Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109.488
Filtrar
1.
Sci Rep ; 14(1): 12818, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834602

RESUMO

Recent years have seen an increase in research on biodiesel, an environmentally benign and renewable fuel alternative for traditional fossil fuels. Biodiesel might become more cost-effective and competitive with diesel if a solid heterogeneous catalyst is used in its production. One way to make biodiesel more affordable and competitive with diesel is to employ a solid heterogeneous catalyst in its manufacturing. Based on X-ray diffraction (XRD) and Fourier Transform infrared spectroscopy (FTIR), the researchers in this study proved their hypothesis that iron oxide core-shell nanoparticles were generated during the green synthesis of iron-based nanoparticles (FeNPs) from Camellia Sinensis leaves. The fabrication of spherical iron nanoparticles was successfully confirmed using scanning electron microscopy (SEM). As a heterogeneous catalyst, the synthesised catalyst has shown potential in facilitating the conversion of algae oil into biodiesel. With the optimal parameters (0.5 weight percent catalytic load, 1:6 oil-methanol ratio, 60 °C reaction temperature, and 1 h and 30 min reaction duration), a 93.33% yield was attained. This may be due to its acid-base property, chemical stability, stronger metal support interaction. Furthermore, the catalyst was employed for transesterification reactions five times after regeneration with n-hexane washing followed by calcination at 650 °C for 3 h.


Assuntos
Biocombustíveis , Camellia sinensis , Folhas de Planta , Folhas de Planta/química , Catálise , Camellia sinensis/química , Ferro/química , Nanopartículas Metálicas/química , Difração de Raios X , Esterificação , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Sci Rep ; 14(1): 12877, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38834648

RESUMO

This study reports the antibacterial and antibiofilm activities of Magnesium ferrite nanoparticles (MgFe2O4) against gram-positive and gram-negative bacteria. The photocatalytic degradation of Carbol Fuchsin (CF) dye (a class of dyestuffs that are resistant to biodegradation) under the influence of UV-light irradiation is also studied. The crystalline magnesium ferrite (MgFe2O4) nanoparticles were synthesized using the co-precipitation method. The morphology of the resulting nanocomposite was examined using scanning electron microscopy (SEM), while transmission electron microscopy (TEM) was employed for further characterization of particle morphology and size. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were utilized to analyze the crystalline structure, chemical composition, and surface area, respectively. Optical properties were evaluated using UV-Vis spectroscopy. The UV-assisted photocatalytic performance of MgFe2O4 nanoparticles was assessed by studying the decolorization of Carbol fuchsin (CF) azo dye. The crystallite size of the MgFe2O4 nanoparticles at the (311) plane, the most prominent peak, was determined to be 28.5 nm. The photocatalytic degradation of 10 ppm CF using 15 mg of MgFe2O4 nanoparticles resulted in a significant 96% reduction after 135 min at ambient temperature (25 °C) and a pH value of 9. Additionally, MgFe2O4 nanoparticles exhibited potent antibacterial activity against E. coli and S. aureus in a dose dependent manner with maximum utilized concentration of 30 µg/ml. Specifically, MgFe2O4 nanoparticles demonstrated substantial antibacterial activity via disk diffusion and microbroth dilution tests with zones of inhibition and minimum inhibitory concentrations (MIC) for E. coli (26.0 mm, 1.25 µg/ml) and S. aureus (23.0 mm, 2.5 µg/ml), respectively. Moreover, 10.0 µg/ml of MgFe2O4 nanoparticles elicited marked percent reduction in biofilm formation by E. coli (89%) followed by S. aureus (78.5%) after treatment. In conclusion, MgFe2O4 nanoparticles demonstrated efficient dye removal capabilities along with significant antimicrobial and antibiofilm activity against gram-positive and gram-negative bacterial strains suggesting their potential as promising antimicrobial and detoxifying agents.


