Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.957
Filtrar
1.
PLoS One ; 19(6): e0305053, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38924033

RESUMO

This study aims to assess the level of metal contamination and the ecological risk index at the abandoned Zaida Pb/Zn mining site in eastern Morocco and identify native plant species found on the site that can be used in site rehabilitation through phytoremediation strategies. Samples from seven native and abundant plant species at the site, along with their rhizospheric soils, were collected and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to determine the concentrations of various metal(loid)s, including As, Cu, Ni, Cd, Sb, Zn, and Pb. Indicators of soil pollution and ecological risks were also assessed, including the enrichment factor (EF), pollution index (PI), and ecological risk index (ERI). The Biological Accumulation Coefficient (BAC), Translocation Factor (TF), and Biological Concentration Factor (BCF) of plant samples were calculated. The results reveal polymetallic soil contamination, with notably higher concentrations of Pb, Cu and Zn, reaching respectively 5568 mg kg-1 DW, 152 mg kg-1 DW, and 148 mg kg-1 DW, indicating a significant potential ecological risk. The enrichment factor (EF) was also assessed for each metal(loid)s, and the results indicated that the metal contamination was of anthropogenic origin and linked to intensive mining activities in Zaida. These findings are supported by the pollution index (PI) ranging from 1.6 to 10.01, which reveals an extremely high metal(loid)s pollution level. None of the plant species exhibited a hyperaccumulation of metal(loid)s. However, Artemisia herba alba demonstrated a strong capacity to accumulate Pb in its aboveground parts, with a concentration of 468 mg kg-1 DW. Stipa tenacissima, Retama spherocarpa, and Astragalus armatus, showed a significant Pb accumulation in their roots reaching 280, 260, and 256 mg kg-1 DW.respectively. Based on BAC, TF, and BCF, Stipa tenacissima exhibited potential for Ni and Cd phytostabilization, as well as the ability for Zn phytoextraction. Additionally, Artemisia herba alba displayed the capability to phytoextract Cd and had a high propensity to translocate all the studied metal(loid)s. Astragalus armatus has the potential to be used in the phytostabilization of Zn and Ni, as well as for the phytoextraction of As and Sb. These native species from the Zaida site, although not hyperaccumulators, have the potential to contribute significantly to the phytoextraction or phytostabilization of potentially toxic elements (PTEs). Moreover, they can serve as vegetative cover to mitigate the erosion and dispersion of metal(loid)s.


Assuntos
Biodegradação Ambiental , Chumbo , Mineração , Plantas , Poluentes do Solo , Zinco , Marrocos , Zinco/análise , Zinco/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Chumbo/metabolismo , Chumbo/análise , Plantas/metabolismo , Plantas/química , Monitoramento Ambiental/métodos , Monitoramento Biológico/métodos , Solo/química
2.
Environ Geochem Health ; 46(7): 231, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849682

RESUMO

Nowadays, there is limited research focusing on the biosorption of Pb2+ through microbial process, particularly at the level of gene expression. To overcome this knowledge gap, we studied the adsorption capacity of Stenotrophomonas rhizophila JC1 to Pb2+, and investigated the physiological mechanism by means of SEM, EDS, FTIR, membrane permeability detection, and investigated the molecular mechanism through comparative transcriptomics. The results showed that after 16 h of cultivation, the biosorption capacity of JC1 for 100 mg/L of Pb2+ reached at 79.8%. The main mechanism of JC1 adsorb Pb2+ is via intracellular accumulation, accounting for more than 90% of the total adsorption. At the physiological level, Pb2+ can precipitate with anion functional groups (e.g., -OH, -NH) on the bacterial cell wall or undergo replacement reaction with cell component elements (e.g., Si, Ca) to adsorb Pb2+ outside of the cell wall, thus accomplishing extracellular adsorption of Pb2+ by strains. Furthermore, the cell membrane acts as a "switch" that inhibits the entry of metal ions into the cell from the plasma membrane. At the molecular level, the gene pbt specificity is responsible for the adsorption of Pb2+ by JC1. In addition, phosphate permease is a major member of the ABC transporter family involved in Pb2+, and czcA/cusA or Co2+/Mg2+ efflux protein plays an important role in the efflux of Pb2+ in JC1. Further, cellular macromolecule biosynthesis, inorganic cation transmembrane transport, citrate cycle (TCA) and carbon metabolism pathways all play crucial roles in the response of strain JC1 to Pb2+ stress.


