratios. Among the tested mixtures, the BPES-1:2 sample exhibited excellent P removal performance, reaching a maximum P adsorption capacity (Qmax) of 214 ± 5 mg P/g. The adsorption process fitted well with the Avrami order kinetic model (R2 > 0.996) and the Liu isotherms model (R2 > 0.997). The excellent fit of the experimental data to the Avrami model suggests that chemisorption is the dominant interaction mechanism, leading to precipitation through the formation of calcium phosphates. Additionally, the Liu model anticipates that the energetic characteristics of the adsorbent's active sites cannot be identical. This is in agreement with the presence of Ca(OH)2 and CaCO3 in the adsorbent material, where the Ca(OH)2 active sites are preferred by the adsorbate molecules (PO43-) for occupation. Furthermore, thermodynamic analysis revealed that P adsorption is a spontaneous process of exothermic nature (ΔH° < 0). The calculated activation energy for the process (72.81 kJ/mol) suggests the P adsorption mechanism involves strong chemical bonding between the adsorbent and P species. In addition, precipitation of apatite (Ca5(PO4)3OH), a vital component in fertilizer production, was observed during the adsorption process. In tertiary treated wastewater applications, the BPES-1:2 biocomposite demonstrated a P removal efficiency of 90%. The solubility of P in a 2% formic acid solution was 100%, while the water-soluble P content was measured at 5.6%. These findings highlight the product's sustainable and environmentally beneficial nature by demonstrating its potential as a slow-release fertilizer, contributing to the application of the 3R slogan: Reduce, Reuse, Recycle. This value-added product is promising in supplying nutrients to plants over an extended period while minimizing the risk of nutrients leaching into the environment.


Assuntos
Musa , Poluentes Químicos da Água , Animais , Fosfatos , Águas Residuárias , Casca de Ovo/química , Fertilizantes/análise , Adsorção , Cinética , Poluentes Químicos da Água/química
20.
Int J Biol Macromol ; 256(Pt 2): 128528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040164

RESUMO

Herein, a mixture of eggshell (ES) and magnetite nanoparticles (MNPs) was alkali-activated using NaOH/Na2SiO3 solution and then, impregnated with sodium alginate (SA) to prepare a magnetic bio-based adsorbent (namely SAAES/SA/MNPs) for the decontamination of water containing basic dyes, in particular, methylene blue (MB) and crystal violet (CV). The physicochemical properties of magnetic spheres of SAAES/SA/MNPs were characterized using XRD, FTIR, FESEM, EDX, elemental mapping, TEM, and zeta potential techniques. Dye adsorption equilibrium was studied experimentally at pH 8.0 and 25-55 °C, and a statistical physics multilayer model was applied to understand the removal mechanism of these dyes including the adsorption orientations on the adsorbent surface. The number of adsorbed dye molecules per functional group (n) of this bio-based adsorbent ranged from 0.70 to 0.91, indicating the presence of vertical and horizontal adsorption orientations for these organic molecules at all tested solution temperatures. The calculated saturation adsorption capacities (Qsat) were 332.57-256.62 mg/g for CV and 304.47-240.62 mg/g for MB, and an exothermic adsorption was observed for both adsorbates. The estimated adsorption energies (∆E) were < 25 kJ/mol, confirming that the SAAES/SA/MNPs-dye interactions were governed by physical forces as electrostatic interactions. This bio-based adsorbent was effectively regenerated using ethanol and it can be reused showing a removal of 71 and 74 % of MB and CV, respectively, after fourth adsorption-desorption cycles. Overall, the results of this article suggest the attractive performance of SAAES/SA/MNPs for removing basic dyes from aqueous solutions, thus highlighting the promising potential of this magnetic bio-based adsorbent for sustainable wastewater treatment at an industrial level.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Adsorção , Corantes/química , Álcalis , Casca de Ovo/química , Cátions , Azul de Metileno/química , Fenômenos Magnéticos , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...