Assuntos
Antibacterianos , Biofilmes , Compostos Férricos , Nanopartículas de Magnetita , Biofilmes/efeitos dos fármacos , Compostos Férricos/química , Compostos Férricos/farmacologia , Catálise , Nanopartículas de Magnetita/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Raios Ultravioleta , Staphylococcus aureus/efeitos dos fármacos , Magnésio/química , Magnésio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Water Sci Technol ; 89(10): 2783-2795, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822614

RESUMO

Photocatalytically active ceramic flat sheet membranes based on a nanostructured titanium dioxide (TiO2) coating were produced for photocatalytic water treatment. The nano-TiO2 layer was produced by a novel combination of magnetron sputtering of a thin titanium layer on silicon carbide (SiC) membranes, followed by electrochemical oxidation (anodization) and subsequent heat treatment (HT). Characterization by Raman spectra and field emission scanning electron microscopy proved the presence of a nanostructured anatase layer on the membranes. The influence of the titanium layer thickness on the TiO2 formation process and the photocatalytic properties were investigated using anodization curves, by using cyclovoltammetry measurements, and by quantifying the generated hydroxyl radicals (OH•) under UV-A irradiation in water. Promising photocatalytic activity and permeability of the nano-TiO2-coated membranes could be demonstrated. A titanium layer of at least 2 µm was necessary for significant photocatalytic effects. The membrane sample with a 10 µm Ti/TiO2 layer had the highest photocatalytic activity showing a formation rate of 1.26 × 10-6 mmol OH• s-1. Furthermore, the membranes were tested several times, and a decrease in radical formation was observed. Assuming that these can be attributed to adsorption processes of the reactants, initial experiments were carried out to reactivate the photocatalyzer.


Assuntos
Compostos Inorgânicos de Carbono , Radical Hidroxila , Membranas Artificiais , Compostos de Silício , Titânio , Purificação da Água , Titânio/química , Radical Hidroxila/química , Purificação da Água/métodos , Catálise , Compostos de Silício/química , Compostos Inorgânicos de Carbono/química , Técnicas Eletroquímicas , Nanoestruturas/química , Processos Fotoquímicos
4.
Mikrochim Acta ; 191(7): 364, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831034

RESUMO

CdIn2S4 and zinc tetrakis(4-carboxyphenyl)porphyrin (ZnTCPP) were synthesized by hydrothermal method, and an organic dye-sensitized inorganic semiconductor ZnTCPP/CdIn2S4 type II heterojunction was constructed on a fluorine-doped tin oxide (FTO) substrate electrode. A sandwich immunostructure for signal-attenuation photoelectrochemical (PEC) detection of cardiac troponin I (cTnI) was constructed using the ZnTCPP/CdIn2S4/FTO photoanode and a horseradish peroxidase (HRP)-ZnFe2O4-Ab2-bovine serum albumin (BSA) immunolabeling complex. The bioenzyme HRP and the HRP-like nanozyme ZnFe2O4 can co-catalyze the oxidation of 4-chloro-1-naphthol (4-CN) by H2O2 to produce an insoluble precipitate on the photoanode, thus notably reducing the anodic photocurrent for quantitative determination of cTnI. Under the optimal conditions, the photocurrent at 0 V vs. SCE in 0.1 M phosphate buffer solution (pH 7.40) containing 0.1 M ascorbic acid was linear with the logarithm of cTnI concentration from 500 fg mL-1 to 50.0 ng mL-1, and the limit of detection (LOD, S/N = 3) is 0.15 pg mL-1. Spiked recoveries were 95.1% ~ 104% for assay of cTnI in human serum samples.