Assuntos
Chumbo , Chumbo/metabolismo , Adsorção , Stenotrophomonas/metabolismo , Transcriptoma , Biodegradação Ambiental , Regulação Bacteriana da Expressão Gênica , Perfilação da Expressão Gênica , Poluentes Químicos da Água/metabolismo
3.
Sci Rep ; 14(1): 12641, 2024 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825663

RESUMO

In many countries with wastewater irrigation and intensive use of fertilizers (minerals and organics), heavy metal deposition by crops is regarded as a major environmental concern. A study was conducted to determine the impact of mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse on soil's trace Pb content and edible parts of vegetables. It also evaluated the risk of lead (Pb) contamination in water, soil, and food crops. Six vegetables (Daucus carota, Brassica oleracea, Pisum sativum, Solanum tuberosum, Raphanus sativus, and Spinacia oleracea) were grown in the field under twelve treatments with different nutrient and water inputs. The lead concentrations in soil, vegetables for all treatments and water samples ranged from 1.038-10.478, 0.09346-9.0639 mg/kg and 0.036-0.26448 mg/L, The concentration of lead in soil treated with wastewater in treatment (T6) and vegetable samples was significantly higher, exceeding the WHO's permitted limit. Mineral and organic fertilizers combined with wastewater treatment reduced lead (Pb) concentrations in vegetables compared to wastewater application without organic fertilizers. Health risk indexes for all treatments except wastewater treatment (T6) were less than one. Pb concentrations in mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse treated were determined to pose no possible risk to consumers.


Assuntos
Fertilizantes , Chumbo , Esterco , Verduras , Águas Residuárias , Fertilizantes/análise , Verduras/metabolismo , Verduras/química , Esterco/análise , Águas Residuárias/química , Águas Residuárias/análise , Chumbo/análise , Chumbo/metabolismo , Animais , Poluentes do Solo/análise , Solo/química , Bovinos , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/química , Minerais/análise
4.
World J Microbiol Biotechnol ; 40(8): 241, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38866993

RESUMO

Due to the rapid expansion of industrial activity, soil pollution has intensified. Plants growing in these polluted areas have developed a rhizobiome uniquely and specially adapted to thrive in such environments. However, it remains uncertain whether pollution acts as a sufficiently selective force to shape the rhizobiome, and whether these adaptations endure over time, potentially aiding in long-term phytoremediation. Therefore, in the present study, we aimed to compare whether the microbiome associated with roots from plants germinated in polluted riverbanks will improve the phytoremediation of Cd and Pb under mesocosm experiments compared with plants germinating in a greenhouse. The experimental design was a factorial 2 × 2, i.e., the origin of the plant and the presence or absence of 100 mg/L of Cd and 1000 mg/L of Pb. Our results showed that plants germinated in polluted riverbanks have the capacity to accumulate twice the amount of Pb and Cd during mesocosm experiments. The metagenomic analysis showed that plants from the river exposed to heavy metals at the end of mesocosm experiments were rich in Rhizobium sp. AC44/96 and Enterobacter sp. EA-1, Enterobacter soli, Pantoea rwandensis, Pantoea endophytica. In addition, those plants were uniquely associated with Rhizobium grahamii, which likely contributed to the differences in the levels of phytoremediation achieved. Furthermore, the functional analysis revealed an augmented functional potential related to hormones, metallothioneins, dismutases, and reductases; meanwhile, the plants germinated in the greenhouse showed an unspecific strategy to exceed heavy metal stress. In conclusion, pollution pressure drives stable microbial assemblages, which could be used in future phytostabilization and phytoremediation experiments.


Assuntos
Biodegradação Ambiental , Cádmio , Metais Pesados , Microbiota , Raízes de Plantas , Ricinus , Poluentes do Solo , Poluentes do Solo/metabolismo , Metais Pesados/metabolismo , Cádmio/metabolismo , Ricinus/microbiologia , Ricinus/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Chumbo/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Metagenômica , Rios/microbiologia
5.
J Hazard Mater ; 474: 134785, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843634

RESUMO

Lake Nansi, primarily dominated by macrophytes, faces threats from heavy metals and antibiotics due to human activity. This study investigated sediment dissolved organic matter (SDOM) characteristics and complexation of lead (Pb) and tetracycline (TC) in barren zone (BZ) and submerged macrophytes zone (PZ). Additionally, a microbial degradation experiment was conducted to examine its impact on the regional variations in complexation. SDOM abundance and protein-like materials in PZ was significantly greater than in BZ, indicating a probable contribution from the metabolism and decomposition of submerged macrophytes. Both zones exhibited a higher affinity of SDOM for Pb compared to TC, with all four components participating in Pb complexation. Protein-like materials in PZ had a higher binding ability (LogKPb=4.19 ± 1.07, LogKTC=3.89 ± 0.67) than in BZ (LogKPb=3.98 ± 0.61, LogKTC=3.69 ± 0.13), suggesting a potential presence of organically bound Pb and TC due to the higher abundance of protein-like materials in PZ. Although microbial communities differed noticeably, the degradation patterns of SDOM were similar in both zones, affecting the binding ability of SDOM in each. Notably, the fulvic-like component C4 emerged as the dominant binding material for both Pb and TC in both zones. Degradation might increase the amount of organically bound TC due to the increase in the LogKTC.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos , Chumbo , Tetraciclina , Poluentes Químicos da Água , Chumbo/química , Chumbo/metabolismo , Tetraciclina/química , Tetraciclina/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Antibacterianos/química , Antibacterianos/metabolismo
6.
Plant Physiol Biochem ; 212: 108770, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823092

RESUMO

Cadmium (Cd) and lead (Pb) are among the most toxic heavy metals affecting human health and crop yield. Suaeda maritima (L.) Dumort is an obligate halophyte that is well adapted to saline soil. The inbuilt salinity tolerance mechanisms of halophytes help them to survive in heavy metal-contaminated rhizospheric soil. In the present study, growth and ionomic responses, reactive oxygen species (ROS) accumulation, modulations of phytochelatins, antioxidative defense, and metabolomic responses were studied in S. maritima imposed to Cd and Pb stresses with an aim to elucidate Cd and Pb tolerance mechanisms and phytoremediation potential of this halophyte. Our results showed a reduction of biomass in S. maritima, which may serve as an energy conservation strategy for survival under heavy metal stress. The increased accumulation of ROS with concomitant higher expression of various antioxidative enzymes suggests the efficient scavenging of ROS. The metabolite profiling revealed significant up-regulation of sugars, sugar alcohols, amino acids, polyphenols, and organic acids under Cd and Pb stresses suggesting their possible role in osmotic balance, ionic homeostasis, ROS scavenging, and signal transduction for stress tolerance. In S. maritima, the translocation factors (Tf) are <1 in both Cd and Pb treatments, which indicates that this halophyte has high phytostabilization potential for Cd and Pb in roots and through restricted translocation of heavy metal ions to the aboveground part. The findings of this study offer comprehensive information on Cd and Pb tolerance mechanisms in S. maritima and suggest that this halophyte can detoxify the HMs through physiological, ionic, antioxidative, and metabolic regulations.


Assuntos
Biodegradação Ambiental , Cádmio , Chenopodiaceae , Chumbo , Espécies Reativas de Oxigênio , Plantas Tolerantes a Sal , Cádmio/metabolismo , Cádmio/toxicidade , Chenopodiaceae/metabolismo , Chenopodiaceae/efeitos dos fármacos , Plantas Tolerantes a Sal/metabolismo , Chumbo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Metabolômica , Antioxidantes/metabolismo , Metaboloma/efeitos dos fármacos , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Fitoquelatinas/metabolismo
7.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892238

RESUMO

Flavonoids are secondary metabolites that play important roles in the resistance of plants to abiotic stress. Despite the widely reported adverse effects of lead (Pb) contamination on maize, the effects of Pb on the biosynthetic processes of flavonoids in maize roots are still unknown. In the present work, we employed a combination of multi-omics and conventional assay methods to investigate the effects of two concentrations of Pb (40 and 250 mg/kg) on flavonoid biosynthesis in maize roots and the associated molecular regulatory mechanisms. Analysis using conventional assays revealed that 40 and 250 mg/kg Pb exposure increased the lead content of maize root to 0.67 ± 0.18 mg/kg and 3.09 ± 0.02 mg/kg, respectively, but they did not result in significant changes in maize root length. The multi-omics results suggested that exposure to 40 mg/kg of Pb caused differential expression of 33 genes and 34 metabolites related to flavonoids in the maize root system, while 250 mg/kg of Pb caused differential expression of 34 genes and 31 metabolites. Not only did these differentially expressed genes and metabolites participate in transferase activity, anthocyanin-containing compound biosynthetic processes, metal ion binding, hydroxyl group binding, cinnamoyl transferase activity, hydroxycinnamoyl transferase activity, and flavanone 4-reductase activity but they were also significantly enriched in the flavonoid, isoflavonoid, flavone, and flavonol biosynthesis pathways. These results show that Pb is involved in the regulation of maize root growth by interfering with the biosynthesis of flavonoids in the maize root system. The results of this study will enable the elucidation of the mechanisms of the effects of lead on maize root systems.


Assuntos
Flavonoides , Regulação da Expressão Gênica de Plantas , Chumbo , Raízes de Plantas , Estresse Fisiológico , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Flavonoides/biossíntese , Flavonoides/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Chumbo/toxicidade , Chumbo/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Metabolômica/métodos , Metaboloma/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
BMC Plant Biol ; 24(1): 557, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877427

RESUMO

In the course of their life, plants face a multitude of environmental anomaly that affects their growth and production. In recent decades, lead (Pb) gained an increasing attention as it is among the most significant contaminants in the environment. Therefore, in this study the effects of Pb concentrations (0, 50 and 100 ppm) on Vicia faba plants and attempts to alleviate this stress using chitosan (Chs; 0 and 0.1%) were performed. The results validated that with increasing Pb concentrations, a decline in growth, pigments and protein contents was observed. In the same time, a significant upsurge in the stress markers, both malondialdehyde (MDA) and H2O2, was observed under Pb stress. Nonetheless, foliar spraying with Chs improves the faba bean growth, pigment fractions, protein, carbohydrates, reduces MDA and H2O2 contents and decreases Pb concentrations under Pb stress. Pb mitigation effects by Chs are probably related with the activity of antioxidant enzymes, phenylalanine ammonia lyase (PAL) and proline. The application of Chs enhanced the activities of peroxidase, catalase and PAL by 25.77, 17.71 and 20.07%, respectively at 100 ppm Pb compared to their control. Plant genomic material exhibits significant molecular polymorphism, with an average polymorphism of 91.66% across all primers. To assess the genetic distance created among treatments, the dendrogram was constructed and the results of the similarity index ranged from 0.75 to 0.95, indicating genetic divergence. Our research offers a thorough comprehension of the role of Chs in lessening the oxidative stress, which will encourage the use of Chs in agricultural plant protection.


Assuntos
Quitosana , Chumbo , Estresse Oxidativo , Vicia faba , Vicia faba/efeitos dos fármacos , Vicia faba/genética , Vicia faba/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Quitosana/farmacologia , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/genética
9.
Chemosphere ; 361: 142509, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830466

RESUMO

The significant increase in cadmium (Cd) and lead (Pb) pollution in agricultural soil has greatly heightened environmental contamination issues and the risk of human diseases. However, the mechanisms underlying the transformation of Cd and Pb in soil as well as the influencing factors during their accumulation in crop grains remain unclear. Based on the analysis of the distribution trend of Cd and Pb in soil during the growth and development stages of wheat (tillering, filling, and maturity) in alkaline heavy metal-polluted farmland in northern China, this study investigated the response mechanism of soil heavy metal form transformation to soil physicochemical properties, and elucidated the main determining periods and influencing factors for Cd and Pb enrichment in wheat grains. The results showed that an increase in CEC and SOM levels, along with a decrease in pH level, contributed to enhancing the bioavailability of Cd in the soil. This effect was particularly evident during the tillering stage and grain filling stage of wheat. Nevertheless, the effects of soil physicochemical properties on bioavailable Pb was opposite to that on bioavailable Cd. The enrichment of Cd and Pb in grain was significantly influenced by soil pH (r = -0.786, p < 0.01), SOM (r = 0.807, p < 0.01), K (r = -0.730, p < 0.01), AK (r = 0.474, p = 0.019), and AP (r = -0.487, p = 0.016). The reducible form of Cd in soil during the wheat tillering stage was identified as the primary factor contributing to the accumulation of Cd and Pb in wheat grains, with a significant contribution rate of 84.5%. This study provides a greater scientific evidence for the management and risk control of heavy metal pollution in alkaline farmland.


Assuntos
Cádmio , Chumbo , Poluentes do Solo , Solo , Triticum , Triticum/metabolismo , Triticum/química , Cádmio/análise , Cádmio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Chumbo/metabolismo , Chumbo/análise , Solo/química , China , Metais Pesados/análise , Metais Pesados/metabolismo , Concentração de Íons de Hidrogênio , Agricultura , Grão Comestível/química , Grão Comestível/metabolismo , Monitoramento Ambiental
10.
Plant Physiol Biochem ; 212: 108740, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797007

RESUMO

The metal tolerance protein (MTP) gene family plays an essential role in the transport of heavy metals, however the function of the MTP family in transporting lead (Pb) was still unclear in plants. In this study, we identified and characterized 12 ZmMTPs in the whole genome of maize. These ZmMTP genes were divided into three subfamilies in evolution, namely Zn-CDF, Zn/Fe-CDF, Mn-CDF subfamilies, which showed diverse expression patterns in different tissues of maize. Using gene-based association analyses, we identified a Pb accumulation-related MTP member in maize, ZmMTP11, which was located in plasma membrane and had the potential of transporting Pb ion. Under the Pb treatment, ZmMTP11 showed a generally decreased expression relative to the normal conditions. Heterologous expressions of ZmMTP11 in yeast, Arabidopsis, and rice demonstrated that ZmMTP11 enhanced Pb accumulation in the cells without affecting yeast and plant growth under Pb stress. Remarkably, the increased Pb concentration in the plant roots did not cause changes in Pb content in the shoots. Our study provides new insights into the genetic improvement of heavy metal tolerance in plants and contributes to bioremediation of Pb-contaminant soils.


Assuntos
Regulação da Expressão Gênica de Plantas , Chumbo , Proteínas de Plantas , Zea mays , Chumbo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Oryza/genética , Oryza/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Poluentes do Solo/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Família Multigênica , Filogenia
11.
Chemosphere ; 360: 142418, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795913

RESUMO

Microbial-assisted rhizoengineering is a promising biotechnology for improving crop productivity. In this study, lettuce roots were bacterized with two lead (Pb) tolerant rhizobacteria including Pseudomonas azotoformans ESR4 and P. poae ESR6, and a consortium consisted of ESR4 and ESR6 to increase productivity, physiology and antioxidants, and reduce Pb accumulation grown in Pb-contaminated soil i.e., 80 (Pb in native soil), 400 and 800 mg kg-1 Pb. In vitro studies showed that these strains and the consortium produced biofilms, synthesized indole-3-acetic acid and NH3, and solubilized phosphate challenging to 0, 100, 200 and 400 mg L-1 of Pb. In static conditions and 400 mg L-1 Pb, ESR4, ESR6 and the consortium adsorbed 317.0, 339.5 and 357.4 mg L-1 Pb, respectively, while 384.7, 380.7 and 373.2 mg L-1 Pb, respectively, in shaking conditions. Fourier transform infrared spectroscopy results revealed that several functional groups [Pb-S, M - O, O-M-O (M = metal ions), S-S, PO, CO, -NH, -NH2, C-C-O, and C-H] were involved in Pb adsorption. ESR4, ESR6 and the consortium-assisted rhizoengineering (i) increased leaf numbers and biomass production, (ii) reduced H2O2 production, malondialdehyde, electrolyte leakages, and transpiration rate, (iii) augmented photosynthetic pigments, photosynthetic rate, water use efficiency, total antioxidant capacity, total flavonoid content, total phenolic content, and minerals like Ca2+ and Mg2+ in comparison to non-rhizoengineering plants grown in Pb-contaminated soil. Principal component analysis revealed that higher pigment production and photosynthetic rate, improved water use efficiency and increased uptake of Ca2+ were interlinked to increased productivity by bacterial rhizoengineering of lettuce grown in different levels of Pb exposures. Surprisingly, Pb accumulation in lettuce roots and shoots was remarkably decreased by rhizoengineering than in non-rhizoengineering. Thus, these bacterial strains and this consortium could be utilized to improve productivity and reduce Pb accumulation in lettuce.


Assuntos
Lactuca , Chumbo , Raízes de Plantas , Poluentes do Solo , Lactuca/crescimento & desenvolvimento , Lactuca/metabolismo , Chumbo/metabolismo , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Microbiologia do Solo , Biodegradação Ambiental , Solo/química , Pseudomonas/metabolismo , Pseudomonas/fisiologia , Antioxidantes/metabolismo
12.
Chemosphere ; 360: 142429, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797206

RESUMO

Heavy metal pollution threatens human and ecological health. Heavy metals can exist in the soil for a long time and migrate to organisms along the food chain. However, only a few studies have investigated the effects of a single stress on broad beans. Here, we aimed to characterize Cd and Pb bioaccumulation, at varying concentrations, in the broad bean, Vicia faba L. We also determined how the bioaccumulated metals are impacted by aphids that consume the plant. No significant difference was noted in the germination rates of broad beans at the early stage of planting (after 8 days), but eventually, the germination rates of broad beans at all time points first decreased and then increased, and the highest inhibition efficiency was observed in the T3 group (12.5 mg/L Cd2+ + 50 mg/L Pb2+). Fourteen days after planting, there was no significant difference in seedling height between the T5 (50 mg/L Cd2+ + 200 mg/L Pb2+) and control groups; however, that in the other groups decreased significantly and there was no dependence between stress concentration and inhibition efficiency. In addition, both Cd and Pb in the soil could be transferred to broad beans, and the concentration of Pb in the roots of broad beans was greater than that of Cd, whereas the opposite was observed in the stems and leaves. Notably, under mixed stress, aphids could significantly reduce the content of Cd in broad beans; similarly, the Pb content in the roots and stems of broad beans decreased significantly after being infested with aphids but increased significantly in the leaves. Further, the aphid infestation decreased the Pb content in the soil and the soil Cd content in the highest concentration group (T5 group) (50 mg/L Cd2+ + 200 mg/L Pb2+). These results highlight the necessity of focusing on the effect of insects on heavy metal remediation in plants and provide a new perspective for reducing plant Cd toxicity.


Assuntos
Afídeos , Bioacumulação , Cádmio , Chumbo , Metais Pesados , Poluentes do Solo , Vicia faba , Vicia faba/metabolismo , Animais , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Afídeos/fisiologia , Cádmio/metabolismo , Chumbo/metabolismo , Metais Pesados/metabolismo , Solo/química , Germinação/efeitos dos fármacos
13.
Environ Pollut ; 355: 124102, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710362

RESUMO

Lead (Pb) and cadmium (Cd) have been identified as the primary contaminants in soil, posing potential health threats. This study aimed to examine the effects of applying a nitrogen fertilizer and a fungal agent Trichoderma harzianum J2 (nitrogen alone, fungi alone, and combined use) on the phytoremediation of soils co-contaminated with Pb and Cd. The growth of Leucaena leucocephala was monitored in the seedling, differentiation, and maturity stages to fully comprehend the remediation mechanisms. In the maturity stage, the biomass of L. leucocephala significantly increased by 18% and 29% under nitrogen-alone (NCK+) and fungal agent-alone treatments (J2), respectively, compared with the control in contaminated soil (CK+). The remediation factors of Pb and Cd with NCK+ treatment significantly increased by 50% and 125%, respectively, while those with J2 treatment increased by 73% and 145%, respectively. The partial least squares path model suggested that the nitrogen-related soil properties were prominent factors affecting phytoextraction compared with biotic factors (microbial diversity and plant growth). This model explained 2.56 of the variation in Cd concentration under J2 treatment, and 2.97 and 2.82 of the variation in Pb concentration under NCK+ and J2 treatments, respectively. The redundancy analysis showed that the samples under NCK+ and J2 treatments were clustered similarly in all growth stages. Also, Chytridiomycota, Mucoromucota, and Ciliophora were the key bioindicators for coping with heavy metals. Overall, a similar remediation mechanism allowed T. harzianum J2 to replace the nitrogen fertilizer to avoid secondary pollution. In addition, their combined use further increased the remediation efficiency.


Assuntos
Biodegradação Ambiental , Cádmio , Fertilizantes , Metais Pesados , Nitrogênio , Poluentes do Solo , Fertilizantes/análise , Poluentes do Solo/metabolismo , Nitrogênio/metabolismo , Cádmio/metabolismo , Metais Pesados/metabolismo , Chumbo/metabolismo , Solo/química , Hypocreales/metabolismo
14.
Environ Monit Assess ; 196(6): 496, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693437

RESUMO

This study examined the presence of two heavy metals (Cd and Pb) in the sediments and Asian swamp eels (Monopterus albus) in the downstream area of Cisadane River. The average concentrations of Cd and Pb in the sediments from all sampling locations were 0.594 ± 0.230 mg/kg and 34.677 ± 24.406 mg/kg, respectively. These concentrations were above the natural background concentration and the recommended value of interim sediment quality guidelines (ISQG), suggesting an enrichment process and potential ecological risk of studied metals to the ecosystem of Cisadane River. The increase in contamination within this region may be attributed to point sources such as landfill areas, as well as the industrial and agricultural land activities in surrounding area, and experienced an increasing level leading towards the estuary of Cisadane River. Meanwhile, the average concentrations of Cd and Pb in the eels from all sampling locations were 0.775 ± 0.528 µg/g and 28.940 ± 12.921 µg/g, respectively. This study also discovered that gill tissues contained higher levels of Cd and Pb than the digestive organ and flesh of Asian swamp eels. These concentrations were higher than Indonesian and international standards, suggesting a potential human health risk and therefore the needs of limitations in the consumption of the eels. Based on the human health risk assessment, the eels from the downstream of Cisadane River are still considered safe to be consumed as long as they comply with the specified maximum consumption limits.


Assuntos
Cádmio , Monitoramento Ambiental , Sedimentos Geológicos , Chumbo , Rios , Smegmamorpha , Poluentes Químicos da Água , Animais , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Rios/química , Indonésia , Cádmio/análise , Chumbo/análise , Chumbo/metabolismo , Smegmamorpha/metabolismo
15.
Sci Total Environ ; 930: 172796, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38692325

RESUMO

Lead (Pb) affects gene transcription, metabolite biosynthesis and growth in plants. The tung tree (Vernicia fordii) is highly adaptive to adversity, whereas the mechanisms underlying its response to Pb remain uncertain. In this work, transcriptomic and metabolomic analyses were employed to study tung trees under Pb stress. The results showed that the biomass of tung seedlings decreased with increasing Pb doses, and excessive Pb doses resulted in leaf wilting, root rot, and disruption of Pb homeostasis. Under non-excessive Pb stress, a significant change in the expression patterns of flavonoid biosynthesis genes was observed in the roots of tung seedlings, leading to changes in the accumulation of flavonoids in the roots, especially the upregulation of catechins, which can chelate Pb and reduce its toxicity in plants. In addition, Pb-stressed roots showed a large accumulation of VfWRKY55, VfWRKY75, and VfLRR1 transcripts, which were shown to be involved in the flavonoid biosynthesis pathway by gene module analysis. Overexpression of VfWRKY55, VfWRKY75, and VfLRR1 significantly increased catechin concentrations in tung roots, respectively. These data indicate that Pb stress-induced changes in the expression patterns of those genes regulate the accumulation of catechins. Our findings will help to clarify the molecular mechanism of Pb response in plants.


Assuntos
Catequina , Chumbo , Transcriptoma , Chumbo/toxicidade , Chumbo/metabolismo , Catequina/metabolismo , Metabolômica , Regulação da Expressão Gênica de Plantas , Poluentes do Solo/toxicidade , Estresse Fisiológico , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Flavonoides/metabolismo
16.
J Hazard Mater ; 474: 134624, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38810579

RESUMO

Microbiologically induced CaCO3 precipitation (MICP) has been proposed as a potential bioremediation method to immobilize contaminating metals. In this study, carbonate mineralizing bacteria HJ1 and HJ2, isolated from heavy metal contaminated soil, was employed for Cd2+ and Pb2+ immobilization with or without ß-tricalcium phosphate addition. Compared with the only treatments amended with strains, the combined application of ß-tricalcium phosphate and HJ1 improved the immobilization rates of Cd and Pb by 1.49 and 1.70 times at 24 h, and the combined application of ß-tricalcium phosphate and HJ2 increased the immobilization rates of Cd and Pb by 1.25 and 1.79 times. The characterization of biomineralization products revealed that Cd2+ and Pb2+ primarily immobilized from the liquid phase as CdCO3 and PbCO3, and the addition of ß-tricalcium phosphate facilitated the formation of Ca4.03Cd0.97(PO4)3(OH) and Pb3(PO4)2. Also, the calcium source was related to the speciation of carbonate precipitation and improved the Cd and Pb remediation efficiency. This research demonstrated the feasibility and effectiveness of MICP combined with ß-tricalcium phosphate in immobilization of Cd and Pb, which will provide a fundamental basis for future applications of MICP to mitigate soil heavy metal pollutions.


Assuntos
Biodegradação Ambiental , Biomineralização , Cádmio , Fosfatos de Cálcio , Chumbo , Poluentes do Solo , Sporosarcina , Chumbo/metabolismo , Chumbo/química , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Cádmio/metabolismo , Cádmio/química , Sporosarcina/metabolismo , Poluentes do Solo/metabolismo
17.
Nat Commun ; 15(1): 4218, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760331

RESUMO

DNAzymes - synthetic enzymes made of DNA - have long attracted attention as RNA-targeting therapeutic agents. Yet, as of now, no DNAzyme-based drug has been approved, partially due to our lacking understanding of their molecular mode of action. In this work we report the solution structure of 8-17 DNAzyme bound to a Zn2+ ion solved through NMR spectroscopy. Surprisingly, it turned out to be very similar to the previously solved Pb2+-bound form (catalytic domain RMSD = 1.28 Å), despite a long-standing literature consensus that Pb2+ recruits a different DNAzyme fold than other metal ion cofactors. Our follow-up NMR investigations in the presence of other ions - Mg2+, Na+, and Pb2+ - suggest that at DNAzyme concentrations used in NMR all these ions induce a similar tertiary fold. Based on these findings, we propose a model for 8-17 DNAzyme interactions with metal ions postulating the existence of only a single catalytically-active structure, yet populated to a different extent depending on the metal ion cofactor. Our results provide structural information on the 8-17 DNAzyme in presence of non-Pb2+ cofactors, including the biologically relevant Mg2+ ion.


Assuntos
DNA Catalítico , Chumbo , Magnésio , Zinco , DNA Catalítico/química , DNA Catalítico/metabolismo , Magnésio/metabolismo , Magnésio/química , Zinco/metabolismo , Zinco/química , Chumbo/química , Chumbo/metabolismo , Conformação de Ácido Nucleico , Domínio Catalítico , Modelos Moleculares , Sódio/metabolismo , Sódio/química , Metais/metabolismo , Metais/química , Espectroscopia de Ressonância Magnética , Íons
18.
Sci Rep ; 14(1): 11952, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796501

RESUMO

Heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety. As a result, metal-induced phytotoxicity concerns require quick and urgent action to retain and maintain the physiological activities of microorganisms, the nitrogen pool of soils, and the continuous yields of wheat in a constantly worsening environment. The current study was conducted to evaluate the plant growth-promoting endophytic Aspergillus flavus AUMC 16,068 and its EPS for improvement of plant growth, phytoremediation capacity, and physiological consequences on wheat plants (Triticum aestivum) under lead stress. After 60 days of planting, the heading stage of wheat plants, data on growth metrics, physiological properties, minerals content, and lead content in wheat root, shoot, and grains were recorded. Results evoked that lead pollution reduced wheat plants' physiological traits as well as growth at all lead stress concentrations; however, inoculation with lead tolerant endophytic A. flavus AUMC 16,068 and its respective EPS alleviated the detrimental impact of lead on the plants and promoted the growth and physiological characteristics of wheat in lead-contaminated conditions and also lowering oxidative stress through decreasing (CAT, POD, and MDA), in contrast to plants growing in the un-inoculated lead polluted dealings. In conclusion, endophytic A. flavus AUMC 16,068 spores and its EPS are regarded as eco-friendly, safe, and powerful inducers of wheat plants versus contamination with heavy metals, with a view of protecting plant, soil, and human health.


Assuntos
Aspergillus flavus , Endófitos , Chumbo , Triticum , Triticum/microbiologia , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Chumbo/toxicidade , Chumbo/metabolismo , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Endófitos/fisiologia , Endófitos/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Polissacarídeos/farmacologia , Biodegradação Ambiental , Poluentes do Solo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos
19.
Sci Total Environ ; 933: 173166, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735315

RESUMO

Lead (Pb) contamination in wheat grain is of great concern, especially in North China. Atmospheric deposition is a major contributor to Pb accumulation in wheat grain. Screening low Pb accumulating wheat varieties has been an effective method for addressing Pb contamination in wheat grain. However, identifying wheat varieties with low Pb accumulation based on foliar uptake of atmospheric Pb has been neglected. Therefore, two field trials with distinct atmospheric Pb deposition were conducted to screen for stable varieties with low Pb accumulation. It was verified that YB700 and CH58, which have high thousand-grain weights and stable low Pb accumulation in field 1 (0.19 and 0.13 mg kg-1) and field 2 (0.17 and 0.20 mg kg-1), respectively, were recommended for cultivation in atmospheric Pb contaminated farmlands in North China. Furthermore, indoor experiments were conducted to investigate Pb uptake by the roots and leaves of different wheat varieties. Our findings indicate that Pb accumulation in different wheat varieties is primarily influenced by foliar Pb uptake rather than root Pb uptake. Interestingly, there was a positive correlation (p < 0.05) between the Pb concentrations in leaves and the stomatal width and trichome length of the adaxial epidermal surface. Additionally, there is a positive correlation (p < 0.01) between the Pb concentration in the wheat grain and trichome length. In conclusion, the screening of wheat varieties with narrower stomatal widths or shorter trichomes based on foliar uptake pathways is an effective strategy for ensuring food safety in areas contaminated by atmospheric Pb.


Assuntos
Chumbo , Folhas de Planta , Poluentes do Solo , Triticum , Triticum/metabolismo , Chumbo/metabolismo , Folhas de Planta/metabolismo , China , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise
20.
Sci Total Environ ; 933: 173171, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38740208

RESUMO

Phosphogypsum (PG) is the produced solid waste during phosphorus (P) extraction from phosphate rocks. PG is featured by its abundant PO43- and SO42-. This study investigated the utilization of PG as a material for lead (Pb) remediation, with the assistance of functional fungus. Aspergillus niger (A. niger) is a typical phosphate-solubilizing fungi (PSF), which has high ability to secret organic acids. Oxalic acid is its major secreted organic acid, which is often applied to enhance the P release from phosphate minerals. In this study, synthetic oxalic acid increased the immobilization rate of Pb2+ up to >99 % with the addition of PG. Then, it was observed that biogenic oxalic acid from A. niger can achieve comparable remediation effects. This was due to that PG could provide sufficient P for fungal growth, which allowed sustainable remediation. Subsequently, oxalic acid secreted by A. niger significantly increased the release of active P from PG, and then induced the formation of PPb minerals. In addition, other metabolites of A. niger (such as tyrosine-like substance) can also be complexed with Pb2+. Simultaneously, A. niger did not induce evidently elevation water-soluble fluorine (F) as PG contained abundant Ca2+. Moreover, this study elucidated that oversupply of PG promoted the formation of anglesite (Ksp = 1.6 × 10-8, relatively unstable), whereas the formation of lead oxalate (Ksp = 4.8 × 10-10, relatively stable) was reduced. This study hence shed a bright light on the sustainable utilization of PG for fungus-assisted remediation of heavy metals.


Assuntos
Aspergillus niger , Biodegradação Ambiental , Sulfato de Cálcio , Chumbo , Fosfatos , Fósforo , Poluentes do Solo , Chumbo/metabolismo , Fósforo/metabolismo , Aspergillus niger/metabolismo , Fosfatos/metabolismo , Poluentes do Solo/metabolismo , Recuperação e Remediação Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...