Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.396
Filtrar
1.
PeerJ ; 12: e17488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827303

RESUMO

Epigallocatechin gallate (EGCG), an active constituent of tea, is recognized for its anticancer and anti-inflammatory properties. However, the specific mechanism by which EGCG protects osteoblasts from cadmium-induced damage remains incompletely understood. Here, the action of EGCG was investigated by exposing MC3T3-E1 osteoblasts to EGCG and CdCl2 and examining their growth, apoptosis, and differentiation. It was found that EGCG promoted the viability of cadmium-exposed MC3T3-E1 cells, mitigated apoptosis, and promoted both maturation and mineralization. Additionally, CdCl2 has been reported to inhibit both the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and nuclear factor erythroid 2-related factor 2/heme oxygenase-1(Nrf2/HO-1) signaling pathways. EGCG treatment attenuated cadmium-induced apoptosis in osteoblasts and restored their function by upregulating both signaling pathways. The findings provide compelling evidence for EGCG's role in attenuating cadmium-induced osteoblast apoptosis and dysfunction through activating the PI3K/AKT/mTOR and Nrf2/HO-1 pathways. This suggests the potential of using EGCG for treating cadmium-induced osteoblast dysfunction.


Assuntos
Apoptose , Catequina , Heme Oxigenase-1 , Fator 2 Relacionado a NF-E2 , Osteoblastos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Catequina/análogos & derivados , Catequina/farmacologia , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Cádmio/toxicidade , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proteínas de Membrana
2.
Food Res Int ; 186: 114365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729700

RESUMO

This study aimed to investigate the interaction, structure, antioxidant, and emulsification properties of quinoa protein hydrolysate (QPH) complexes formed with (-)-epigallocatechin gallate (EGCG) at pH 3.0 and 7.0. Additionally, the effect of pH conditions and EGCG complexation on protein hydrolysate-lipid co-oxidation in QPH emulsions was explored. The results indicated that QPH primarily interacted with EGCG through hydrophobic interactions and hydrogen bonds. This interaction led to alterations in the secondary structure of QPH, as well as a decrease in surface hydrophobicity and free SH content. Notably, the binding affinity between QPH and EGCG was observed to be higher at pH 7.0 compared to pH 3.0. Consequently, QPH-EGCG complexes exhibited more significant enhancement in antioxidant and emulsification properties at pH 7.0 than pH 3.0. The pH level also influenced the droplet size, ζ-potential, and interfacial composition of emulsions formed by QPH and QPH-EGCG complexes. Compared to QPH stabilized emulsions, QPH-EGCG stabilized emulsions were more capable of mitigating destabilization during storage and displayed fewer lipid oxidation products, carbonyl generation, and sulfhydryl groups and fluorescence loss, which implied better oxidative stability of the emulsions. Furthermore, the QPH-EGCG complexes formed at pH 7.0 exhibited better inhibition of protein hydrolysate-lipid co-oxidation. Overall, these findings provide valuable insights into the potential application of QPH and its complexes with EGCG in food processing systems.


Assuntos
Antioxidantes , Catequina , Chenopodium quinoa , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Hidrolisados de Proteína , Chenopodium quinoa/química , Concentração de Íons de Hidrogênio , Emulsões/química , Hidrolisados de Proteína/química , Catequina/química , Catequina/análogos & derivados , Antioxidantes/química , Ligação de Hidrogênio , Proteínas de Plantas/química , Lipídeos/química
3.
J Oleo Sci ; 73(5): 709-716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692893

RESUMO

Epigallocatechin-3-gallate (EGCG), a polyphenol derived from Green Tea, is one of the sources of natural bioactive compounds which are currently being developed as medicinal ingredients. Besides other biological activities, this natural compound exhibits anti-cariogenic effects. However, EGCG has low physical-chemical stability and poor bioavailability. Thus, the purpose of this study was to develop and characterize lipid-chitosan hybrid nanoparticle with EGCG and to evaluate its in vitro activity against cariogenic planktonic microorganisms. Lipid-chitosan hybrid nanoparticle (LCHNP-EGCG) were prepared by emulsion and sonication method in one step and characterized according to diameter, polydispersity index (PdI), zeta potential (ZP), encapsulation efficiency (EE), mucoadhesion capacity and morphology. Strains of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus casei were treated with LCHNP- EGCG, and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated. LCHNP-EGCG exhibited a size of 217.3 ± 5.1 nm with a low polydispersity index (0.17) and positive zeta potential indicating the presence of chitosan on the lipid nanoparticle surface (+33.7 mV). The LCHNP-EGCG showed a spherical morphology, high stability and a mucoadhesive property due to the presence of chitosan coating. In addition, the EGCG encapsulation efficiency was 96%. A reduction of almost 15-fold in the MIC and MBC against the strains was observed when EGCG was encapsulated in LCHNP, indicating the potential of EGCG encapsulation in lipid-polymer hybrid nanoparticles. Taking the results together, the LCHNP-EGCG could be an interesting system to use in dental care due to their nanometric size, mucoadhesive properties high antibacterial activity against relevant planktonic microorganisms.