Assuntos
Técnicas Eletroquímicas , Limite de Detecção , Compostos de Estanho , Troponina I , Troponina I/sangue , Humanos , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Compostos de Estanho/química , Catálise , Peroxidase do Rábano Silvestre/química , Naftóis/química , Metaloporfirinas/química , Eletrodos , Peróxido de Hidrogênio/química , Soroalbumina Bovina/química , Processos Fotoquímicos , Animais , Técnicas Biossensoriais/métodos , Semicondutores , Bovinos , Sulfetos/química , Porfirinas/química
5.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831060

RESUMO

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Assuntos
Antioxidantes , Carbono , Colorimetria , Cobre , Nitrogênio , Nitrogênio/química , Colorimetria/métodos , Carbono/química , Antioxidantes/química , Antioxidantes/análise , Cobre/química , Cobalto/química , Peróxido de Hidrogênio/química , Humanos , Catálise , Limite de Detecção , Glutationa/química , Glutationa/sangue , Dopamina/sangue , Dopamina/análise , Dopamina/química , Benzidinas/química , Polifenóis/química , Polifenóis/análise , Ácido Ascórbico/química , Ácido Ascórbico/sangue , Ácido Ascórbico/análise , Oxirredução , Ácido Úrico/sangue , Ácido Úrico/química , Ácido Úrico/análise , Cisteína/química , Cisteína/sangue
6.
Water Environ Res ; 96(6): e11058, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831682

RESUMO

Ni-Mn@KL ozone catalyst was prepared for the efficient treatment of reverse osmosis membrane concentrates. The working conditions and reaction mechanism of the ozone-catalyzed oxidation by Ni-Mn@KL were systematically studied. Then, a comprehensive CRITIC weighting-coupling coordination evaluation model was established. Ni-Mn@KL was characterized by scanning electron microscopy, BET, X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive spectrometry, and X-ray fluorescence spectrometry and found to have large specific surface area and homogeneous surface dispersion of striped particles. Under the optimum working conditions with an initial pH of 7.9 (raw water), a reaction height-to-diameter ratio of 10:1, an ozone-aeration intensity of 0.3 L/min, and a catalyst filling rate of 10%, the maximum COD removal rate was 60.5%. Free-radical quenching experiments showed that OH oxidation played a dominant role in the Ni-Mn@KL-catalyzed ozone-oxidation system, and the reaction system conformed to the second-order reaction kinetics law. Ni-Mn@KL catalysts were further confirmed to have good catalytic performance and mechanical performance after repeated utilization. PRACTITIONER POINTS: Ni-Mn@KL catalyst can achieve effective treatment of RO film concentrated liquid. High COD removal rate of RO membrane concentrated liquid was obtained at low cost. Ni-Mn@KL catalyst promotes ozone decomposition to produce ·OH and O2 -· oxidized organic matter. The Ni-Mn@KL catalyst can maintain good stability after repeated use. A CRITIC weight-coupling coordination model was established to evaluate the catalytic ozonation.


Assuntos
Membranas Artificiais , Osmose , Ozônio , Purificação da Água , Ozônio/química , Catálise , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos , Oxirredução
7.
Mikrochim Acta ; 191(6): 361, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822891

RESUMO

A one-shot CO2 laser-based strategy to generate conductive reduced graphene oxide (rGO) decorated with nanoceria (nCe) is proposed. The 2D/0D rGO-nCe films, integrated as catalytic sensing layers in paper-based sensors, were employed for on-site monitoring of indoor fogging treatments against Listeria monocytogenes (Lm), a ubiquitous pathogenic bacterium. The rGO-nCe laser-assisted synthesis was optimized to preserve the rGO film morphological and electron-transfer features and simultaneously integrate catalytic nCe. The films were characterized by microscopical (SEM), spectroscopical (EDX, Raman, and FTIR), and electrochemical techniques. The most performing film was integrated into a nitrocellulose substrate, and the complete sensor was assembled via a combination of xurography and stencil printing. The rGO-nCe sensor's catalytic activity was proved toward the detection of H2O2, obtaining sensitive determination (LOD = 0.3 µM) and an extended linear range (0.5-1500 µM). Eventually, the rGO-nCe sensor was challenged for the real-time continuous monitoring of hydrogen peroxide aerosol during no-touch fogging treatment conducted following the EU's recommendation for biocidal product use. Treatment effectiveness was proved toward three Lm strains characterized by different origins, i.e., type strain ATCC 7644, clinical strain 338, and food strain 641/6II. The sensor allows for discrimination and quantification treatments at different environmental biocidal amounts and fogging times, and correlates with the microbiological inhibition, promoting the proposed sensor as a useful tool to modulate and monitor no-touch treatments.


