Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.142
Filtrar
1.
Food Chem ; 462: 140956, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197243

RESUMO

The extraction of bioactive compounds is based on the application of various extraction techniques. Therefore, the stem and root bark of the plant species Morinda lucida L. were used in this research, while the extraction procedure was performed using three extraction techniques: HAE (homogenizer extraction), UAE (ultrasound extraction) as modern, and MAC (maceration) as conventional extraction technique. The presence of different classes of secondary metabolites was determined using the UHPLC method, while the content of total phenols and flavonoids was determined spectrophotometrically. The biological potential was investigated by in vitro antioxidant and enzyme assays. Different extraction technologies showed significant differences in only two classes of phenols, namely lignans and phenolic acids, which were significantly higher in HAE than in UAE and MAC. These findings highlight the significant effect of stem and bark extracts of M. lucida, opening the way for innovative industrial exploitation of these matrices.


Assuntos
Antioxidantes , Morinda , Fenóis , Extratos Vegetais , Morinda/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Flavonoides/isolamento & purificação , Casca de Planta/química , Fracionamento Químico/métodos , Caules de Planta/química , Raízes de Plantas/química
2.
J Nat Prod ; 87(9): 2263-2271, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39255387

RESUMO

Three new dihydroflavonols, gloverinols A-C (1-3), a new flavon-3-ol, gloverinol D (4), two new isoflavans, gloveriflavan A (5) and B (6), and seven known compounds were isolated from the root bark of Dalbergia gloveri. The structures of the isolates were elucidated by using NMR, ECD, and HRESIMS data analyses. Among the isolated compounds, gloverinol B (2), gloveriflavan B (6), and 1-(2,4-dihydroxyphenyl)-3-hydroxy-3-(4-hydroxyphenyl)-1-propanone (10) were the most active against Staphylococcus aureus, with MIC values of 9.2, 18.4, and 14.2 µM, respectively.


Assuntos
Dalbergia , Testes de Sensibilidade Microbiana , Casca de Planta , Raízes de Plantas , Staphylococcus aureus , Casca de Planta/química , Raízes de Plantas/química , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Dalbergia/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Isoflavonas/farmacologia , Isoflavonas/química , Isoflavonas/isolamento & purificação
3.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4100-4110, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307742

RESUMO

The stem bark of Aquilaria sinensis(Thymelaeaceae), with the local name of "Li-Wa-Zi-Xing", is used in traditional Yi medicine for treating chronic gastritis and other diseases. However, its active ingredients remain currently unknown. In this study, Helicobacter pylori(Hp) is used in anti-bacterial experiments to test the active compounds derived from A. sinensis stem bark. Nineteen compounds were isolated from the stem bark of A. sinensis by column chromatography, high-performance liquid chromatography, recrystallization, etc. Aquilaridiester(1) is a new lignan. The other eighteen compounds were reported before, including docosyl caffeate(2), 6-hydroxy-2-[2-(4-methoxyphenyl)ethyl]-4H-1-benzopyran-4-one(3), qinanone A(4), 6-hydroxy-2-(2-phenylethyl)chromone(5), 6-hydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-4H-1-benzopyran-4-one(6), 6-hydroxy-2-[2-(3-methoxy-4-hydroxyphenyl)ethyl]-4H-1-benzopyran-4-one(7), 6-hydroxy-2-[2-(3,4-dimethoxyphenyl)ethyl]chromone(8), 6-hydroxy-2-[(1E)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]-4H-1-benzopyran-4-one(9), genkwanin(10), 5-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-7-methoxy-4H-1-benzopyran-4-one(11), 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone(12),(+)-syringaresinol(13), zhebeiresinol(14), aquilarin A(15), caruilignan D(16),(-)-ficusal(17), pistaciamide(18), and protocatechuic acid(19). The anti-bacterial results show that compounds 2-7, 10-11, and 13 have inhibitory activity against Hp. Among them, 6-hydroxy-2-(2-phenylethyl)chromone(5) and 6-hydroxy-2-[2-(3-methoxy-4-hydroxyphenyl)ethyl]-4H-benzopyran-4-one(7) have superior inhibitory effects on Hp to others, with the same minimum inhibitory concentration(MIC) of 6.25 µmol·L~(-1). The 2-(2-phenylethyl)chromones are the major active ingredients in A. sinensis stem bark.


Assuntos
Antibacterianos , Helicobacter pylori , Testes de Sensibilidade Microbiana , Casca de Planta , Thymelaeaceae , Helicobacter pylori/efeitos dos fármacos , Casca de Planta/química , Antibacterianos/farmacologia , Antibacterianos/química , Thymelaeaceae/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Estrutura Molecular , Caules de Planta/química
4.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39273132

RESUMO

Couroupita guianensis, a medicinal plant autochthonal to South America and South India, is widely used in the ethnomedicine of the indigenous peoples of these regions thanks to its alleged antimicrobial, anti-inflammatory, antioxidant and wound-healing properties. The majority of studies have mainly analyzed organic extracts of the Indian plant's flowers and leaves, with limited research on its bark decoction, traditionally used in Amazonian shamanic medicine. In this study, we investigated the anticancer effects of the bark decoction and its main fractions obtained through chromatographic separation, as well as the underlying molecular mechanisms in AGS gastric cancer cells. Viability, cell proliferation, cell cycle, apoptosis and protein expression related to these processes were evaluated. Both the bark decoction and fraction III significantly inhibited cell viability, and the cytotoxic effect was linked to cell cycle blockade and the induction of apoptosis also through an engulfment of the autophagic flux. Increased expression or activation of the key proteins (p53, p21, cdk2, Bak, caspases, pAMPK, pAkt, beclin, p62 and LC3BII) involved in these processes was observed. The results obtained confirmed an important anticancer effect of C. guianensis bark decoction, providing scientific validation for its use in traditional medicine and highlighting its potential as a therapeutic agent against gastric cancer.


Assuntos
Apoptose , Proliferação de Células , Casca de Planta , Extratos Vegetais , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular Tumoral , Casca de Planta/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Antineoplásicos Fitogênicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Autofagia/efeitos dos fármacos
5.
Molecules ; 29(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39274835

RESUMO

The cell signaling pathways involved in the antiproliferative activities of T. rosea inner bark remain unexplored. This study evaluated the apoptotic effects of two iridoids from the inner bark of T. rosea and apicidin on THP-1 cells. The cytotoxic effects of the extract and the pure compounds on THP-1 and Jurkat cells were also evaluated using the MTT assay. The apoptotic effect was determined by measuring the mitochondrial membrane potential. The expression of mRNA and MAPK kinase, Bax, and Bcl-2 proteins was detected by Western blotting and RT-qPCR, respectively. The extract and the compounds evaluated increased the percentage of apoptotic cells. Depolarization of the mitochondrial membrane was observed, and the number of cells in the G0/G1 phase increased. Catalposide and specioside significantly increased p38 protein expression, mostly in cells pretreated with apicidin. The p38 MAPK signaling pathway is at least one of the pathways by which the n-butanol extract obtained from Tabebuia rosea, catalposide, and specioside exerts its apoptotic effect on THP-1 cells, and this effect generates a response in the G0/G1 phase and subsequent cell death. In addition, there was depolarization of the mitochondrial membrane, an effect that was related to the participation of the proapoptotic protein Bax.


Assuntos
Apoptose , Potencial da Membrana Mitocondrial , Casca de Planta , Extratos Vegetais , Tabebuia , Humanos , Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Casca de Planta/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Tabebuia/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Células Jurkat , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Leucemia/patologia , 1-Butanol/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células THP-1 , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos
6.
Nutrients ; 16(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39275269

RESUMO

Berberine (BER) is an alkaloid found, together with other protoberberinoids (PROTBERs), in several species used in medicines and food supplements. While some herbal preparations containing BER and PROTBERs, such as Berberis aristata DC. bark extracts, have shown promising potential for human health, their safety has not been fully assessed. Recently, the EFSA issued a call for data to deepen the pharmacokinetic and pharmacodynamic understanding of products containing BER and PROTBERs and to comprehensively assess their safety, especially when used in food supplements. In this context, new data were collected in this work by assessing: (i) the phytochemical profile of 16 different commercial B. aristata dry extracts, which are among the most widely used preparations containing BER and PROTBERs in Europe; (ii) the In Vitro and In Silico investigation of the pharmacokinetic properties of BER and PROTBERs; (iii) the In Vitro cytotoxicity of selected extracts in different human cell lines, including tests on hepatic cells in the presence of CYP450 substrates; (iv) the effects of the extracts on cancer cell migration; and (v) the In Vitro molecular effects of extracts in non-cancer human cells. Results showed that commercial B. aristata extracts contain BER as the main constituent, with jatrorrhizine as main secondary PROTBER. BER and jatrorrhizine were found to have a good bioaccessibility rate, but they interact with P-gp. B. aristata extracts showed limited cytotoxicity and minimal interaction with CYP450 substrates. Furthermore, tested extracts demonstrated inhibition of cancer cell migration and were devoid of any pro-tumoral effects in normal cells. Overall, our work provides a valuable overview to better elucidate important concerns regarding botanicals containing BER and PROTBERs.


Assuntos
Berberina , Berberis , Simulação por Computador , Casca de Planta , Extratos Vegetais , Berberis/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/farmacocinética , Casca de Planta/química , Berberina/farmacocinética , Berberina/análogos & derivados , Berberina/farmacologia , Disponibilidade Biológica , Movimento Celular/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/farmacocinética , Linhagem Celular Tumoral
7.
Molecules ; 29(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39339387

RESUMO

The current study proceeded to reduce the environmental hazards spreading worldwide due to synthetic dyes. To overcome these problems, eco-friendly natural dyes are introduced as alternative sources of synthetic dyes. The present study was focused on exploring the bio-colorant of the aqueous and acidic extract of the bark of Melia azedarach L. for the dyeing of both silk and cotton samples. The results of the extraction medium specified that the aqueous extract gave maximum colorant solubility and upon fabric dyeing produced higher color strength in contrast to the acidic medium. The optimization experimentation data showed that excellent color strength of silk fabric was found at 45 min dyeing time duration, in 35:1 mL dye extract, and using 2% salt (NaCl) as an exhausting agent, whereas cotton fabric showed the maximum K/S value at 60 min dyeing time, in a 45:1 mL liquor ratio, and with the use of 2% salt. Bio-mordants produce different shades on both fabrics. Bio-mordanting experiments on silk revealed that pre-mordanting with 2% turmeric and 3% pomegranate, and post-mordanting using 3% turmeric and 2% pomegranate produced a darker shade. In the case of cotton, the pre-mordanted samples with 2% turmeric and 3% pomegranate and the post-mordanted samples with 4% turmeric and 4% pomegranate gave the highest color strengths. All the mordanted samples gave excellent fastness ratings. Overall, it has been found that Bakain bark proved to be an excellent source of tannin. The result of this study showed that it could be a cost-effective and eco-friendly dye source for textile progress.


Assuntos
Corantes , Casca de Planta , Extratos Vegetais , Têxteis , Corantes/química , Casca de Planta/química , Extratos Vegetais/química , Têxteis/análise , Celulose/química , Cor , Fibra de Algodão/análise
8.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39337695

RESUMO

Plant defence mechanisms, including physical barriers like toughened bark and chemical defences like allelochemicals, are essential for protecting them against pests. Trees allocate non-structural carbohydrates (NSCs) to produce secondary metabolites like monoterpenes, which increase during biotic stress to fend off pests like the Eurasian spruce bark beetle, ESBB (Ips typographus). Despite these defences, the ESBB infests Norway spruce, causing significant ecological damage by exploiting weakened trees and using pheromones for aggregation. However, the mechanism of sensing and resistance towards host allelochemicals in ESBB is poorly understood. We hypothesised that the exposure of ESBB to spruce allelochemicals, especially monoterpenes, leads to an upsurge in the important detoxification genes like P450s, GSTs, UGTs, and transporters, and at the same time, genes responsible for development must be compromised. The current study demonstrates that exposure to monoterpenes like R-limonene and sabiene effectively elevated detoxification enzyme activities. The differential gene expression (DGE) analysis revealed 294 differentially expressed (DE) detoxification genes in response to R-limonene and 426 DE detoxification genes in response to sabiene treatments, with 209 common genes between the treatments. Amongst these, genes from the cytochrome P450 family 4 and 6 genes (CP4 and CP6), esterases, glutathione S-transferases family 1 (GSTT1), UDP-glucuronosyltransferase 2B genes (UDB), and glucose synthesis-related dehydrogenases were highly upregulated. We further validated 19 genes using RT-qPCR. Additionally, we observed similar high expression levels of detoxification genes across different monoterpene treatments, including myrcene and α-pinene, suggesting a conserved detoxification mechanism in ESBB, which demands further investigation. These findings highlight the potential for molecular target-based beetle management strategies targeting these key detoxification genes.


Assuntos
Besouros , Inativação Metabólica , Monoterpenos , Picea , Animais , Monoterpenos/metabolismo , Monoterpenos/farmacologia , Picea/metabolismo , Picea/genética , Besouros/metabolismo , Besouros/genética , Besouros/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Casca de Planta/química , Casca de Planta/metabolismo
9.
J Ethnopharmacol ; 335: 118671, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103024

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a multifactorial, polygenic inflammatory disease. Mesua assamica (King & Prain) Kosterm. (MA) is an endangered medicinal plant indigenous to South Asia, primarily to Assam in India. The tree bark is claimed to possess anti-inflammatory, anti-diabetic, anti-cancer, and anti-malarial properties; nevertheless, its role in RA has not been elucidated. Hence, this study aims to investigate the in-vitro and in-vivo anti-arthritic effects of Mesua assamica bark ethanolic extract (MAE). AIM OF THE STUDY: This study aims to investigate the anti-rheumatic potential of MAE in-vitro on RAW 264.7 cells for its anti-oxidant and anti-inflammatory activities and in-vivo on the CFA-induced adjuvant arthritis in the rat model. MATERIALS AND METHODS: We investigated the possible therapeutic effects of MAE in-vitro using RAW 264.7 cells triggered by LPS. Meanwhile, adult Wistar rats were injected intradermally with 100 µl of CFA to induce arthritis, and they were given MAE orally at doses of 100 and 200 mg/kg for up to 28 days. Paw volume analysis, X-ray radiography, anti-oxidant levels analysis, gene and protein expression studies, and histological analysis were carried out to assess the effects of MAE in-vivo. RESULTS: MAE significantly mitigated the inflammation by reducing ROS levels and dropped the nitrite, PGE2, and COX-2 levels enhanced by LPS in-vitro. At the same time, MAE treatment reduced the paw and joint inflammation and increased the immune organ index in the CFA rats. Histopathology data revealed that MAE mitigated the CFA-induced lesions of the ankle joints and synovial tissues. Similarly, MAE significantly abated the secretion of pro-inflammatory cytokines, inhibited the protein expression of TLR4, NF-кB, COX-2, and iNOS, as well as improved the Nrf2 and HO-1 levels in-vitro and in-vivo. CONCLUSION: All the results highlighted the anti-rheumatic potential of MAE in RA in-vitro and in-vivo by inhibiting the TLR4/NF-кB/COX-2/iNOS and promoting the Nrf2/HO-1 signaling axis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ciclo-Oxigenase 2 , Etanol , Fator 2 Relacionado a NF-E2 , NF-kappa B , Casca de Planta , Extratos Vegetais , Receptor 4 Toll-Like , Animais , Extratos Vegetais/farmacologia , Células RAW 264.7 , Camundongos , Casca de Planta/química , Receptor 4 Toll-Like/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Artrite Reumatoide/tratamento farmacológico , NF-kappa B/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Etanol/química , Ciclo-Oxigenase 2/metabolismo , Masculino , Ratos , Ratos Wistar , Regulação para Baixo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Antirreumáticos/farmacologia , Antirreumáticos/isolamento & purificação , Heme Oxigenase-1/metabolismo , Proteínas de Membrana
10.
Food Res Int ; 192: 114833, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147522

RESUMO

This study examined the suppressive effects of 16 selected plant-based foods on α-glucosidase and pancreatic lipase and their antioxidant properties. Among these, the bark of Cinnamomum cassia (Cinnamon, WLN-FM 15) showed the highest inhibitory activity against α-glucosidase and the highest antioxidant activity. Additionally, WLN-FM 15 showed promising results in the other tests. To further identify the bioactive constituents of WLN-FM 15, a multi-bioactivity-labeled molecular networking approach was used through a combination of GNPS-based molecular networking, DPPH-HPLC, and affinity-based ultrafiltration-HPLC. A total of nine procyanidins were identified as antioxidants and inhibitors of α-glucosidase and pancreatic lipase in WLN-FM 15. Subsequently, procyanidins A1, A2, B1, and C1 were isolated, and their efficacy was confirmed through functional assays. In summary, WLN-FM 15 has the potential to serve as a functional food ingredient with the procyanidins as its bioactive constituents. These results also suggest that the multi-bioactivity-labeled molecular networking approach is reliable for identifying bioactive constituents in plant-based foods.


Assuntos
Antioxidantes , Biflavonoides , Catequina , Cinnamomum aromaticum , Inibidores de Glicosídeo Hidrolases , Lipase , Casca de Planta , Proantocianidinas , Proantocianidinas/farmacologia , Proantocianidinas/química , Proantocianidinas/análise , Lipase/antagonistas & inibidores , Lipase/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/análise , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Casca de Planta/química , Cinnamomum aromaticum/química , Biflavonoides/farmacologia , Biflavonoides/análise , Biflavonoides/química , Catequina/análise , Catequina/química , Catequina/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Cromatografia Líquida de Alta Pressão , Pâncreas/enzimologia , alfa-Glucosidases/metabolismo , Farmacologia em Rede , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
11.
J Agric Food Chem ; 72(32): 18056-18066, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087645

RESUMO

A major factor limiting bark's industrial use is its greater recalcitrance compared to wood. While lignin is widely recognized as a significant contributor, precise characterization of lignin in bark remains sparse, presenting a crucial gap that impedes understanding of its impact. In this study, we employed advanced solid-state nuclear magnetic resonance (NMR) spectroscopy to analyze bark samples from various species, including willow, poplar, and pine. We established and verified that lignin methoxy peak at 56 ppm serves as a reliable quantitative metric to assess lignin content, with which we calculated the lignin contents in bark are significantly reduced by more than 70% compared to those in wood. Furthermore, in situ characterization revealed significant reduction of ß-ether linkage in bark lignin across species, revealing a more condensed and resistant structural configuration. Our results have substantially advanced our comprehension of the composition and structure of native lignin in tree bark.


Assuntos
Lignina , Espectroscopia de Ressonância Magnética , Casca de Planta , Populus , Madeira , Lignina/química , Casca de Planta/química , Espectroscopia de Ressonância Magnética/métodos , Populus/química , Madeira/química , Pinus/química , Salix/química , Estrutura Molecular , Árvores/química
12.
PLoS One ; 19(8): e0304521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39159188

RESUMO

Zanthoxylum rhetsa (ZR) is used traditionally to manage a variety of ailments, including diabetes. Oxidative stress may accelerate the diabetic condition. The available antidiabetic and antioxidant drugs have many shortcomings including resistance, inefficiency, higher dose, side effects and costs. The goal of the current investigation was to assess the antioxidant capacity and antidiabetic activity of an ethanolic extract of Zanthoxylum rhetsa root bark (ZRRB) through in vitro, in vivo, and in silico methods. The antioxidant capacity of the ZRRB extract was measured using both the DPPH radical assay and the total antioxidant activity test. The oral glucose tolerance test (OGTT) and alloxan-induced diabetic mice model were also used to examine in vivo antidiabetic efficacy. Phytochemicals identification was done by GCMS analysis. Additionally, computational methods such as molecular docking, ADMET analysis, and molecular dynamics (MD) modeling were performed to determine the above pharmacological effects. The extract demonstrated significant DPPH scavenging activity (IC50 = 42.65 µg/mL). In the OGTT test and alloxan-induced diabetes mice model, the extract effectively lowered blood glucose levels. Furthermore, in vitro inhibition of pancreatic α-amylase studies demonstrated the ZRRB extract as a good antidiabetic crude drug (IC50 = 81.45 µg/mL). GCMS investigation confirmed that the crude extract contains 16 major phytoconstituents, which were docked with human peroxiredoxin-5, α-amylase, and sulfonylurea receptor 1. Docking and pharmacokinetic studies demonstrated that among 16 phytoconstituents, 6H-indolo[3,2,1-de] [1,5]naphthyridin-6-one (CID: 97176) showed the highest binding affinity to targeted enzymes, and imitated Lipinski's rule of five. Furthermore, MD simulation data confirmed that the aforementioned compound is very steady to the binding site of α-amylase and sulfonylurea receptor 1 receptors. Findings from in vitro, in vivo and in silico investigation suggest that ZRRB extract contains a lead compound that could be a potent source of antidiabetic drug candidate.


Assuntos
Antioxidantes , Diabetes Mellitus Experimental , Hipoglicemiantes , Simulação de Acoplamento Molecular , Casca de Planta , Extratos Vegetais , Zanthoxylum , Zanthoxylum/química , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/química , Casca de Planta/química , Masculino , Raízes de Plantas/química , Cromatografia Gasosa-Espectrometria de Massas , Teste de Tolerância a Glucose , Etanol/química , Simulação de Dinâmica Molecular
13.
PeerJ ; 12: e17850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161966

RESUMO

Background: The bark of Chinese fir (Cunninghamia lanceolata), the largest afforestation tree species in the forest areas of southern China, is susceptible to injuries and bites from small animals. The population of small animals has recently increased owing to improvements in the ecological environment across various forested areas, thus increasing the incidence of injuries in the bark of Chinese fir. Following such injuries, the bark secretes light yellow or milky white secretions, the function of which remains unclear. The present study aimed to reveal the antibacterial effect of exudates of different Chinese fir cultivars on five bacterial species. Methods: The research involved three-year-old plantations of Taxus chinensis var. koraiensis and Yangkou3 and three-year-old container plantations of Taxus chinensis var. pendula, Yang 061, and Yang 020. The antibacterial effects of exudates were analyzed using the filter paper diffusion method. The minimum inhibitory concentration for each secretion and the bacterial inhibition zone were determined. Results: The exudates of the different Chinese fir bark exhibited notable antibacterial effects on Bacillus subtilis, Salmonella paratyphi B, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. However, the extent of these antibacterial effects varied among the different Chinese fir cultivars, as the minimum inhibitory concentrations (MICs) of the exudates against the five bacterial species varied. The mean MIC of Pseudomonas aeruginosa was lower potency, whereas that of Escherichia coli was the lowest. Notably, the antibacterial efficacy of the exudates was mainly influenced by the composition of the secretions rather than the number of secretions, with organic acid compounds and terpenoids potentially contributing to the antibacterial effects against E. coli and Bacillus subtilis, respectively. Conclusion: This study demonstrates the antibacterial effect of wound secretion of different Chinese fir cultivars, highlighting their varying efficacy on different bacterial species. Moreover, the antibacterial ability of the exudates of the strains was mainly determined by the composition of the wound secretions, and there was no noticeable relationship with the number of wound secretions. The results of this study offers a theoretical basis for screen Chinese fir cultivars with high-disease-resistant.


Assuntos
Antibacterianos , Cunninghamia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Cunninghamia/química , Casca de Planta/química , China , Taxus/química , Exsudatos de Plantas/química , Exsudatos de Plantas/farmacologia
14.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125867

RESUMO

Pygeum africanum bark has been shown to inhibit the production of pro-inflammatory prostaglandins in the prostate and reduces the production of leukotrienes and other 5-lipoxygenase (5-LO) metabolites. It has been suggested that inflammation plays an important role in the pathophysiology of benign prostatic hyperplasia (BPH). Data from clinical trials have shown that P. africanum improves the symptoms and objective measures of BPH. This in vitro study aimed to assess the anti-inflammatory potential of a proprietary Pygeum bark standardized extract (Prunera®) on cytokine release from lipopolysaccharide-stimulated human peripheral blood mononuclear cells (PBMCs). PBMCs were obtained from four donors, and a bead-based assay (ProcartaPlex™ panel) was used for the detection and quantitation of cytokines. Pygeum africanum bark standardized extract (PABE) induced a statistically significant decrease (p < 0.05) of IL-6 in three donors. Other effects were as follows: IL-2 was lowered in all donors in the absence of a clear dose-response relationship; IL-4, IL-5, IL-9, and IL-13 levels were decreased in most donors; IL-22 levels seemed to be suppressed only for donor 4 at lower and medium concentrations; and IL-27 and TNF-α levels decreased at all PABE concentrations in all donors. The anti-inflammatory effect of PABE, particularly the reduction in IL-6 as a marker of inflammation, supports the potential use of this natural compound in the management of BPH and other conditions in which pro-inflammatory cytokines are involved in their underlying pathophysiological mechanisms.


Assuntos
Anti-Inflamatórios , Citocinas , Leucócitos Mononucleares , Lipopolissacarídeos , Casca de Planta , Extratos Vegetais , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Citocinas/metabolismo , Casca de Planta/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Prunus africana/química , Masculino , Células Cultivadas
15.
J Hazard Mater ; 477: 135372, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39106723

RESUMO

Tree bark has been proven as an effective passive air sampler, particularly where access to active sampling methods is limited. In this study, 60 target liquid crystal monomers (LCMs; comprising 10 cyanobiphenyl and analogs (CBAs), 13 biphenyl and analogs (BAs), and 37 fluorinated biphenyl and analogs (FBAs)) were analyzed in 34 tree barks collected from the vicinity of a liquid crystal display (LCD) manufacturer situated in the Pearl River Delta, South China. The concentrations of LCMs in tree barks ranged from 1400 to 16000 ng/g lipid weight, with an average of 5900 ng/g lipid weight. Generally, bark levels of BAs exponentially decreased within 5 km of the LCD manufacturer. The profiles of LCMs in tree barks are similar to previously reported patterns in gaseous phase, suggesting bark's efficacy as a sampler for gaseous LCMs. The inclusion of different congeners in existing studies on the environmental occurrence of LCMs has hindered the horizontal comparisons. Therefore, this study established a list of priority LCMs based on environmental monitoring data and the publicly accessible production data. This list comprised 146 LCMs, including 63 REACH registered LCMs that haven't been analyzed in any study and 56 belonging to 4 types of mainstream LCMs.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Cristais Líquidos , Casca de Planta , Casca de Planta/química , Cristais Líquidos/química , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , China , Compostos de Bifenilo
16.
Molecules ; 29(16)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39202886

RESUMO

Background:Periplocae Cortex (PC), Acanthopanacis Cortex (AC), and Lycii Cortex (LC), as traditional Chinese medicines, are all dried root bark, presented in a roll, light and brittle, easy to break, have a fragrant scent, etc. Due to their similar appearances, it is tough to distinguish them, and they are often confused and adulterated in markets and clinical applications. To realize the identification and quality control of three herbs, in this paper, Ultra Performance Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry Expression (UHPLC-QTOF-MSE) combined with chemometric analysis was used to explore the different chemical compositions. Methods: LC, AC, and PC were analyzed by UHPLC-QTOF-MSE, and the quantized MS data combined with Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) were used to explore the different chemical compositions with Variable Importance Projection (VIP) > 1.0. Further, the different chemical compositions were identified according to the chemical standard substances, related literature, and databases. Results: AC, PC, and LC can be obviously distinguished in PCA and PLS-DA analysis with the VIP of 2661 ions > 1.0. We preliminarily identified 17 differential chemical constituents in AC, PC, and LC with significant differences (p < 0.01) and VIP > 1.0; for example, Lycium B and Periploside H2 are LC and PC's proprietary ingredients, respectively, and 2-Hydroxy-4-methoxybenzaldehyde, Periplocoside C, and 3,5-Di-O-caffeoylquinic acid are the shared components of the three herbs. Conclusions: UHPLC-QTOF-MSE combined with chemometric analysis is conducive to exploring the differential chemical compositions of three herbs. Moreover, the proprietary ingredients, Lycium B (LC) and Periploside H2 (PC), are beneficial in strengthening the quality control of AC, PC, and LC. In addition, limits on the content of shared components can be set to enhance the quality control of LC, PC, and AC.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas , Análise de Componente Principal , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Quimiometria , Análise Discriminante , Análise dos Mínimos Quadrados , Casca de Planta/química , Medicina Tradicional Chinesa
17.
Molecules ; 29(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39202913

RESUMO

Guatteria olivacea R.E. Fries is an Amazonian species known as 'envira-bobó' and 'envira-fofa' and is common in the states of Amazonas, Acre, and Pará. Recently, the essential oil from the leaves of this species has shown promising antitumor activity both in vitro and in vivo. The presence of isoquinoline-derived alkaloids, including aporphinoids and tetrahydroprotoberberine alkaloids, has also been previously reported. In our ongoing search for bioactive compounds from Annonaceae Amazonian plants, the bark of G. olivacea was investigated via classical chromatography techniques, which revealed nine compounds, eight isoquinoline-derived alkaloids, a rare alkaloid with a α-gem-dimethyltetradehydrocularine structure known as gouregine, seven known aporphinoid alkaloids: isopiline, O-methylisopiline, melosmine, 9-hydroxyiguattescine, dihydromelosmine, lysicamine, and guattouregidine, and one known pimaradiene diterpene: acanthoic acid. All the isolated compounds were described for the first time in the bark of G. olivacea, and their structures were elucidated by extensive analyses of their 1D and 2D NMR spectra in combination with MS data. The NMR data of the alkaloids isopiline, O-methylisopiline, melosmine, dihydromelosmine, and guattouregidine were revised due to incomplete data in the literature and some ambiguities. The in vitro cytotoxic activities of the isolated compounds were evaluated against human cancer (HepG2, KG-1a, and HCT116) and noncancerous (MRC-5) cell lines via the Alamar blue assay after 72 h of incubation. Among the compounds evaluated against human cancer cell lines, the most active was the oxoaporphine alkaloid lysicamine, which has strong activity against HCT116 cells, with an IC50 value of 6.64 µg/mL (22.79 µmol/L). Melosmine had a moderate effect on HCT116 cells, with an IC50 value of 16.77 µg/mL (49.70 µmol/L), whereas acanthoic acid had moderate effects on HepG2 and HCT116 cells, with IC50 values of 14.63 µg/mL (48.37 µmol/L) and 21.25 µg/mL (70.25 µmol/L), respectively.


Assuntos
Alcaloides , Aporfinas , Casca de Planta , Casca de Planta/química , Humanos , Aporfinas/farmacologia , Aporfinas/química , Aporfinas/isolamento & purificação , Linhagem Celular Tumoral , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Guatteria/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular
18.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201576

RESUMO

This study aimed to evaluate the effects of supplementation with ethanolic and aqueous extracts from the bark of the stem of Guazuma ulmifolia in mice submitted to a high-fat diet as well as to evaluate the chemical composition of these extracts. The chemical composition and antioxidant potential was evaluated in aqueous and ethanolic extracts of the stem bark. The in vivo test consisted of evaluating the effects of the aqueous and ethanolic extracts of the stem bark on C57BL/6 mice receiving a high-fat diet. The animals were evaluated for weight gain, feed consumption, visceral adiposity, serum, and inflammatory and hormonal parameters. The results of the chemical analyses corroborate those obtained by the literature, which reported gallocatechin, epigallocatechin and epigallocatechin gallate. Compared with the ethanolic extract, the aqueous extract showed greater antioxidant capacity. Both extracts resulted in lower feed consumption in the animals, but they did not influence weight gain or visceral adiposity and resulted in varied changes in the lipid profile. In addition, they did not influence glucose tolerance, insulin sensitivity, or fasting blood glucose. Furthermore, the leptin levels increased, which may have contributed to satiety, but this was shown to have a negative impact on other inflammatory and hormonal parameters. Therefore, under the conditions of this study, the biologically active compounds present in the plant species Guazuma ulmifolia were not able to contribute to the treatment of metabolic changes related to the consumption of a high-fat diet.


Assuntos
Antioxidantes , Dieta Hiperlipídica , Doenças Metabólicas , Camundongos Endogâmicos C57BL , Casca de Planta , Extratos Vegetais , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Dieta Hiperlipídica/efeitos adversos , Casca de Planta/química , Camundongos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/prevenção & controle , Doenças Metabólicas/etiologia , Antioxidantes/farmacologia , Masculino , Apocynaceae/química , Caules de Planta/química , Glicemia/efeitos dos fármacos
19.
Int J Biol Macromol ; 278(Pt 1): 134598, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127279

RESUMO

This work reports for the first time the production of condensed tannin nanoparticles stable in water via modification with glycine betaine. Pine bark, as a byproduct from the paper industry, was used as a source of condensed tannins of high molecular weight. Different glycine betaine concentrations were tested to produce condensed tannin nanoparticles, and the obtained nanoparticles were subjected to several characterization techniques (Dynamic Light Scattering, Field emission scanning electron microscopy, Zeta potential, Fourier transform infrared spectroscopy-Attenuated total reflectance, thermogravimetric analysis). The results showed that the highest stability possessed nanoparticles with 40 wt% glycine betaine. The average particle size distribution evaluated by scanning microscopy was 124 nm. Besides, the glycine betaine-modified condensed tannin nanoparticles demonstrated higher thermal stability with the starting degradation temperature at 238 °C. Finally, obtained nanoparticles showed an antioxidant capacity of 34,209 ± 2194 µmol ET/100 g and low cytotoxicity towards healthy human cells, representing the high potential to be used as a carrier of active compounds in agriculture, food, drug and medical sector.


Assuntos
Química Verde , Nanopartículas , Pinus , Casca de Planta , Água , Pinus/química , Nanopartículas/química , Casca de Planta/química , Química Verde/métodos , Água/química , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Tamanho da Partícula , Proantocianidinas/química , Taninos/química , Betaína/química , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Nat Prod ; 87(8): 2055-2067, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39101318

RESUMO

Unlike most common pentacyclic plant triterpenes, glutinol has a methyl group at position C-9 and a Δ5 double bond. At the same time, it lacks a methyl at C-10. These features significantly modify its chemical behavior compared to other triterpenes, particularly under oxidative conditions. Although the isolation of glutinol from various plant species has been documented, its chemistry remains largely unexplored. In this study, glutinol was isolated from the bark of Balfourodendron riedelianum as a starting material for top-down strategies of structural diversification, which included ring fusion, oxidation, aromatization, and ring cleavage reactions. Glutinol, together with a library of 22 derivatives, was evaluated for antifungal activity against three phytopathogenic Fusarium strains, F. solani, F. graminearum, and F. tucumaniae. Some of the derivatives displayed antifungal activity; in particular, compound 12, featuring a triazine ring, displayed the best fungicidal properties against F. solani and F. graminearum, while the ring B cleavage product 23 showed the best activity against F. tucumaniae. This study highlights the potential of glutinol as a scaffold for structural diversification, and these results may contribute to the design of novel fungicidal agents against phytopathogenic strains.


Assuntos
Antifúngicos , Fusarium , Fusarium/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Estrutura Molecular , Testes de Sensibilidade Microbiana , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/isolamento & purificação , Casca de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...