Assuntos
Antibacterianos , Catequina , Catequina/análogos & derivados , Quitosana , Testes de Sensibilidade Microbiana , Nanopartículas , Streptococcus mutans , Catequina/farmacologia , Catequina/química , Quitosana/química , Quitosana/farmacologia , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Streptococcus sobrinus/efeitos dos fármacos , Lacticaseibacillus casei/efeitos dos fármacos , Lipídeos/química , Plâncton/efeitos dos fármacos , Cárie Dentária/microbiologia , Cárie Dentária/prevenção & controle , Portadores de Fármacos/química , Tamanho da Partícula , Emulsões , Sonicação
4.
Sci Rep ; 14(1): 10424, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38710752

RESUMO

The storage process has a significant impact on tea quality. Few is known about effect of storage on quality of oolong tea. This study aimed to assess the effect of different storage times on the key chemical components of oolong tea by measuring changes in catechin, free amino acid, and alkaloid content. Variation in the main substances was determined by principal component analysis and heat map analysis. The results revealed notable effects of the storage process on the levels of theanine, epigallocatechin gallate (EGCG), and glutamine. These findings suggest that these compounds could serve as indicators for monitoring changes in oolong tea quality during storage. Additionally, the study observed an increase in the antibacterial ability of tea over time. Correlation analysis indicated that the antibacterial ability against Micrococcus tetragenus and Escherichia coli was influenced by metabolites such as aspartic acid, threonine, serine, gamma-aminobutyric acid, ornithine, alanine, arginine, and EGCG. Overall, this study presents an approach for identifying key metabolites to monitor tea quality effectively with relatively limited data.


Assuntos
Alcaloides , Aminoácidos , Antibacterianos , Catequina , Chá , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Catequina/análise , Chá/química , Aminoácidos/análise , Antibacterianos/farmacologia , Antibacterianos/química , Alcaloides/farmacologia , Alcaloides/análise , Alcaloides/química , Armazenamento de Alimentos/métodos , Escherichia coli/efeitos dos fármacos , Camellia sinensis/química
5.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732012

RESUMO

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Assuntos
Catequina , MicroRNAs , Neuroblastoma , Proteínas de Ligação a RNA , Catequina/análogos & derivados , Catequina/farmacologia , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
6.
Life Sci ; 348: 122677, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38702026

RESUMO

AIMS: Epidemiological evidence indicates that there is a substantial association between body mass index (BMI) and at least ten forms of cancer, including melanoma, and BMI imbalance contributes to the poor survival rate of cancer patients before and after therapy. Nevertheless, few pharmacological studies on models of obesity and cancer have been reported. In this study, we administered epigallocatechin gallate (EGCG) to B16BL6 tumor-bearing mice that received a high-fat diet (HFD) to examine its impact. METHODS: B16BL6 tumor-bearing mice were fed a HFD. Body weight and food intake were documented every week. We conducted a Western blot analysis to examine the protein levels in the tumor, gastrocnemius (GAS), and tibialis anterior (TA) muscles, as well as the inguinal and epididymal white adipose tissues (iWAT and eWAT). KEY FINDINGS: EGCG has been shown to have anti-cancer effects equivalent to those of cisplatin, a chemotherapy drug. Furthermore, EGCG protected against the loss of epidydimal white adipose tissue by regulating protein levels of lipolysis factors of adipose triglyceride lipase and hormone-sensitive lipase as well as WAT browning factors of uncoupling protein 1, as opposed to cisplatin. EGCG was shown to reduce the protein levels of muscular atrophy factors of muscle RING-finger protein-1, whereas cisplatin did not contribute to rescuing the atrophy of TA and GAS muscles. CONCLUSION: Taken together, our findings indicate that EGCG has a preventive effect against cachexia symptoms and has anti-cancer effects similar to those of cisplatin in tumor-bearing mice fed a high-fat diet.