Assuntos
Desinfecção , Grafite , Peróxido de Hidrogênio , Lasers , Listeria monocytogenes , Papel , Grafite/química , Peróxido de Hidrogênio/química , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/isolamento & purificação , Desinfecção/métodos , Cério/química , Limite de Detecção , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Catálise
8.
J Environ Sci (China) ; 145: 107-116, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844311

RESUMO

High energy consumption has seriously hindered the development of Fenton-like reactions for the removal of refractory organic pollutants in water. To solve this problem, we designed a novel Fenton-like catalyst (Cu-PAN3) by coprecipitation and carbon thermal reduction. The catalyst exhibits excellent Fenton-like catalytic activity and stability for the degradation of various pollutants with low H2O2 consumption. The experimental results indicate that the dual reaction centers (DRCs) are composed of Cu-N-C and Cu-O-C bridges between copper and graphene-like carbon, which form electron-poor/rich centers on the catalyst surface. H2O2 is mainly reduced at electron-rich Cu centers to free radicals for pollutant degradation. Meanwhile, pollutants can be oxidized by donating electrons to the electron-poor C centers of the catalyst, which inhibits the ineffective decomposition of H2O2 at the electron-poor centers. This therefore significantly reduces the consumption of H2O2 and reduces energy consumption.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Catálise , Poluentes Químicos da Água/química , Ferro/química , Oxirredução , Cobre/química , Modelos Químicos
9.
J Environ Sci (China) ; 145: 128-138, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844313

RESUMO

Zeolites are a promising support for Pd catalysts in lean methane (CH4) combustion. Herein, three types of zeolites (H-MOR, H-ZSM-5 and H-Y) were selected to estimate their structural effects and deactivation mechanisms in CH4 combustion. We show that variations in zeolite structure and surface acidity led to distinct changes in Pd states. Pd/H-MOR with external high-dispersing Pd nanoparticles exhibited the best apparent activity, with activation energy (Ea) at 73 kJ/mol, while Pd/H-ZSM-5 displayed the highest turnover frequency (TOF) at 19.6 × 10-3 sec-1, presumably owing to its large particles with more step sites providing active sites in one particle for CH4 activation. Pd/H-Y with dispersed PdO within pore channels and/or Pd2+ ions on ion-exchange sites yielded the lowest apparent activity and TOF. Furthermore, Pd/H-MOR and Pd/H-ZSM-5 were both stable under a dry condition, but introducing 3 vol.% H2O caused the CH4 conversion rate on Pd/H-MOR drop from 100% to 63% and that on Pd/H-ZSM-5 decreased remarkably from 82% to 36%. The former was shown to originate from zeolite structural dealumination, and the latter principally owed to Pd aggregation and the loss of active PdO.


Assuntos
Metano , Paládio , Zeolitas , Zeolitas/química , Metano/química , Catálise , Paládio/química , Modelos Químicos
10.
J Environ Sci (China) ; 145: 216-231, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844321

RESUMO

Catalytic ozonation is an effective wastewater purification process. However, the low ozone mass transfer in packed bubble columns leads to low ozone utilization efficiency (OUE), poor organic degradation performance, and high energy consumption. Therefore, there is an urgent need to develop efficient supported catalysts that can enhance mass transfer and performance. However, the reaction mechanism of the support on ozone mass transfer remains unclear, which hinders the development of catalytic ozonation applications. In this study, lava rocks (LR)-supported catalysts, specifically CuMn2O4@LR and MnO2Co3O4@LR, were proposed for catalytic ozonation of IBP degradation due to their superior catalytic activity, stability, and high OUE. Addition of CuMn2O4@LR or MnO2Co3O4@LR increased IBP removal efficiency from 85% to 91% or 88%, and reduced energy consumption from 2.86 to 2.14 kWh/m3 or 2.60 kWh/m3, respectively. This improvement was attributed to LR-supported catalysts enhancing mass transfer and promoting O3 decomposition to generate •OH and •O2-, leading to IBP degradation. Furthermore, this study investigated the effects of ozone dose, supporter sizes, and catalyst components on ozone-liquid mass transfer. The results revealed that the size of the supporter influenced stacked porosity and consequently affected ozone mass transfer. Larger-sized LR (kLa= 0.172 min-1) exhibited better mass transfer compared to smaller-sized supports. Based on these findings, it was concluded that both CuMn2O4@LR and MnO2Co3O4@LR are potential catalysts for catalytic ozonation in residual IBP degradation of pharmaceutical wastewater, and LR showed good credibility as a catalyst supporter. Understanding the effects of supporters and active components on ozone mass transfer provides a fundamental principle for designing supported catalysts in catalytic ozonation applications.


Assuntos
Ibuprofeno , Ozônio , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Ozônio/química , Catálise , Poluentes Químicos da Água/química , Ibuprofeno/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos
11.
Nat Commun ; 15(1): 3857, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719843

RESUMO

Systematical and critical learning from industrial catalysis will bring inspiration for emerging nanocatalytic medicine, but the relevant knowledge is quite limited so far. In this review, we briefly summarize representative catalytic reactions and corresponding catalysts in industry, and then distinguish the similarities and differences in catalytic reactions between industrial and medical applications in support of critical learning, deep understanding, and rational designing of appropriate catalysts and catalytic reactions for various medical applications. Finally, we summarize/outlook the present and potential translation from industrial catalysis to nanocatalytic medicine. This review is expected to display a clear picture of nanocatalytic medicine evolution.


Assuntos
Nanomedicina , Catálise , Humanos , Nanomedicina/métodos , Indústrias , Nanotecnologia/métodos
12.
Sci Rep ; 14(1): 10566, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719873

RESUMO

Conventional wastewater treatment processes are often unable to remove antibiotics with resistant compounds and low biological degradation. The need for advanced and sustainable technologies to remove antibiotics from water sources seems essential. In this regard, the effectiveness of a spinning disc photocatalytic reactor (SDPR) equipped with a visible light-activated Fe3O4@SiO2-NH2@CuO/ZnO core-shell (FSNCZ CS) thin film photocatalyst was investigated for the decomposition of amoxicillin (AMX), a representative antibiotic. Various characterization techniques, such as TEM, FESEM, EDX, AFM, XRD, and UV-Vis-DRS, were employed to study the surface morphology, optoelectronic properties, and nanostructure of the FSNCZ CS. Key operating parameters such as irradiation time, pH, initial AMX concentration, rotational speed, and solution flow rate were fine-tuned for optimization. The results indicated that the highest AMX decomposition (98.7%) was attained under optimal conditions of 60 min of irradiation time, a rotational speed of 350 rpm, a solution flow rate of 0.9 L/min, pH of 5, and an initial AMX concentration of 20 mg/L. Moreover, during the 60 min irradiation time, more than 69.95% of chemical oxygen demand and 61.2% of total organic carbon were removed. After the photocatalytic decomposition of AMX, there is a substantial increase in the average oxidation state and carbon oxidation state in SDPR from 1.33 to 1.94 and 3.2, respectively. Active species tests confirmed that ·OH and ·O2- played a dominant role in AMX decomposition. The developed SDPR, which incorporates a reusable and robust FSNCZ CS photocatalyst, demonstrates promising potential for the decomposition of organic compounds.


Assuntos
Amoxicilina , Antibacterianos , Luz , Nanoestruturas , Catálise , Antibacterianos/química , Nanoestruturas/química , Amoxicilina/química , Poluentes Químicos da Água/química , Cobre/química , Óxido de Zinco/química , Dióxido de Silício/química , Purificação da Água/métodos
13.
Colloids Surf B Biointerfaces ; 238: 113923, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692173

RESUMO

The rapid advancement of photodynamic therapy (PDT) antibacterial materials has led to promising alternatives to antibiotics for treating bacterial infections. However, antibacterial drugs have poor light absorption and utilization rates, which limits their practical application. Constructing two-dimensional (2D) heterojunctions from materials with matching photophysical properties has emerged as a highly effective strategy for achieving high-efficiency photo-antibacterial performance. Here, we designed and prepared an atom co-sharing Bi/Bi4O5Br2 nanosheet heterojunction by a simple in situ reduction. This heterojunction material combines outstanding biocompatibility with excellent bactericidal efficiency, which exceeded 90 % against Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium) under visible light irradiation, around nine-fold higher than that with pure Bi4O5Br2 nanosheets. The results suggest that localized surface plasmon resonance (LSPR) of shared Bi atoms on the Bi4O5Br2 nanosheets promotes light utilization and the separation and transfer of photo-generated charges, thus producing more abundant reactive oxygen species (ROS), which can partake in the PDT antibacterial effect. Our study underscores the potential utility of LSPR-enhanced Bi-based nanosheet heterojunctions for safe and efficient PDT to combat bacterial infections.


Assuntos
Antibacterianos , Bismuto , Escherichia coli , Luz , Nanoestruturas , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Nanoestruturas/química , Bismuto/química , Bismuto/farmacologia , Catálise , Testes de Sensibilidade Microbiana , Processos Fotoquímicos , Espécies Reativas de Oxigênio/metabolismo , Ressonância de Plasmônio de Superfície , Fotoquimioterapia , Tamanho da Partícula
14.
Nat Commun ; 15(1): 3708, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714662

RESUMO

Cheminformatics-based machine learning (ML) has been employed to determine optimal reaction conditions, including catalyst structures, in the field of synthetic chemistry. However, such ML-focused strategies have remained largely unexplored in the context of catalytic molecular transformations using Lewis-acidic main-group elements, probably due to the absence of a candidate library and effective guidelines (parameters) for the prediction of the activity of main-group elements. Here, the construction of a triarylborane library and its application to an ML-assisted approach for the catalytic reductive alkylation of aniline-derived amino acids and C-terminal-protected peptides with aldehydes and H2 is reported. A combined theoretical and experimental approach identified the optimal borane, i.e., B(2,3,5,6-Cl4-C6H)(2,6-F2-3,5-(CF3)2-C6H)2, which exhibits remarkable functional-group compatibility toward aniline derivatives in the presence of 4-methyltetrahydropyran. The present catalytic system generates H2O as the sole byproduct.


Assuntos
Aminoácidos , Compostos de Anilina , Boranos , Peptídeos , Compostos de Anilina/química , Catálise , Aminoácidos/química , Peptídeos/química , Boranos/química , Hidrogênio/química , Simulação por Computador , Oxirredução , Alquilação , Aprendizado de Máquina
15.
Sci Adv ; 10(19): eadm9561, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718119

RESUMO

Lactic acid (LA) accumulation in the tumor microenvironment poses notable challenges to effective tumor immunotherapy. Here, an intelligent tumor treatment microrobot based on the unique physiological structure and metabolic characteristics of Veillonella atypica (VA) is proposed by loading Staphylococcus aureus cell membrane-coating BaTiO3 nanocubes (SAM@BTO) on the surface of VA cells (VA-SAM@BTO) via click chemical reaction. Following oral administration, VA-SAM@BTO accurately targeted orthotopic colorectal cancer through inflammatory targeting of SAM and hypoxic targeting of VA. Under in vitro ultrasonic stimulation, BTO catalyzed two reduction reactions (O2 → •O2- and CO2 → CO) and three oxidation reactions (H2O → •OH, GSH → GSSG, and LA → PA) simultaneously, effectively inducing immunogenic death of tumor cells. BTO catalyzed the oxidative coupling of VA cells metabolized LA, effectively disrupting the immunosuppressive microenvironment, improving dendritic cell maturation and macrophage M1 polarization, and increasing effector T cell proportions while decreasing regulatory T cell numbers, which facilitates synergetic catalysis and immunotherapy.


Assuntos
Neoplasias Colorretais , Imunoterapia , Microambiente Tumoral , Neoplasias Colorretais/terapia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Imunoterapia/métodos , Animais , Camundongos , Humanos , Catálise , Linhagem Celular Tumoral , Nanoestruturas/química , Materiais Biomiméticos/química , Administração Oral , Titânio/química , Biomimética/métodos , Ácido Láctico/química , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Compostos de Bário
16.
Environ Geochem Health ; 46(6): 200, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696110

RESUMO

Plant extracts are a great alternative to synthesizing nanoparticles of different metals and metal oxides. This green synthesis method has opened up numerous possibilities in various scientific domains. In present study, Leaf extract from Vitex negundo is a non-deciduous, long-lasting shrub from the Verbenaceae family is used as capping and reducing agents for the synthesis of silver and palladium nanoparticles. The characterization study UV-vis spectrophotometer analysis showed absorbance value around 320 nm which confirming that Ag-Pd nanoparticles have been successfully obtained. Further, SEM is used to investigate the morphology of Ag-Pd NPs, which revealing their spherical and rod-like configuration, aggregation, and the size of the particles are obtained between 50 and 100 nm. The successful synthesis of Ag-Pd NPs was further confirmed by the EDAX chart, which displayed the peak of Ag and Pd at bending energies between 0.5 and 1.5 keV. According to the quantitative study, Ag and Pd ions found about 5.24 and 13.28%, respectively. In addition, surface studies with TEM confirming that synthesized Ag-Pd NPs are predominates with spheres structure morphologies, with sizes averaging 11.20 nm and ranging from 10 to 20 nm. Further, Ag-Pd nanoparticles was applied as potential photocatalyst materials to degrade methylene blue dye and found about 85% of the degradation efficiency within 150 min of the sunlight exposure thus could be used as catalyst to removal of hazardous organic dye molecules.


Assuntos
Corantes , Nanopartículas Metálicas , Paládio , Prata , Vitex , Vitex/química , Paládio/química , Prata/química , Nanopartículas Metálicas/química , Catálise , Corantes/química , Extratos Vegetais/química , Folhas de Planta/química , Química Verde , Fotólise , Microscopia Eletrônica de Transmissão
17.
Top Curr Chem (Cham) ; 382(2): 15, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703255

RESUMO

Aligned with the increasing importance of bioorthogonal chemistry has been an increasing demand for more potent, affordable, multifunctional, and programmable bioorthogonal reagents. More advanced synthetic chemistry techniques, including transition-metal-catalyzed cross-coupling reactions, C-H activation, photoinduced chemistry, and continuous flow chemistry, have been employed in synthesizing novel bioorthogonal reagents for universal purposes. We discuss herein recent developments regarding the synthesis of popular bioorthogonal reagents, with a focus on s-tetrazines, 1,2,4-triazines, trans-cyclooctenes, cyclooctynes, hetero-cycloheptynes, and -trans-cycloheptenes. This review aims to summarize and discuss the most representative synthetic approaches of these reagents and their derivatives that are useful in bioorthogonal chemistry. The preparation of these molecules and their derivatives utilizes both classical approaches as well as the latest organic chemistry methodologies.


Assuntos
Ciclo-Octanos , Triazinas , Triazinas/química , Triazinas/síntese química , Ciclo-Octanos/química , Ciclo-Octanos/síntese química , Alcinos/química , Alcinos/síntese química , Catálise , Indicadores e Reagentes/química , Estrutura Molecular
18.
Sci Rep ; 14(1): 10406, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710736

RESUMO

Active pharmaceutical ingredients have emerged as an environmentally undesirable element because of their widespread exploitation and consequent pollution, which has deleterious effects on living things. In the pursuit of sustainable environmental remediation, biomedical applications, and energy production, there has been a significant focus on two-dimensional materials (2D materials) owing to their unique electrical, optical, and structural properties. Herein, we have synthesized 2D zinc oxide nanosheets (ZnO NSs) using a facile and practicable hydrothermal method and characterized them thoroughly using spectroscopic and microscopic techniques. The 2D nanosheets are used as an efficient photocatalyst for antibiotic (herein, end-user ciprofloxacin (CIP) was used as a model antibiotic) degradation under sunlight. It is observed that ZnO NSs photodegrade ~ 90% of CIP within two hours of sunlight illumination. The molecular mechanism of CIP degradation is proposed based on ex-situ IR analysis. Moreover, the 2D ZNO NSs are used as an antimicrobial agent and exhibit antibacterial qualities against a range of bacterial species, including Escherichia coli, Staphylococcus aureus, and MIC of the bacteria are found to be 5 µg/l and 10 µg/l, respectively. Despite having the biocompatible nature of ZnO, as-synthesized nanosheets have also shown cytotoxicity against two types of cancer cells, i.e. A549 and A375. Thus, ZnO nanosheets showed a nontoxic nature, which can be exploited as promising alternatives in different biomedical applications.


Assuntos
Antibacterianos , Antineoplásicos , Nanoestruturas , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Catálise , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanoestruturas/química , Escherichia coli/efeitos dos fármacos , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Linhagem Celular Tumoral , Processos Fotoquímicos , Fotólise
19.
Mikrochim Acta ; 191(6): 312, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717599

RESUMO

Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.


Assuntos
Benzidinas , Colorimetria , Cobre , Fitosteróis , Colorimetria/métodos , Fitosteróis/análise , Fitosteróis/química , Cobre/química , Benzidinas/química , Estruturas Metalorgânicas/química , Limite de Detecção , Catálise , Nanocompostos/química , Oxirredução
20.
Anal Chim Acta ; 1307: 342628, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719415

RESUMO

Bisphenol compounds (BPA, BPS, BPAF, etc.) are one class of the most important and widespread pollutants that poses severe threat to human health and the ecological environment. Because of the presence of multiple bisphenols in environmental and food samples, it is urgent and challenging to develop a rapid and cheap technique for simultaneously detecting BPA and its analogues. In this study, a series of M-N-C (M = Cu, Mg, Ni, Co, Fe, K) single-atom nanozymes (SAzymes) were created by simulating the structure of natural enzyme molecules, which were used as novel sensing platform for the fabrication of electrochemical sensors. Through systematic screening and characterization, it was interestingly discovered that the electrochemical sensor based on Cu-N-C SAzymes exhibited the best sensing performance for bisphenols among all SAzymes, which catalyzed not only BPA like tyrosinase, but also showed excellent catalytic capacity beyond tyrosinase (tyrosinase has no catalytic activity for BPS, BPAF, etc.), and achieved potential-resolved simultaneous rapid detection of BPA, BPS and BPAF. Further structure-activity relationship and catalytic mechanism characterizations of Cu-N-C SAzymes revealed that the presence of single atom Cu was predominantly in the form of Cu+ and Cu2+, which were anchored onto graphene nanosheet support through four coordination bonds with pyridinic N and pyrrolic N and acted as highly efficient active centers for electrocatalytic oxidation of bisphenols. The developed electrochemical sensing method exhibited excellent selectivity, sensitivity, and reliability for the rapid detection of multiple bisphenols in actual samples.


Assuntos
Compostos Benzidrílicos , Técnicas Eletroquímicas , Fenóis , Fenóis/análise , Fenóis/química , Compostos Benzidrílicos/análise , Técnicas Eletroquímicas/métodos , Nanoestruturas/química , Catálise , Cobre/química , Grafite/química , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA