Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
1.
BMC Complement Med Ther ; 24(1): 315, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179999

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is a precursor to the development of many diseases (atherosclerosis, diabetes, etc.). It is marked by disruptions in glucose and lipid metabolism, along with hypertension. Numerous types of risk factors contribute to the development of the MetS, inflammation and insulin resistance are present throughout the metabolic abnormalities. Chrysanthemum indicum L. is a traditional Chinese plant used for both tea and medicine, known for its high content of total flavonoids, which are important secondary metabolites. Our research led to the extraction of a Buddleoside-Rich Chrysanthemum indicum L. extract (BUDE) which has demonstrated anti-inflammatory properties. Nonetheless, the specific role and mechanism of BUDE in preventing MetS remain unclear. METHODS: The study initially evaluated the role of BUDE in preventing MetS. Subsequently, it investigated the anti-inflammatory properties of BUDE in the liver and pancreas in response to unhealthy diets. It then examined the level of insulin resistance and pancreatic ß-cell function induced by inflammation. Additionally, an lipopolysaccharide (LPS)-induced macrophage inflammation model was used to further investigate the ameliorative effects of BUDE in inflammation. RESULTS: BUDE has hypotensive, hypoglycemic and hypolipidemic effects. It can also resolve the imbalance between macrophage subpopulations, impede the triggering of the NF-κB signaling pathway, reduce the secretion of inflammatory mediators, ameliorate insulin resistance, and safeguard organs such as the liver and pancreas from inflammatory damage. These effects collectively contribute to preventing the development of MetS. DISCUSSION: BUDE has the ability to modulate macrophage-mediated inflammation, leading to improved insulin resistance. Additionally, it delivers antihypertensive, hypoglycemic, and hypolipidemic effects, offering a potential for preventing MetS.


Assuntos
Chrysanthemum , Inflamação , Macrófagos , Síndrome Metabólica , Extratos Vegetais , Chrysanthemum/química , Síndrome Metabólica/tratamento farmacológico , Animais , Inflamação/tratamento farmacológico , Camundongos , Masculino , Extratos Vegetais/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Resistência à Insulina , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL , Ratos , Modelos Animais de Doenças
2.
Comput Biol Med ; 180: 108985, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39142224

RESUMO

BACKGROUND: Chrysanthemi Flos as a medicine food homology species is widely used in the prevention and treatment of diseases, whereas comprehensive research of its active compounds related to multi-pharmacological effects remains limited. This study aimed to systematically explore the active compounds through artificial intelligence-based target prediction and activity evaluation. METHODS: The information on compounds in Chrysanthemi Flos was obtained from six cultivars containing Gongju, Chuju, Huaiju, Boju, Hangbaiju, and Fubaiju, using UPLC-Q-TOF/MS. The main differential metabolites in six cultivars were also screened through the PLS-DA model. Then the potential targets of differential compounds were predicted via the DrugBAN model. Enrichment and topological analysis of compound-target networks were performed to identify key pharmaceutical compounds. Subsequently, the pharmacological effects of predictively active compounds were confirmed in vitro. Based on the active compounds, the pharmacological activities of Chrysanthemi Flos from the six origins were also investigated and compared for the further evaluation of medicinal quality. RESULTS: A total of 155 secondary metabolites were obtained from Chrysanthemi Flos. Among them, 26 differential components were screened, and 9 key pharmacological compounds with 1141 targets were identified. Enrichment analysis indicated the main pharmacological effects of Chrysanthemi Flos related to inflammation, oxidative stress, and lipid metabolism. In addition, 9 key pharmaceutical compounds were evaluated in vitro experiments, indicating the significant therapeutic effect in regulating inflammation, oxidative stress, and lipid metabolism. CONCLUSION: This study successfully identified 9 key pharmaceutical compounds in Chrysanthemi Flos and predicted the pharmacodynamic advantages of six origins. The findings would provide improved guidance for the discovery of active constituents and the assessment of pharmacodynamic advantages of different geographical origins.


Assuntos
Inteligência Artificial , Chrysanthemum , Medicamentos de Ervas Chinesas , Flores , Chrysanthemum/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Flores/química , Humanos
3.
Int J Biol Macromol ; 278(Pt 3): 134919, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39179070

RESUMO

Chrysanthemum morifolium Ramat. (C. morifolium), as a traditional ornamental plant, it has multiple values, including edible, economic, nutritional and even medicinal values, which is used as herbal medicine and a new food resource in the world. Polysaccharides are one of the main bioactive components in C. morifolium, which have various health benefits such as improving functional constipation, improving colitis, anti-glycosylation, antioxidant, anti-angiogenesis, immunomodulation, prebiotic, and α-glucosidase inhibitory activities. This paper describes the extraction, purification, structural characteristics, health benefits, structural-activity relationships, applications, and analyses the shortcomings of the major relevant studies exist on C. morifolium polysaccharides. In addition, the potential mechanisms of the health benefits of C. morifolium polysaccharides were summarized. This study can provide reference and direction for further research and development of C. morifolium polysaccharides.


Assuntos
Chrysanthemum , Polissacarídeos , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Chrysanthemum/química , Relação Estrutura-Atividade , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Humanos , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação
4.
J Ethnopharmacol ; 334: 118533, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971347

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Flos Chrysanthemi Indici (FCI), the flower of Chrysanthemum Indicum L., is a popular traditional Chinese medicine (TCM) for treatment of inflammatory diseases in China. FCI is also a functional food, and is widely used as herbal tea for clearing heat and detoxicating. AIM OF THE STUDY: To explore quality control markers of FCI based on the optimal harvest period. MATERIALS AND METHODS: First, UPLC-Q-TOF/MS based untargeted metabolomics was applied to explore the chemical profiles of FCIs collected at bud stages (BS), initial stages (IS), full bloom stages (FS) and eventual stages (ES) from eight cultivated regions in China. Subsequently, lipopolysaccharide (LPS)-induced RAW264.7 cell inflammatory model and carrageenan-induced rat paw edema model were used to confirm the anti-inflammatory effect of FCIs collected at IS/FS. Then, UPLC-PDA targeted metabolomics was used to quantitatively analyze 9 constituents with anti-inflammatory activity (7 flavonoids and 2 phenolic acids) changed significantly (VIP > 4) during flowering stages. Finally, ROC curves combined with PCA analysis based on the variation of 9 active constituents in FCIs from different flowering stages were applied to screen the quality markers of FCI. RESULTS: FCIs at IS/FS had almost same chemical characteristics, but quite different from those at BS and ES. A total of 32 constituents in FCIs including flavonoids and phenolic acids were changed during flowering development. Most of the varied constituents had the highest or higher contents at IS/FS compared with those at ES, indicating that the optimal harvest period of FCI should be at IS/FS. FCI extract could effectively suppress nitric oxide (NO) production in LPS-induced RAW264.7 cells and regulate the abnormal levels of cytokines and PGE2 in carrageenan-induced paw edema model rat. The results of quantitatively analysis revealed that the variation trends of phenolic acids and flavonoids in FCIs were different during flowering development, but most of them had higher contents at IS/FS than those at ES in all FCIs collected from eight cultivated regions, except one sample from Anhui. Finally, linarin, luteolin, apigenin and 3,5-dicaffeoylquinic acid were selected as the Q-markers based on the contribution of their AUC values in ROC and clustering of PCA analysis. CONCLUSIONS: Our study demonstrates the optimal harvest period of FCI and specifies the multi-constituents Q-markers of FCI based on the influence of growth progression on the active constituents using untargeted/targeted metabolomics. The findings not only greatly increase the utilization rate of FCI resources and improve quality control of FCI products, but also offer new strategy to identify the Q-markers of FCI.


Assuntos
Anti-Inflamatórios , Chrysanthemum , Edema , Flores , Metabolômica , Controle de Qualidade , Ratos Sprague-Dawley , Animais , Chrysanthemum/química , Camundongos , Metabolômica/métodos , Células RAW 264.7 , Masculino , Edema/tratamento farmacológico , Edema/induzido quimicamente , Anti-Inflamatórios/farmacologia , Ratos , Quimiometria , Carragenina , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inflamação/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Lipopolissacarídeos
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124812, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39047665

RESUMO

Chrysanthemum, a widely favored flower tea, contains numerous phytochemicals for health benefits. Due to the different geographical origins and processing technics, its variety has a direct influence on the phytochemical content and pharmacological effect. Accordingly, an accurate identification for chrysanthemum varieties is significant for quality detection and market supervision. In this study, the hyperspectral imaging (HSI) combined with chemometrics methods was exploited to identify the chrysanthemum varieties. First, to alleviate the problem of easily trapping into local optimum in traditional spectral variable selection methods, the multi-tasking particle swarm optimization (MTPSO) was developed to select the key wavelengths by dividing hundreds of variables into low-dimensional subtasks. Second, to enrich the feature information, the spatial texture and color features contained in hyperspectral images were extracted and applied to chrysanthemum identification for the first time. Finally, an ensemble learning model, extreme gradient boosting (XGBoost), was constructed to conduct the chrysanthemum variety classification due to its strong generalization ability. Experimental results showed that the proposed MTPSO achieved the identification accuracy of 96.89%, and increased by 1.11-5.91% than classical spectral feature selection methods. Furthermore, after the involvement of spatial image information, the classification accuracy using spatial-spectral features was improved further, and reached 98.39%. Overall, this study highlights that the feature fusion of key wavelengths and spatial information is more effective for chrysanthemum variety identification, and can also provide technical reference for other HSI-related applications.


Assuntos
Chrysanthemum , Imageamento Hiperespectral , Chrysanthemum/química , Imageamento Hiperespectral/métodos , Algoritmos , Flores/química
6.
Food Chem ; 457: 140092, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901347

RESUMO

The main bioavailable phenolics from of Gongju (GJ) and their mechanism for hepato-protection remain unclear. To select the GJ phenolics with high bioavailability, chrysanthemum digestion and Caco-2 cells were used and their hepato-protective potential were examined by using AML-12 cells. The digestive recovery and small intestinal transit rate of the main phenolic compounds ranged from 28.52 to 69.53% and 6.57% âˆ¼ 15.50%, respectively. Among them, chlorogenic acid, 3,5-dicaffeoylquinic acid, and 1,5-dicaffeoylquinic acid, showed higher small intestinal transit rates and digestive recoveries. Furthermore, we found that by increasing intracellular Catalase (CAT) and Superoxide dismutase (SOD) viability and lowering Malondialdehyde (MDA) level (P < 0.05), 3,5-dicaffeoylquinic acid significantly mitigated the oxidative damage of AML-12 liver cells more than the other two phenolics. Our results demonstrated that 3,5-dicaffeoylquninic acid was the primary phenolic compounds in GJ that effectively reduced liver damage, providing a theoretical basis for the development of GJ as a potentially useful resource for hepatoprotective diet.


Assuntos
Chrysanthemum , Estresse Oxidativo , Fenóis , Chrysanthemum/química , Humanos , Fenóis/química , Fenóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Superóxido Dismutase/metabolismo , Linhagem Celular , Malondialdeído/metabolismo , Células CACO-2 , Catalase/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química
7.
Aging (Albany NY) ; 16(11): 10132-10141, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862253

RESUMO

BACKGROUND: Acute pancreatitis (AP) is a prevalent acute abdominal condition, and AP induced colonic barrier dysfunction is commonly observed. Total flavonoids of Chrysanthemum indicum L (TFC) have exhibited noteworthy anti-inflammatory and anti-apoptotic properties. METHODS: We established AP models, both in animals and cell cultures, employing Cerulein. 16S rRNA gene sequencing was performed to investigate the gut microorganisms changes. RESULTS: In vivo, TFC demonstrated a remarkable capacity to ameliorate AP, as indicated by the inhibition of serum amylase, myeloperoxidase (MPO) levels, and the reduction in pancreatic tissue water content. Furthermore, TFC effectively curtailed the heightened inflammatory response. The dysfunction of colonic barrier induced by AP was suppressed by TFC. At the in vitro level, TFC treatment resulted in attenuation of increased cell apoptosis, and regulation of apoptosis related proteins expression in AR42J cells. The increase of Bacteroides sartorial, Lactobacillus reuteri, Muribaculum intestinale, and Parabacteroides merdae by AP, and decrease of of Helicobacter rodentium, Pasteurellaceae bacterium, Streptococcus hyointestinalis by AP were both reversed by TFC treatment. CONCLUSIONS: TFC can effectively suppress AP progression and AP induced colonic barrier dysfunction by mitigating elevated serum amylase, MPO levels, water content in pancreatic tissue, as well as curtailing inflammation, apoptosis. The findings presented herein shed light on the potential mechanisms by which TFC inhibit the development of AP progression and AP induced colonic barrier dysfunction.


Assuntos
Chrysanthemum , Flavonoides , Microbioma Gastrointestinal , Pancreatite , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Chrysanthemum/química , Pancreatite/metabolismo , Pancreatite/microbiologia , Pancreatite/tratamento farmacológico , Flavonoides/farmacologia , Masculino , Ratos , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Linhagem Celular , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia
8.
Phytomedicine ; 129: 155695, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728922

RESUMO

BACKGROUND: Exercise is an effective strategy to prevent sarcopenia, but high physical inactivity in the elderly requires alternative therapeutic approaches. Exercise mimetics are therapeutic compounds that simulate the beneficial effects of exercise on skeletal muscles. However, the toxicity and adverse effects of exercise mimetics raise serious concerns. PURPOSE: We aimed to search novel plant-based alternatives to activate exercise induced-signaling. METHODS: We used open databases and luciferase assays to identify plant-derived alternatives to activate exercise-induced signaling and compared its efficacy to mild intensity continuous training (MICT) in aged C57BL/6 mice. The nineteen-month-old mice were either fed an experimental diet supplemented with the isolated alternative or subjected to MICT for up to 21 mo of age. RESULTS: Our analysis revealed that Chrysanthemum zawadskii Herbich var latillobum (Maxim.) Kitamura (CZH), a medicinal plant rich in linarin, is a novel activator of peroxisome proliferator-activated receptor δ (PPARδ) and estrogen-related receptor γ (ERRγ), key regulators of exercise-induced positive effects on muscles. CZH supplementation ameliorated the loss of muscle function and mass, and increased PPARδ and ERRγ expression in mouse muscles. CZH also improved mitochondrial functions and proteostasis in aged mice, similar to MICT. Furthermore, CZH and linarin induced the activation of Sestrin 1, a key mediator of exercise benefits, in muscle. Silencing Sestrin 1 negated the increase in myogenesis and mitochondrial respiration by CZH and linarin in primary myoblasts from old mice. CONCLUSION: Our findings suggest the potential of CZH as a novel plant-derived alternative to activate exercise-induced signaling for preventing sarcopenia in sedentary older adults. This could offer a safer therapeutic option for sarcopenia treatment.


Assuntos
Chrysanthemum , Camundongos Endogâmicos C57BL , Sarcopenia , Transdução de Sinais , Animais , Chrysanthemum/química , Transdução de Sinais/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Masculino , PPAR delta/metabolismo , Extratos Vegetais/farmacologia , Receptores de Estrogênio/metabolismo , Humanos , Envelhecimento/efeitos dos fármacos , Glicosídeos
9.
J Ethnopharmacol ; 332: 118352, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38762208

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chrysanthemum morifolium Ramat. is a commonly used Chinese herb and food homologous plant with traditional effects such as anti-inflammatory, antifebrile, antibacterial and antiviral. AIM OF STUDY: Photoaging is one of the main causes of accelerated skin aging. Chrysanthemum morifolium Ramat. has reported to alleviate photodamage. In this study, we investigated the protective effect of the extract of buds of Chrysanthemum morifolium Ramat. (CE) on UVB-induced photoaging and further mechanism. MATERIALS AND METHODS: The extract of buds of chrysanthemum was analyzed by HPLC-Q-TOF-MS/MS. Antioxidant activity was assessed by DPPH and ABTS assay. Cell viability examined by cell counting kit-8 assay. The ROS level was detected by fluorescent probe DCFH-DA. Protein expression evaluated by Western blotting. The skin tissue investigated by immunohistochemistry. RESULTS: CE significantly reversed the decrease of cell viability that induced by UVB in HaCaT and HFF-1 cells. Further analysis showed that CE alleviated photoaging by inhibiting the expression of mitogen-activated protein kinase (MAPK) and activating the NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway to promote the expression of antioxidant enzymes. Moreover, CE effectively improved the reduced skin hydration, disordered collagen and thickening epidermis caused by UVB in mice. CONCLUSIONS: All results demonstrated that CE had therapeutic effect on UVB-induced photoaging and provided theoretical basis for its further developing as a natural functional product with anti-photoaging effect.


Assuntos
Chrysanthemum , Fator 2 Relacionado a NF-E2 , Extratos Vegetais , Envelhecimento da Pele , Raios Ultravioleta , Chrysanthemum/química , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Raios Ultravioleta/efeitos adversos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Camundongos , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Elementos de Resposta Antioxidante/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Pele/patologia , Pele/metabolismo , Flores/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células HaCaT , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular
10.
Phytomedicine ; 130: 155774, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38820659

RESUMO

BACKGROUND: Metabolic and alcohol-associated liver disease (MetALD) shows a high prevalence rate in liver patients, but there is currently no effective treatment for MetALD. As a typical edible traditional Chinese medicinal herb, the anti-inflammatory, antioxidant, and hepatoprotective properties of water extract of Chrysanthemum morifolium Ramat. (WECM) has been demonstrated. However, its therapeutic effect on MetALD and the associated mechanisms remain unclear. PURPOSE: To investigate the underlying mechanisms of WECM against MetALD. METHODS: We constructed a MetALD rat model following a high-fat & high-sucrose plus alcohol diet (HFHSAD). MetALD rats were treated with WECM at 2.1, 4.2, and 8.4 g/kg/d for six weeks. Efficacy was determined, and pathways associated with WECM against MetALD were predicted through serum and hepatic biochemical marker measurement, histopathological section analysis, 16S rDNA sequencing of the gut microbiota and untargeted serum metabolomics analyses. Changes in genes and proteins in the peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ) signaling pathways were detected by RT‒PCR and Western blotting. RESULTS: WECM treatment significantly attenuated hepatic steatosis, hyperlipidemia and markers of liver injury in MetALD rats. Moreover, WECM improved vascular endothelial function, hypertension, and systematic oxidative stress. Mechanistically, WECM treatment altered the overall structure of the gut microbiota through maintaining Firmicutes/Bacteroidota ratio and reducing harmful bacterial abundances such as Clostridium, Faecalibaculum, and Herminiimonas. Notably, WECM promoted 15-deoxy-△12, 14-prostaglandin J2 (15d-PGJ2) release and further activated the PPARγ to reduce serum TNF-α, IL-1ß, and IL-6 levels. Additionally, WECM upregulated PPARα and downregulated the levels of CD36 and FABP4 to improve lipid metabolism. CONCLUSION: Our findings provide the first evidence that WECM treatment significantly improved hepatic steatosis, oxidative stress and inflammation in MetALD rats by regulating the gut microbiota and activating the 15d-PGJ2/PPARγ and PPARα signaling pathway.


Assuntos
Chrysanthemum , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , PPAR alfa , PPAR gama , Ratos Sprague-Dawley , Chrysanthemum/química , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , PPAR gama/metabolismo , PPAR alfa/metabolismo , Masculino , Hepatopatias Alcoólicas/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Ratos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Extratos Vegetais/farmacologia , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Estresse Oxidativo/efeitos dos fármacos
11.
J Ethnopharmacol ; 330: 118198, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621465

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In recent years, Chinese herbal medicine has gained more and more recognition in disease prevention and control due to its low toxicity and comprehensive treatment. C. morifolium (Chrysanthemum morifolium Ramat.), as the medicine food homology plant with the bioactivity of anti-oxidation, anti-inflammatory, neuroprotection and cardiovascular protection, has important therapeutic effects and health benefits for colds, inflammation, cardiovascular diseases and various chronic diseases. AIM OF THE STUDY: By reviewing the historical development, classification and distribution of germplasm resources, phytochemistry, pharmacology, and modern application of C. morifolium, the paper provides a reliable basis for the further research and application of chrysanthemum as therapeutic agents and functional additives. MATERIALS AND METHODS: The literature and information about C. morifolium published in the last ten years were collected from various platforms, including Google Scholar, PubMed, ScienceDirect, Web of Science and China Knowledge Network. RESULTS: A comprehensive analysis confirmed that C. morifolium originated in China, and it went through the development process from food and tea to medicine for more than 3000 years. During this period, different cultivars emerged through several breeding techniques and were distributed throughout the world. Moreover, A variety of chemical components such as flavonoids, phenolic acids, volatile oils, and terpenes in chrysanthemum have been proven they possess various pharmacology of anti-inflammatory, anti-oxidant, and prevention of chronic diseases by regulating inflammatory cytokines, oxidative stress responses and signaling pathways, which are the essential conditions to play a role in TCM, nutraceuticals and diet. CONCLUSION: This paper provides a comprehensive review of historical development, classification, phytochemistry, pharmacology, and modern application of C. morifolium. However, future studies should continue to focus on the bioactive compounds and the synergistic mechanism of the "multi-component, multi-target, and multi-pathway" of chrysanthemum, and it is necessary to develop more innovative products with therapeutic effects.


Assuntos
Chrysanthemum , Medicina Tradicional Chinesa , Animais , Humanos , Chrysanthemum/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Etnofarmacologia , Medicina Tradicional Chinesa/métodos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Fitoterapia
12.
Int J Biol Macromol ; 267(Pt 1): 131469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604432

RESUMO

Pectic polysaccharide is a bioactive ingredient in Chrysanthemum morifolium Ramat. 'Hangbaiju' (CMH), but the high proportion of HG domain limited its use as a prebiotic. In this study, hot water, cellulase-assisted, medium-temperature alkali, and deep eutectic solvent extraction strategies were firstly used to extract pectin from CMH (CMHP). CMHP obtained by cellulase-assisted extraction had high purity and strong ability to promote the proliferation of Bacteroides and mixed probiotics. However, 4 extraction strategies led to general high proportion of HG domain in CMHPs. To further enhance the dissolution and prebiotic potential of CMHP, pectinase was used alone and combined with cellulase. The key factor for the optimal extraction was enzymolysis by cellulase and pectinase in a mass ratio of 3:1 at 1 % (w/w) dosage. The optimal CMHP had high yield (15.15 %), high content of total sugar, and Bacteroides proliferative activity superior to inulin, which was probably due to the cooperation of complex enzyme on the destruction of cell wall and pectin structural modification for raised RG-I domain (80.30 %) with relatively high degree of branching and moderate HG domain. This study provided a green strategy for extraction of RG-I enriched prebiotic pectin from plants.


Assuntos
Bacteroides , Chrysanthemum , Pectinas , Pectinas/química , Chrysanthemum/química , Proliferação de Células/efeitos dos fármacos , Celulase/química , Celulase/metabolismo , Solubilidade , Poligalacturonase/química , Poligalacturonase/metabolismo
13.
Sci Rep ; 14(1): 9505, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664430

RESUMO

The effects of low-cost Thai leucoxene mineral (LM) at different concentrations (10, 20, 30, 40, 50, and 60 mg/L) on the growth and antibacterial properties of Chrysanthemum indium L. cuttings under in vitro were evaluated. The primary chemical composition of LM was approximately 86% titanium dioxide (TiO2), as determined by dispersive X-ray spectroscopy. The crystalline structure, shape, and size were investigated by X-ray diffraction and scanning electron microscopy. LM at 40 and 50 mg/L significantly increased plant height, leaf number, node number, and fresh and dry weight. These growth-promoting properties were accompanied by improved chlorophyll and carotenoid contents and antioxidant enzyme activities and reduced malondialdehyde levels. Additionally, LM treatment at 40 and 50 mg/L had positive effects on antibacterial activity, as indicated by the lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. The high levels of phenolic compounds in the plants contributed to the MIC and MBC values. In conclusion, these findings provide evidence for the effectiveness of LM in enhancing the growth of Chrysanthemum plants in in vitro culture and improving their antibacterial abilities.


Assuntos
Antibacterianos , Chrysanthemum , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/química , Carotenoides/química , Clorofila/química , Chrysanthemum/química , Folhas de Planta/química , Tailândia , Titânio/química , Titânio/farmacologia
14.
Molecules ; 29(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474439

RESUMO

The leaves of Chrysanthemum indicum L. are known to have various bioactive compounds; however, industrial use is extremely limited. To overcome this situation by producing high-quality leaves with high bioactive content, this study examined the environmental factors affecting the phytochemical content and antioxidant activity using C. indicum leaves collected from 22 sites in Kochi Prefecture, Japan. Total phenolic and flavonoid content in the dry leaves ranged between 15.0 and 64.1 (mg gallic acid g-1) and 2.3 and 11.4 (mg quercetin g-1), while the antioxidant activity (EC50) of the 50% ethanol extracts ranged between 28.0 and 123.2 (µg mL-1) in 1,1-Diphenyl-2-picrylhydrazyl radical scavenging assay. Among the identified compounds, chlorogenic acid and 1,5-dicaffeoylquinic acid were the main constituents in C. indicum leaves. The antioxidant activity demonstrated a positive correlation with 1,5-dicaffeoylquinic acid (R2 = 0.62) and 3,5-dicaffeoylquinic acid (R2 = 0.77). The content of chlorogenic acid and dicaffeoylquinic acid isomers varied significantly according to the effects of exchangeable magnesium, cation exchange capacity, annual temperature, and precipitation, based on analysis of variance. The habitat suitability map using the geographical information system and the MaxEnt model predicted very high and high regions, comprising 3.2% and 10.1% of the total area, respectively. These findings could be used in future cultivation to produce high-quality leaves of C. indicum.


Assuntos
Chrysanthemum , Cinamatos , Flavonoides , Flavonoides/química , Antioxidantes/química , Polifenóis/análise , Ácido Clorogênico/análise , Chrysanthemum/química , Folhas de Planta/química , Extratos Vegetais/química
15.
Plant Physiol Biochem ; 207: 108406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309182

RESUMO

Chrysanthemum is one of the most attractive flowering plants widely grown commercially worldwide. Having a good source of organic fertilizers plays an important role in meeting the increasing demand for these plants, which requires high-quality flowers and a high survival time for the longest period. The effect of nitrogen (N) coupled with spent coffee ground (SCG) at various levels (0.0, 2.5, 5.0, 7.5, 10.0°% w/w) was evaluated on growth performance and chemical components of the Chrysanthemum over two years in a pot scale. Overall, total dry matter (TDM) was significantly enhanced with N+ by 125 and 97°% over N- in the first and second years, respectively. SCG also enhanced TDM up to the highest level of application in the range of 27-98°% and 18-81°% over SCG (0.0°%) in the same years, respectively. The interaction effect between N and SCG was perfect on TDM, flower number, and flower dry weight. Similarly, total antioxidant activities when N and SCG were coupled together gave respective increments ranging from 11.8 to 45.9 U/g DW and from 2.1 to 15.9 U/g DW compared to N alone (5.8 and 0.9 U/g DW) in both leaves and flowers, respectively. Extracts of plant treated with N and 10°% SCG exhibited a higher content of rosmarinic, caffeic, chlorogenic, vanillic acids, and rutin in the leaves. SCG as a natural organic source is easy to obtain and is a practical and cost-effective solution to plant nutrition, which can be valuable for ornamental plants, especially when combined with nitrogen.


Assuntos
Chrysanthemum , Café , Antioxidantes/química , Chrysanthemum/química , Nitrogênio/análise , Folhas de Planta , Flores
16.
Phytochem Anal ; 35(4): 754-770, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38282123

RESUMO

INTRODUCTION: Chrysanthemi Flos (CF) is widely used as a natural medicine or tea. Due to its diverse cultivation regions, CF exhibits varying quality. Therefore, the quality and swiftness in evaluation holds paramount significance for CF. OBJECTIVE: The aim of the study was to construct a comprehensive evaluation strategy for assessing CF quality using HPLC, near-infrared (NIR) spectroscopy, and chemometrics, which included the rapid quantification analyses of chemical components and the Fourier transform (FT)-NIR to HPLC conversion of fingerprints. MATERIALS AND METHODS: A total of 145 CF samples were utilised for data collection via NIR spectroscopy and HPLC. The partial least squares regression (PLSR) models were optimised using various spectral preprocessing and variable selection methods to predict the chemical composition content in CF. Both direct standardisation (DS) and PLSR algorithms were employed to establish the fingerprint conversion model from the FT-NIR spectrum to HPLC, and the model's performance was assessed through similarity and cluster analysis. RESULTS: The optimised PLSR quantitative models can effectively predict the content of eight chemical components in CF. Both DS and PLSR algorithms achieve the calibration conversion of CF fingerprints from FT-NIR to HPLC, and the predicted and measured HPLC fingerprints are highly similar. Notably, the best model relies on CF powder FT-NIR spectra and DS algorithm [root mean square error of prediction (RMSEP) = 2.7590, R2 = 0.8558]. A high average similarity (0.9184) prevails between predicted and measured fingerprints of test set samples, and the results of the clustering analysis exhibit a high level of consistency. CONCLUSION: This comprehensive strategy provides a novel and dependable approach for the rapid quality evaluation of CF.


Assuntos
Chrysanthemum , Controle de Qualidade , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Cromatografia Líquida de Alta Pressão/métodos , Análise dos Mínimos Quadrados , Chrysanthemum/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Flores/química , Análise por Conglomerados , Algoritmos
17.
J Antibiot (Tokyo) ; 76(12): 741-745, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37749218

RESUMO

Biosurfactants have found widespread use across multiple industrial fields, including medicine, food, cosmetics, detergents, pulp, and paper, as well as the degradation of oil and fat. The culture broth of Aureobasidium pullulans A11231-1-58 isolated from flowers of Chrysanthemum boreale Makino exhibited potent surfactant activity. Surfactant activity-guided fractionation led to the isolation of three new biosurfactants, pullusurfactins A‒C (1‒3). Their chemical structures were established through the use of spectroscopic techniques, predominantly 1D and 2D NMR, in conjunction with mass measurements. We evaluated the surface tension activities of isolated compounds. At 1.0 mg l-1, these compounds showed high degrees of surfactant activity (31.15 dyne/cm, 33.75 dyne/cm, and 33.83 dyne/cm, respectively).


Assuntos
Chrysanthemum , Chrysanthemum/química , Chrysanthemum/metabolismo , Tensoativos/química
18.
Fitoterapia ; 171: 105633, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37543236

RESUMO

Six previously undescribed sesquiterpenoids, chrysanthterpenoids H-M (1-6), were isolated from the stem and leaves of Chrysanthemum morifolium Ramat. Structure elucidation of isolated compounds was unambiguously determined based on extensive 1D and 2D NMR spectroscopic analyses. Furthermore, computational prediction of ECD was used to propose the absolute configurations of the compounds. All compounds were evaluated for their anti-asthma effects on RBL-2H3 cells in vitro. The results showed that Compounds 2 and 3 significantly inhibited the release of ß-aminohexosidase and improved RBL-2H3 degranulation by chromogenic substrate and high-content imaging. These results suggest that Compounds 2 and 3 may exhibit anti-asthma activities.


Assuntos
Chrysanthemum , Chrysanthemum/química , Estrutura Molecular , Folhas de Planta
19.
Food Chem ; 427: 136745, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37392633

RESUMO

Submicroparticles are important components generally existed in chrysanthemum tea infusion, but their functionality, chemical composition, structure and self-assembly mechanism are unclear due to lack of suitable preparation method and research strategy. This study showed that submicroparticles promoted the intestinal absorption of phenolics in chrysanthemum tea infusion by comparison of chrysanthemum tea infusion, submicroparticles-free chrysanthemum tea infusion and submicroparticles. Submicroparticles efficiently prepared by ultrafiltration mainly consisting of polysaccharide and phenolics accounted for 22% of total soluble solids in chrysanthemum tea infusion. The polysaccharide, which was determined as esterified pectin with a spherical conformation, provided spherical skeleton to form submicroparticles. A total of 23 individual phenolic compounds were identified in submicroparticles with the total phenolic content of 7.63 µg/mL. The phenolics not only attached to the external region of spherical pectin by hydrogen bonds, but also got into hydrophobic cavities of spherical pectin and attached to the internal region by hydrophobic interactions.


Assuntos
Chrysanthemum , Chrysanthemum/química , Flores/química , Pectinas/análise , Antioxidantes/análise , Fenóis/análise , Chá/química
20.
Chem Biodivers ; 20(7): e202300370, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37263981

RESUMO

Recently, much attention has been devoted to natural phenolics because of their ideal structure and chemistry for free radical scavenging activities, which may play important roles in long-term health and a reduction in the risk of developing chronic degenerative diseases. Chrysanthemum indicum (C. indicum) has been widely used as a health food and as a popular herb in China for many centuries. Opisthopappus Shih (O. shih) often takes the place of its related genera, C. indicum, in functional tea or medicine prescriptions in place of origin. In this article, a comparative study on the phenolics and antioxidant activity of C. indicum and O. shih during different growth stages was investigated. The antioxidant properties of plant extracts were tested using DPPH and ABTS assays. The characterization of potential phytochemicals was carried out using Fourier transform infrared (FT-IR) spectroscopy. Total phenolics (TPC) and total flavonoid content (TFC) were measured using Folin-Ciocalteu and aluminum chloride colorimetric methods, respectively. An HPLC method was used to simultaneously quantify five phenolic compounds, including chlorogenic acid, luteolin, rutin, quercetin, and apigenin. Results indicated that the Trolox equivalent antioxidant activity (TEAC) values of C. indicum and O. shih had extremely large variations at different growth stages. The most abundant phenolics and potent antioxidant activity of two related plants appear at the early vegetative and then flowering stages. Antioxidant activities and phenolic content of O. shih were higher than those of corresponding organs of C. indicum at the same collection time. The whole plant of O. shih, especially its leaves and flowers, are good candidates for obtaining nutraceuticals and functional food ingredients.


Assuntos
Asteraceae , Chrysanthemum , Antioxidantes/farmacologia , Antioxidantes/química , Chrysanthemum/química , Espectroscopia de Infravermelho com Transformada de Fourier , Flavonoides/farmacologia , Quercetina , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...