Assuntos
Catequina , Dieta Hiperlipídica , Melanoma Experimental , Camundongos Endogâmicos C57BL , Atrofia Muscular , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Camundongos , Masculino , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia
7.
Food Chem ; 453: 139568, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38754353

RESUMO

Starch retrogradation is of great importance to the quality of starch-based food. This study investigated the effect of partial gelatinization (PG) synergizing with polyphenol (epicatechin, EC; epigallocatechin gallate, EGCG) on the multi-scale structure and short/long-term retrogradation of corn starch (CS). The PG synergizing with EC/EGCG substantially suppressed the short/long-term retrogradation properties of CS. These could be confirmed by the decreased storage modulus and viscosity, the relative crystallinity (1.54%, 3.56%), and the retrogradation degree (9.99%, 20.18%) of CS during storage for 1, 14 days after PG synergizing with EGCG and EC, respectively. This is because PG treatment promoted the hydrogen bond interaction between disordered starch molecules and EC/EGCG. These were proven by the larger aggregation, more and brighter fluorescents, and the reduced long/short-range order structures in CS after PG synergizing with EC/EGCG. This study is helpful for the development of foods with enhanced nutrition and low-retrogradation.


Assuntos
Catequina , Amido , Zea mays , Catequina/química , Catequina/análogos & derivados , Amido/química , Zea mays/química , Viscosidade
8.
J Agric Food Chem ; 72(21): 12251-12259, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38745378

RESUMO

A novel technique for generating tetramethylpyrazine (TTMP) was proposed, carried out on a phenolics-Fenton coupled redox cycling system in an acetoin-ammonium acetate (AA-ACT) pattern reaction. The TTMP generation employing the Fenton system is a first-order reaction that significantly increased the reaction rate, especially in the early stages, distinguishing it from the original zero-order kinetics reaction pattern. Further, the Fenton reaction effectively promotes the TTMP generation at lower temperature, and epigallocatechin gallate (EGCG) could reset the Fenton reaction, accomplishing the redox cycle. We have discovered a novel class of intermediate products, N-substituted amides, which act as a "reservoir" and transform into amino acid, then undergo aromatization to generate TTMP. The results provide a useful supplement for intelligent synthesis route design, and a new approach for understanding the transformation pathways of pyrazines.


Assuntos
Peróxido de Hidrogênio , Oxirredução , Fenóis , Pirazinas , Pirazinas/química , Pirazinas/metabolismo , Fenóis/química , Peróxido de Hidrogênio/química , Cinética , Ferro/química , Catequina/química , Catequina/análogos & derivados
9.
J Hazard Mater ; 472: 134602, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38749242

RESUMO

Sulfamethoxazole (SMZ) is a commonly used antibiotic in aquaculture, and its residues in water bodies pose a significant threat to aquatic organisms in the water environment. In the present study, epigallocatechin-3-gallate (EGCG), a catecholamine, was used to mitigate the immunotoxicity caused by SMZ exposure in Procambarus clarkii. EGCG reduced the apoptosis rate, which was elevated by SMZ exposure, and increased the total hemocyte count. Simultaneously, EGCG enhanced the activities of enzymes related to antibacterial and antioxidant activities, such as superoxide dismutase (SOD), catalase (CAT), lysozyme (LZM), acid phosphatase (ACP), and GSH, which were decreased following SMZ exposure. Hepatopancreatic histology confirmed that EGCG ameliorated SMZ-induced tissue damage caused by SMZ exposure. In addition to EGCG attenuating SMZ-induced immunotoxicity in crayfish, we determined that EGCG can effectively reduce SMZ residues in crayfish exposed to SMZ. In addition, at the genetic level, the expression levels of genes related to the immune response in hemocytes were disrupted after SMZ exposure, and EGCG promoted their recovery and stimulated an increase in the expression levels of metabolism-related transcripts in hemocytes. The transcriptome analysis was conducted, and "phagosome" and "apoptosis" pathways were shown to be highlighted using Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. To the best of our knowledge, this is the first study to confirm that EGCG attenuates SMZ-induced immunotoxicity in aquatic animals and reduces SMZ residues in aquatic animals exposed to SMZ. Our study contributes to the understanding of the mechanisms by which EGCG reduces the immunotoxicity of antibiotic residues in aquatic animals.


Assuntos
Astacoidea , Catequina , Hemócitos , Sulfametoxazol , Poluentes Químicos da Água , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Astacoidea/efeitos dos fármacos , Astacoidea/imunologia , Sulfametoxazol/toxicidade , Poluentes Químicos da Água/toxicidade , Hemócitos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Antibacterianos/toxicidade , Muramidase/metabolismo , Resíduos de Drogas
10.
Cancer Lett ; 592: 216934, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38710299

RESUMO

The Staphylococcal nuclease and Tudor domain containing 1 (SND1) has been identified as an oncoprotein. Our previous study demonstrated that SND1 impedes the major histocompatibility complex class I (MHC-I) assembly by hijacking the nascent heavy chain of MHC-I to endoplasmic reticulum-associated degradation. Herein, we aimed to identify inhibitors to block SND1-MHC-I binding, to facilitate the MHC-I presentation and tumor immunotherapy. Our findings validated the importance of the K490-containing sites in SND1-MHC-I complex. Through structure-based virtual screening and docking analysis, (-)-Epigallocatechin (EGC) exhibited the highest docking score to prevent the binding of MHC-I to SND1 by altering the spatial conformation of SND1. Additionally, EGC treatment resulted in increased expression levels of membrane-presented MHC-I in tumor cells. The C57BL/6J murine orthotopic melanoma model validated that EGC increases infiltration and activity of CD8+ T cells in both the tumor and spleen. Furthermore, the combination of EGC with programmed death-1 (PD-1) antibody demonstrated a superior antitumor effect. In summary, we identified EGC as a novel inhibitor of SND1-MHC-I interaction, prompting MHC-I presentation to improve CD8+ T cell response within the tumor microenvironment. This discovery presents a promising immunotherapeutic candidate for tumors.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos , Catequina , Endonucleases , Camundongos Endogâmicos C57BL , Animais , Linfócitos T CD8-Positivos/imunologia , Camundongos , Humanos , Apresentação de Antígeno/imunologia , Endonucleases/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Simulação de Acoplamento Molecular , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/metabolismo , Melanoma Experimental/terapia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo
11.
Colloids Surf B Biointerfaces ; 239: 113971, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759296

RESUMO

The optimal material for repairing skull defects should exhibit outstanding biocompatibility and mechanical properties. Specifically, hydrogel scaffolds that emulate the microenvironment of the native bone extracellular matrix play a vital role in promoting osteoblast adhesion, proliferation, and differentiation, thereby yielding superior outcomes in skull reconstruction. In this study, a composite network hydrogel comprising sodium alginate (SA), epigallocatechin gallate (EGCG), and zinc ions (Zn2+) was developed to establish an ideal osteogenic microenvironment for bone regeneration. Initially, physical entanglement and hydrogen bonding between SA and EGCG resulted in the formation of a primary network hydrogel known as SA-EGCG. Subsequently, the inclusion of Zn2+ facilitated the creation of a composite network hydrogels named SA-EGCG-Zn2+ via dynamic coordination bonds with SA and EGCG. The engineered SA-EGCG2 %-Zn2+ hydrogels offered an environment mimicking the native extracellular matrix (ECM). Moreover, the sustained release of Zn2+ from the hydrogel effectively enhanced cell adhesion, promoted proliferation, and stimulated osteoblast differentiation. In vitro experiments have shown that SA-EGCG2 %-Zn2+ hydrogels greatly enhance the attachment and growth of osteoblast precursor cells (MC3T3-E1), while also increasing the expression of genes related to osteogenesis in these cells. Additionally, in vivo studies have confirmed that SA-EGCG2 %-Zn2+ hydrogels promote new bone formation and accelerate the regeneration of bone in situ, indicating promising applications in the realm of bone tissue engineering.


Assuntos
Alginatos , Catequina , Proliferação de Células , Hidrogéis , Crânio , Alicerces Teciduais , Zinco , Zinco/química , Zinco/farmacologia , Alginatos/química , Alginatos/farmacologia , Catequina/química , Catequina/análogos & derivados , Catequina/farmacologia , Crânio/efeitos dos fármacos , Crânio/lesões , Crânio/patologia , Animais , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Alicerces Teciduais/química , Proliferação de Células/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos
12.
Arch Oral Biol ; 164: 105990, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749386

RESUMO

INTRODUCTION: There have been reports on the effects of epigallocatechin gallate (EGCG) against Streptococcus mutans viability and acidogenesis. However, the effects of EGCG on the virulence of S. mutans biofilm development have yet to be fully investigated using validated cariogenic biofilm models. OBJECTIVE: Thus, this study aimed to evaluate the effects of EGCG on S. mutans biofilm virulence using a validated cariogenic model and clinically relevant treatment regimens, twice a day for 1.5 min. METHODS: Effects of EGCG on bacterial viability, polyssacharide synthesis and biofilm acidogenesis were evaluated. The morphology and 3D structure of the biofilms were evaluated by scanning electron (SEM) and confocal laser scanning microscopy, respectively. RESULTS: No significant change in S. mutans viability or culture medium pH were observed when comparing EGCG-treated and NaCl-treated biofilms. EGCG significantly reduced the accumulation of soluble and insoluble polysaccharides, resulting in the formation of a biofilm with interspaced exopolysaccharide-microcolony complexes unevenly distributed on enamel. The SEM images of the biofilm treated with EGCG depict multilayers of cells arranged in short chains of microorganisms adhered to an unstructured matrix, which is not continuous and does not enmesh or protect the microorganisms entirely. Importantly, confocal images demonstrated that treatment with EGCG affected the 3D structure and organization of S. mutans biofilm, which presented a biofilm matrix more confined to the location of the microcolonies. CONCLUSION: In conclusion, EGCG lowered the virulence of S. mutans matrix-rich biofilm by reducing the synthesis of biofilm matrix components, altering the biofilm matrix structure, organization, and distribution.


Assuntos
Biofilmes , Catequina , Microscopia Confocal , Microscopia Eletrônica de Varredura , Streptococcus mutans , Biofilmes/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Catequina/farmacologia , Catequina/análogos & derivados , Virulência/efeitos dos fármacos , Cárie Dentária/microbiologia , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Polissacarídeos Bacterianos , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/microbiologia
13.
Food Funct ; 15(11): 6068-6081, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38757391

RESUMO

Epigallocatechin gallate (EGCG), a prominent bioactive compound found in tea, offers numerous health benefits. Previous studies have highlighted its potential in mitigating hyperuricemia. In this study, hyperuricemic mice induced by potassium oxonate (PO) were treated with EGCG or the anti-hyperuricemia medication allopurinol (AP) to investigate the mechanisms underlying their anti-hyperuricemic effects. The results demonstrated that both EGCG and AP significantly reduced serum uric acid (UA) levels. Further analysis revealed that EGCG promoted the expression of UA secretion transporter genes (Oat1 and Oct1) while inhibiting the expression of UA reabsorption transporter genes (Urat1 and Glut9) in the kidney. By 16S rDNA sequencing, EGCG, but not AP, was found to alter the composition of the gut microbiota. Notably, EGCG induced significant changes in the relative abundance of specific bacteria such as Lactobacillus, Faecalibaculum, and Bifidobacterium, which displayed high correlations with serum UA levels and UA-related gene expression. Metabolomic analysis suggested that EGCG-induced modifications in bacterial metabolites might contribute to the alleviation of hyperuricemia. Transcriptomic analysis of the intestinal epithelium identifies 191 differentially expressed genes (DEGs) in EGCG-treated mice, including 8 purine-related genes. This study elucidates the anti-hyperuricemic mechanisms of EGCG, particularly its influence on the gut microbiota and gene expression in the intestinal epithelium.


Assuntos
Catequina , Modelos Animais de Doenças , Microbioma Gastrointestinal , Hiperuricemia , Ácido Úrico , Animais , Hiperuricemia/tratamento farmacológico , Catequina/análogos & derivados , Catequina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Camundongos Endogâmicos C57BL , Alopurinol/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Ácido Oxônico , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Proteínas Facilitadoras de Transporte de Glucose
14.
Carbohydr Polym ; 338: 122205, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763727

RESUMO

Developing multifunctional films with antibacterial, antioxidant, and sustained-release properties is a robust strategy for preventing contamination of perishable fruits by foodborne microorganisms. This study engineered a sustained-release biodegradable antibacterial film loaded with EGCG (Pickering emulsion (PE)/α-Cyclodextrin (α-CD)/Konjac glucomannan (KGM)) through multi-strategy cross-linking for fruit preservation. EGCG is stabilized using PE and incorporated into the α-CD/KGM inclusion compound; the unique structure of α-CD enhances EGCG encapsulation, while KGM provides the film toughness and surface adhesion. The composite film's physicochemical properties, antioxidant, bacteriostatic and biodegradability were studied. Results showed that Pickering emulsions with 3 % oil phase exhibited excellent stability. Moreover, α-CD introduction increased the loading and sustained release of EGCG from the film, and its concentration significantly affected the light transmission, thermal stability, mechanical strength, mechanical characteristics and antioxidant capacity of the composite membrane. Antioxidant and antimicrobial activities of the composite film increased significantly with increasing α-CD concentration. Application of the film to tomatoes and strawberries effectively inhibited Escherichia coli and Staphylococcus aureus growth, prolonging the shelf-life of the fruits. Notably, the composite film exhibits superior biodegradability in soil. This EGCG-loaded PE/α-CD/KGM composite film is anticipated to be a multifunctional antimicrobial preservation material with sustained-release properties and biodegradable for perishable food applications.


Assuntos
Antibacterianos , Antioxidantes , Catequina , Emulsões , Escherichia coli , Frutas , Mananas , alfa-Ciclodextrinas , alfa-Ciclodextrinas/química , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Mananas/química , Mananas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Frutas/química , Emulsões/química , Antioxidantes/química , Antioxidantes/farmacologia , Escherichia coli/efeitos dos fármacos , Conservação de Alimentos/métodos , Staphylococcus aureus/efeitos dos fármacos , Embalagem de Alimentos/métodos , Testes de Sensibilidade Microbiana , Reagentes de Ligações Cruzadas/química , Liberação Controlada de Fármacos
15.
Birth Defects Res ; 116(5): e2350, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38761027

RESUMO

BACKGROUND: Cyprodinil is a widely used fungicide with broad-spectrum activity, but it has been associated with cardiac abnormalities. (-)-Epicatechin gallate (ECG), a natural polyphenolic compound, has been shown to possess protective properties in cardiac development. METHODS: In this study, we investigated whether ECG could mitigate cyprodinil-induced heart defects using zebrafish embryos as a model. Zebrafish embryos were exposed to cyprodinil with or without ECG. RESULTS: Our results demonstrated that ECG significantly improved the survival rate, embryo movement, and hatching delay induced by cyprodinil. Furthermore, ECG effectively ameliorated cyprodinil-induced cardiac developmental toxicity, including pericardial anomaly and impairment of cardiac function. Mechanistically, ECG attenuated the cyprodinil-induced alterations in mRNA expression related to cardiac development, such as amhc, vmhc, tbx5, and gata4, as well as calcium ion channels, such as ncx1h, atp2a2a, and cdh2. Additionally, ECG was found to inhibit the activity of the aryl hydrocarbon receptor (AhR) signaling pathways induced by cyprodinil. CONCLUSIONS: In conclusion, our findings provide evidence for the protective effects of ECG against cyprodinil-induced cardiac developmental toxicity, mediated through the inhibition of AhR activity. These findings contribute to a better understanding of the regulatory mechanisms and safe utilization of pesticide, such as cyprodinil.


Assuntos
Catequina , Coração , Receptores de Hidrocarboneto Arílico , Peixe-Zebra , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Coração/efeitos dos fármacos , Catequina/análogos & derivados , Catequina/farmacologia , Cardiopatias Congênitas/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos
16.
Int J Nanomedicine ; 19: 4299-4317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766654

RESUMO

Background: Inhibition of amyloid ß protein fragment (Aß) aggregation is considered to be one of the most effective strategies for the treatment of Alzheimer's disease. (-)-Epigallocatechin-3-gallate (EGCG) has been found to be effective in this regard; however, owing to its low bioavailability, nanodelivery is recommended for practical applications. Compared to chemical reduction methods, biosynthesis avoids possible biotoxicity and cumbersome preparation processes. Materials and Methods: The interaction between EGCG and Aß42 was simulated by molecular docking, and green tea-conjugated gold nanoparticles (GT-Au NPs) and EGCG-Au NPs were synthesized using EGCG-enriched green tea and EGCG solutions, respectively. Surface active molecules of the particles were identified and analyzed using various liquid chromatography-tandem triple quadrupole mass spectrometry methods. ThT fluorescence assay, circular dichroism, and TEM were used to investigate the effect of synthesized particles on the inhibition of Aß42 aggregation. Results: EGCG as well as apigenin, quercetin, baicalin, and glutathione were identified as capping ligands stabilized on the surface of GT-Au NPs. They more or less inhibited Aß42 aggregation or promoted fibril disaggregation, with EGCG being the most effective, which bound to Aß42 through hydrogen bonding, hydrophobic interactions, etc. resulting in 39.86% and 88.50% inhibition of aggregation and disaggregation effects, respectively. EGCG-Au NPs were not as effective as free EGCG, whereas multiple thiols and polyphenols in green tea accelerated and optimized heavy metal detoxification. The synthesized GT-Au NPs conferred the efficacy of diverse ligands to the particles, with inhibition of aggregation and disaggregation effects of 54.69% and 88.75%, respectively, while increasing the yield, enhancing water solubility, and decreasing cost. Conclusion: Biosynthesis of nanoparticles using green tea is a promising simple and economical drug-carrying approach to confer multiple pharmacophore molecules to Au NPs. This could be used to design new drug candidates to treat Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides , Catequina , Ouro , Nanopartículas Metálicas , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos , Chá , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Catequina/química , Catequina/farmacologia , Catequina/análogos & derivados , Chá/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/administração & dosagem , Ouro/química , Ligantes , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/antagonistas & inibidores , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Agregados Proteicos/efeitos dos fármacos
17.
BMC Complement Med Ther ; 24(1): 147, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580929

RESUMO

BACKGROUND: Pneumonia, the acute inflammation of lung tissue, is multi-factorial in etiology. Hence, continuous studies are conducted to determine the mechanisms involved in the progression of the disease and subsequently suggest effective treatment. The present study attempted to evaluate the effects of Epigallocatechin-3-Gallate (EGCG), an herbal antioxidant, on inflammation, oxidative stress, apoptosis, and autophagy in a rat pneumonia model. METHODS: Forty male Wistar rats, 5 months old and 250-290 g were divided into four groups including control, EGCG, experimental pneumonia (i/p LPS injection, 1 mg/kg), and experimental pneumonia treated with EGCG (i/p, 15 mg/kg, 1 h before and 3 h after LPS instillation). Total cell number in the bronchoalveolar lavage fluid, inflammation (TNF-a, Il-6, IL-1ß, and NO), oxidative stress (Nrf2, HO-1, SOD, CAT, GSH, GPX, MDA, and TAC), apoptosis (BCL-2, BAX, CASP-3 and CASP-9), and autophagy (mTOR, LC3, BECN1) were evaluated. RESULTS: The findings demonstrated that EGCG suppresses the LPS-induced activation of inflammatory pathways by a significant reduction of inflammatory markers (p-value < 0.001). In addition, the upregulation of BCL-2 and downregulation of BAX and caspases revealed that EGCG suppressed LPS-induced apoptosis. Furthermore, ECGC suppressed oxidative injury while promoting autophagy in rats with pneumonia (p-value < 0.05). CONCLUSION: The current study revealed that EGCG could suppress inflammation, oxidative stress, apoptosis, and promote autophagy in experimental pneumonia models of rats suggesting promising therapeutical properties of this compound to be used in pneumonia management.


Assuntos
Catequina/análogos & derivados , Lipopolissacarídeos , Pneumonia , Ratos , Masculino , Animais , Lipopolissacarídeos/toxicidade , Proteína X Associada a bcl-2/metabolismo , Ratos Wistar , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pneumonia/tratamento farmacológico , Apoptose , Autofagia
18.
BMC Cancer ; 24(1): 486, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632501

RESUMO

BACKGROUND: The antiviral drug Nirmatrelvir was found to be a key drug in controlling the progression of pneumonia during the infectious phase of COVID-19. However, there are very few options for effective treatment for cancer patients who have viral pneumonia. Glucocorticoids is one of the effective means to control pneumonia, but there are many adverse events. EGCG is a natural low toxic compound with anti-inflammatory function. Thus, this study was designed to investigate the safety and efficacy of epigallocatechin-3-gallate (EGCG) aerosol to control COVID-19 pneumonia in cancer populations. METHODS: The study was designed as a prospective, single-arm, open-label phase I/II trial at Shandong Cancer Hospital and Institute, between January 5, 2023 to March 31,2023 with viral pneumonia on radiographic signs after confirmed novel coronavirus infection. These patients were treated with EGCG nebulization 10 ml three times daily for at least seven days. EGCG concentrations were increased from 1760-8817umol/L to 4 levels with dose escalation following a standard Phase I design of 3-6 patients per level. Any grade adverse event caused by EGCG was considered a dose-limiting toxicity (DLT). The maximum tolerated dose (MTD) is defined as the highest dose with less than one-third of patients experiencing dose limiting toxicity (DLT) due to EGCG. The primary end points were the toxicity of EGCG and CT findings, and the former was graded by Common Terminology Criteria for Adverse Events (CTCAE) v. 5.0. The secondary end point was the laboratory parameters before and after treatment. RESULT: A total of 60 patients with high risk factors for severe COVID-19 pneumonia (factors such as old age, smoking and combined complications)were included in this phase I-II study. The 54 patients in the final analysis were pathologically confirmed to have tumor burden and completed the whole course of treatment. A patient with bucking at a level of 1760 umol/L and no acute toxicity associated with EGCG has been reported at the second or third dose gradients. At dose escalation to 8817umol/L, Grade 1 adverse events of nausea and stomach discomfort occurred in two patients, which resolved spontaneously within 1 hour. After one week of treatment, CT showed that the incidence of non-progression of pneumonia was 82% (32/39), and the improvement rate of pneumonia was 56.4% (22/39). There was no significant difference in inflammation-related laboratory parameters (white blood cell count, lymphocyte count, IL-6, ferritin, C-reactive protein and lactate dehydrogenase) before and after treatment. CONCLUSION: Aerosol inhalation of EGCG is well tolerated, and preliminary investigation in cancer population suggests that EGCG may be effective in COVID-19-induced pneumonia, which can promote the improvement of patients with moderate pneumonia or prevent them from developing into severe pneumonia. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05758571. Date of registration: 8 February 2023.


Assuntos
COVID-19 , Catequina/análogos & derivados , Neoplasias , Pneumonia Viral , Humanos , Oxigênio , Estudos Prospectivos , Pneumonia Viral/epidemiologia , Resultado do Tratamento , Aerossóis e Gotículas Respiratórios
19.
J Agric Food Chem ; 72(15): 8506-8520, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567990

RESUMO

The dysregulation of lipid metabolism poses a significant health threat, necessitating immediate dietary intervention. Our previous research unveiled the prebiotic-like properties of theabrownin. This study aimed to further investigate the theabrownin-gut microbiota interactions and their downstream effects on lipid metabolism using integrated physiological, genomic, metabolomic, and transcriptomic approaches. The results demonstrated that theabrownin significantly ameliorated dyslipidemia, hepatic steatosis, and systemic inflammation induced by a high-fat/high-cholesterol diet (HFD). Moreover, theabrownin significantly improved HFD-induced gut microbiota dysbiosis and induced significant alterations in microbiota-derived metabolites. Additionally, the detailed interplay between theabrownin and gut microbiota was revealed. Analysis of hepatic transcriptome indicated that FoxO and PPAR signaling pathways played pivotal roles in response to theabrownin-gut microbiota interactions, primarily through upregulating hepatic Foxo1, Prkaa1, Pck1, Cdkn1a, Bcl6, Klf2, Ppara, and Pparg, while downregulating Ccnb1, Ccnb2, Fabp3, and Plin1. These findings underscored the critical role of gut-liver axis in theabrownin-mediated improvements in lipid metabolism disorders and supported the potential of theabrownin as an effective prebiotic compound for targeted regulation of metabolic diseases.


Assuntos
Catequina/análogos & derivados , Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Metabolismo dos Lipídeos , Prebióticos , Receptores Ativados por Proliferador de Peroxissomo , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transdução de Sinais , Camundongos Endogâmicos C57BL
20.
Int J Pharm ; 656: 124095, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38588757

RESUMO

Reactive oxygen species (ROS) play a vital role in wound healing process by fighting against invaded bacteria. However, excess ROS at the wound sites lead to oxidative stress that can trigger deleterious effects, causing cell death, tissue damage and chronic inflammation. Therefore, we fabricated a core-shell structured nanomedicine with antibacterial and antioxidant properties via a facile and green strategy. Specifically, Prussian blue (PB) nanozyme was fabricated and followed by coating a layer of epigallocatechin-3-gallate (EGCG)-derived polymer via polyphenolic condensation reaction and self-assembly process, resulting in PB@EGCG. The introduction of PB core endowed EGCG-based polyphenol nanoparticles with excellent NIR-triggered photothermal properties. Besides, owing to multiple enzyme-mimic activity of PB and potent antioxidant capacity of EGCG-derived polymer, PB@EGCG exhibited a remarkable ROS-scavenging ability, mitigated intracellular ROS level and protected cells from oxidative damage. Under NIR irradiation (808 nm, 1.5 W/cm2), PB@EGCG (50 µg/mL) exerted synergistic EGCG-derived polymer-photothermal antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). In vivo therapeutic effect was evaluated using a S. aureus-infected rat model indicated PB@EGCG with a prominent bactericidal ability could modulate the inflammatory microenvironment and accelerate wound healing. Overall, this dual-functional nanomedicine provides a promising strategy for efficient antibacterial therapy.


Assuntos
Antibacterianos , Antioxidantes , Catequina , Catequina/análogos & derivados , Escherichia coli , Ferrocianetos , Nanopartículas , Polímeros , Espécies Reativas de Oxigênio , Staphylococcus aureus , Catequina/química , Catequina/farmacologia , Catequina/administração & dosagem , Ferrocianetos/química , Animais , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Ratos , Polímeros/química , Nanopartículas/química , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/química , Masculino , Ratos Sprague-Dawley , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Camundongos , Terapia Fototérmica/métodos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA