Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.881
Filtrar
1.
Commun Biol ; 7(1): 929, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095605

RESUMO

Mesoscale eddies influence the distribution of diazotrophic (nitrogen-fixing) cyanobacteria, impacting marine productivity and carbon export. Non-cyanobacterial diazotrophs (NCDs) are emerging as potential contributors to marine nitrogen fixation, relying on organic matter particles for resources, impacting nitrogen and carbon cycling. However, their diversity and biogeochemical importance remain poorly understood. In the subtropical North Atlantic along a single transect, this study explored the horizontal and vertical spatial variability of NCDs associated with suspended, slow-sinking, and fast-sinking particles collected with a marine snow catcher. The investigation combined amplicon sequencing with hydrographic and biogeochemical data. Cyanobacterial diazotrophs and NCDs were equally abundant, and their diversity was explained by the structure of the eddy. The unicellular symbiotic cyanobacterium UCYN-A was widespread across the eddy, whereas Trichodesmium and Crocosphaera accumulated at outer fronts. The diversity of particle-associated NCDs varied more horizontally than vertically. NCDs constituted most reads in the fast-sinking fractions, mainly comprising Alphaproteobacteria, whose abundance significantly differed from the suspended and slow-sinking fractions. Horizontally, Gammaproteobacteria and Betaproteobacteria exhibited inverse distributions, influenced by physicochemical characteristics of water intrusions at the eddy periphery. Niche differentiations across the anticyclonic eddy underscored NCD-particle associations and mesoscale dynamics, deepening our understanding of their ecological role and impact on ocean biogeochemistry.


Assuntos
Cianobactérias , Fixação de Nitrogênio , Oceano Atlântico , Cianobactérias/genética , Cianobactérias/metabolismo , Água do Mar/microbiologia
2.
PLoS One ; 19(8): e0306173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39088456

RESUMO

Field studies suggest that changes in the stable isotope ratios of phytoplankton communities can be used to track changes in the utilization of different nitrogen sources, i.e., to detect shifts from dissolved inorganic nitrogen (DIN) uptake to atmospheric nitrogen (N2) fixation by diazotrophic cyanobacteria as an indication of nitrogen limitation. We explored changes in the stable isotope signature of the diazotrophic cyanobacterium Trichormus variabilis in response to increasing nitrate (NO3-) concentrations (0 to 170 mg L-1) under controlled laboratory conditions. In addition, we explored the influence of nitrogen utilization at the primary producer level on trophic fractionation by studying potential changes in isotope ratios in the freshwater model Daphnia magna feeding on the differently grown cyanobacteria. We show that δ 15N values of the cyanobacterium increase asymptotically with DIN availability, from -0.7 ‰ in the absence of DIN (suggesting N2 fixation) to 2.9 ‰ at the highest DIN concentration (exclusive DIN uptake). In contrast, δ 13C values of the cyanobacterium did not show a clear relationship with DIN availability. The stable isotope ratios of the consumer reflected those of the differently grown cyanobacteria but also revealed significant trophic fractionation in response to nitrogen utilization at the primary producer level. Nitrogen isotope turnover rates of Daphnia were highest in the absence of DIN as a consequence of N2 fixation and resulting depletion in 15N at the primary producer level. Our results highlight the potential of stable isotopes to assess nitrogen limitation and to explore diazotrophy in aquatic food webs.


Assuntos
Cianobactérias , Daphnia , Fixação de Nitrogênio , Isótopos de Nitrogênio , Nitrogênio , Isótopos de Nitrogênio/metabolismo , Isótopos de Nitrogênio/análise , Animais , Nitrogênio/metabolismo , Daphnia/metabolismo , Cianobactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Nitratos/metabolismo , Nitratos/análise , Fitoplâncton/metabolismo , Fitoplâncton/crescimento & desenvolvimento
3.
Mar Pollut Bull ; 206: 116781, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096867

RESUMO

Effective management of Harmful Algal Blooms (HABs) requires understanding factors influencing their occurrence. This study explores these dynamics in the Pengxi River, a tributary of the Three Gorges Reservoir, focusing on nutrient stratification and algal blooms. We hypothesized that nutrient levels in eutrophic waters with stable stratification correlate with HAB magnitude and that disruption of stratification triggers blooms due to nutrient shifts. A 38-day sampling campaign in Gaoyang Lake (April 16-May 23, 2022) revealed that consistent weather between April 26 and May 16 led to a surface density layer, restricting nutrient transfer and causing a bloom with 173.0 µg L-1 Chl-a on May 1. After a heavy rain on May 18, a peak bloom on May 20, dominated by Ceratium hirundinella, showed 533 µg L-1 Chl-a. There was a significant negative correlation between Cyanobacteria and C. hirundinella biomasses (r = -0.296, P < 0.01), highlighting nutrient availability and physical stability's roles in regulating HABs.


Assuntos
Cianobactérias , Monitoramento Ambiental , Proliferação Nociva de Algas , Lagos , Lagos/química , China , Rios/química , Biomassa , Eutrofização
4.
Microb Biotechnol ; 17(8): e14519, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39101352

RESUMO

Cyanobacteria are important targets for biotechnological applications due to their ability to grow in a wide variety of environments, rapid growth rates, and tractable genetic systems. They and their bioproducts can be used as bioplastics, biofertilizers, and in carbon capture and produce important secondary metabolites that can be used as pharmaceuticals. However, the photosynthetic process in cyanobacteria can be limited by a wide variety of environmental factors such as light intensity and wavelength, exposure to UV light, nutrient limitation, temperature, and salinity. Carefully considering these limitations, modifying the environment, and/or selecting cyanobacterial species will allow cyanobacteria to be used in biotechnological applications.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Cianobactérias/metabolismo , Cianobactérias/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/genética , Fotossíntese , Luz , Temperatura , Raios Ultravioleta , Biotecnologia/métodos
5.
Microbiome ; 12(1): 150, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127705

RESUMO

BACKGROUND: Picocyanobacteria from the genera Prochlorococcus, Synechococcus, and Cyanobium are the most widespread photosynthetic organisms in aquatic ecosystems. However, their freshwater populations remain poorly explored, due to uneven and insufficient sampling across diverse inland waterbodies. RESULTS: In this study, we present 170 high-quality genomes of freshwater picocyanobacteria from non-axenic cultures collected across Central Europe. In addition, we recovered 33 genomes of their potential symbiotic partners affiliated with four genera, Pseudomonas, Mesorhizobium, Acidovorax, and Hydrogenophaga. The genomic basis of symbiotic interactions involved heterotrophs benefiting from picocyanobacteria-derived nutrients while providing detoxification of ROS. The global abundance patterns of picocyanobacteria revealed ecologically significant ecotypes, associated with trophic status, temperature, and pH as key environmental factors. The adaptation of picocyanobacteria in (hyper-)eutrophic waterbodies could be attributed to their colonial lifestyles and CRISPR-Cas systems. The prevailing CRISPR-Cas subtypes in picocyanobacteria were I-G and I-E, which appear to have been acquired through horizontal gene transfer from other bacterial phyla. CONCLUSIONS: Our findings provide novel insights into the population diversity, ecology, and evolutionary strategies of the most widespread photoautotrophs within freshwater ecosystems. Video Abstract.


Assuntos
Cianobactérias , Água Doce , Genoma Bacteriano , Filogenia , Simbiose , Água Doce/microbiologia , Cianobactérias/genética , Cianobactérias/classificação , Adaptação Fisiológica/genética , Europa (Continente) , Ecossistema , Transferência Genética Horizontal , Genômica
6.
PLoS Comput Biol ; 20(8): e1012280, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102434

RESUMO

The metabolism of phototrophic cyanobacteria is an integral part of global biogeochemical cycles, and the capability of cyanobacteria to assimilate atmospheric CO2 into organic carbon has manifold potential applications for a sustainable biotechnology. To elucidate the properties of cyanobacterial metabolism and growth, computational reconstructions of genome-scale metabolic networks play an increasingly important role. Here, we present an updated reconstruction of the metabolic network of the cyanobacterium Synechocystis sp. PCC 6803 and its quantitative evaluation using flux balance analysis (FBA). To overcome limitations of conventional FBA, and to allow for the integration of experimental analyses, we develop a novel approach to describe light absorption and light utilization within the framework of FBA. Our approach incorporates photoinhibition and a variable quantum yield into the constraint-based description of light-limited phototrophic growth. We show that the resulting model is capable of predicting quantitative properties of cyanobacterial growth, including photosynthetic oxygen evolution and the ATP/NADPH ratio required for growth and cellular maintenance. Our approach retains the computational and conceptual simplicity of FBA and is readily applicable to other phototrophic microorganisms.


Assuntos
Luz , Modelos Biológicos , Fotossíntese , Synechocystis , Synechocystis/metabolismo , Synechocystis/crescimento & desenvolvimento , Fotossíntese/fisiologia , Redes e Vias Metabólicas , Análise do Fluxo Metabólico , Biologia Computacional , Cianobactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/fisiologia , Simulação por Computador
7.
Microb Ecol ; 87(1): 106, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141097

RESUMO

Seagrass meadows play pivotal roles in coastal biochemical cycles, with nitrogen fixation being a well-established process associated with living seagrass. Here, we tested the hypothesis that nitrogen fixation is also associated with seagrass debris in Danish coastal waters. We conducted a 52-day in situ experiment to investigate nitrogen fixation (proxied by acetylene reduction) and dynamics of the microbial community (16S rRNA gene amplicon sequencing) and the nitrogen fixing community (nifH DNA/RNA amplicon sequencing) associated with decomposing Zostera marina leaves. The leaves harboured distinct microbial communities, including distinct nitrogen fixers, relative to the surrounding seawater and sediment throughout the experiment. Nitrogen fixation rates were measurable on most days, but highest on days 3 (dark, 334.8 nmol N g-1 dw h-1) and 15 (light, 194.6 nmol N g-1 dw h-1). Nitrogen fixation rates were not correlated with the concentration of inorganic nutrients in the surrounding seawater or with carbon:nitrogen ratios in the leaves. The composition of nitrogen fixers shifted from cyanobacterial Sphaerospermopsis to heterotrophic genera like Desulfopila over the decomposition period. On the days with highest fixation, nifH RNA gene transcripts were mainly accounted for by cyanobacteria, in particular by Sphaerospermopsis and an unknown taxon (order Nostocales), alongside Proteobacteria. Our study shows that seagrass debris in temperate coastal waters harbours substantial nitrogen fixation carried out by cyanobacteria and heterotrophic bacteria that are distinct relative to the surrounding seawater and sediments. This suggests that seagrass debris constitutes a selective environment where degradation is affected by the import of nitrogen via nitrogen fixation.


Assuntos
Microbiota , Fixação de Nitrogênio , Folhas de Planta , Água do Mar , Zosteraceae , Folhas de Planta/microbiologia , Água do Mar/microbiologia , Água do Mar/química , Zosteraceae/microbiologia , Zosteraceae/metabolismo , Nitrogênio/metabolismo , Nitrogênio/análise , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Dinamarca , Cianobactérias/metabolismo , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/isolamento & purificação
8.
Commun Biol ; 7(1): 994, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143188

RESUMO

Cyanobacteria are important primary producers, contributing to 25% of the global carbon fixation through photosynthesis. They serve as model organisms to study the photosynthesis, and are important cell factories for synthetic biology. To enable efficient genetic dissection and metabolic engineering in cyanobacteria, effective and accurate genetic manipulation tools are required. However, genetic manipulation in cyanobacteria by the conventional homologous recombination-based method and the recently developed CRISPR-Cas gene editing system require complicated cloning steps, especially during multi-site editing and single base mutation. This restricts the extensive research on cyanobacteria and reduces its application potential. In this study, a highly efficient and convenient cytosine base editing system was developed which allows rapid and precise C → T point mutation and gene inactivation in the genomes of Synechocystis and Anabaena. This base editing system also enables efficient multiplex editing and can be easily cured after editing by sucrose counter-selection. This work will expand the knowledge base regarding the engineering of cyanobacteria. The findings of this study will encourage the biotechnological applications of cyanobacteria.


Assuntos
Anabaena , Sistemas CRISPR-Cas , Edição de Genes , Synechocystis , Edição de Genes/métodos , Synechocystis/genética , Anabaena/genética , Anabaena/metabolismo , Genoma Bacteriano , Cianobactérias/genética , Cianobactérias/metabolismo
9.
Environ Microbiol Rep ; 16(4): e13323, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39128846

RESUMO

Cyanobacteria have many biotechnological applications. Increasing their cultivation pH can assist in capturing carbon dioxide and avoiding invasion by other organisms. However, alkaline media may have adverse effects on cyanobacteria, such as reducing the Carbon-Concentrating Mechanism's efficiency. Here, we cultivated two halo-alkaliphilic cyanobacteria consortia in chemostats at pH 10.2-11.4. One consortium was dominated by Ca. Sodalinema alkaliphilum, the other by a species of Nodosilinea. These two cyanobacteria dominate natural communities in Canadian and Asian alkaline soda lakes. We show that increasing the pH decreased biomass yield. This decrease was caused, in part, by a dramatic increase in carbon transfer to heterotrophs. At pH 11.4, cyanobacterial growth became limited by bicarbonate uptake, which was mainly ATP dependent. In parallel, the higher the pH, the more sensitive cyanobacteria became to light, resulting in photoinhibition and upregulation of DNA repair systems.


Assuntos
Cianobactérias , Lagos , Concentração de Íons de Hidrogênio , Cianobactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/genética , Lagos/microbiologia , Lagos/química , Biomassa , Carbono/metabolismo , Canadá , Dióxido de Carbono/metabolismo , Bicarbonatos/metabolismo , Luz
10.
Molecules ; 29(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124891

RESUMO

Desert strains of the genus Chroococcidiopsis are among the most desiccation-resistant cyanobacteria capable of anhydrobiosis. The accumulation of two sugars, sucrose and trehalose, facilitates the entrance of anhydrobiotes into a reversible state of dormancy by stabilizing cellular components upon water removal. This study aimed to evaluate, at the atomistic level, the role of trehalose in desiccation resistance by using as a model system the 30S ribosomal subunit of the desert cyanobacterium Chroococcidiopsis sp. 029. Molecular dynamic simulations provided atomistic evidence regarding its protective role on the 30S molecular structure. Trehalose forms an enveloping shell around the ribosomal subunit and stabilizes the structures through a network of direct interactions. The simulation confirmed that trehalose actively interacts with the 30S ribosomal subunit and that, by replacing water molecules, it ensures ribosomal structural integrity during desiccation, thus enabling protein synthesis to be carried out upon rehydration.


Assuntos
Cianobactérias , Simulação de Dinâmica Molecular , Trealose , Trealose/metabolismo , Trealose/química , Cianobactérias/metabolismo , Cianobactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Dessecação , Modelos Moleculares
11.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125759

RESUMO

Photosystem I (PSI) serves as a model system for studying fundamental processes such as electron transfer (ET) and energy conversion, which are not only central to photosynthesis but also have broader implications for bioenergy production and biomimetic device design. In this study, we employed electron paramagnetic resonance (EPR) spectroscopy to investigate key light-induced charge separation steps in PSI isolated from several green algal and cyanobacterial species. Following photoexcitation, rapid sequential ET occurs through either of two quasi-symmetric branches of donor/acceptor cofactors embedded within the protein core, termed the A and B branches. Using high-frequency (130 GHz) time-resolved EPR (TR-EPR) and deuteration techniques to enhance spectral resolution, we observed that at low temperatures prokaryotic PSI exhibits reversible ET in the A branch and irreversible ET in the B branch, while PSI from eukaryotic counterparts displays either reversible ET in both branches or exclusively in the B branch. Furthermore, we observed a notable correlation between low-temperature charge separation to the terminal [4Fe-4S] clusters of PSI, termed FA and FB, as reflected in the measured FA/FB ratio. These findings enhance our understanding of the mechanistic diversity of PSI's ET across different species and underscore the importance of experimental design in resolving these differences. Though further research is necessary to elucidate the underlying mechanisms and the evolutionary significance of these variations in PSI charge separation, this study sets the stage for future investigations into the complex interplay between protein structure, ET pathways, and the environmental adaptations of photosynthetic organisms.


Assuntos
Luz , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Transporte de Elétrons , Cianobactérias/metabolismo , Fotossíntese , Clorófitas/metabolismo
12.
Environ Microbiol ; 26(8): e16682, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39128858

RESUMO

The freshwater microbiome harbours numerous copiotrophic bacteria that rapidly respond to elevated substrate concentrations. We hypothesized that their high centimetre-scale beta diversity in lake water translates into pronounced metabolic variability, and that a large fraction of microbial 'metabolic potential' originates from point sources such as fragile organic aggregates. Three experiments were conducted in pre-alpine Lake Zurich over the course of a harmful cyanobacterial bloom: Spatially explicit 9 ml 'syringe' samples were collected in situ at centimetre distances along with equally sized 'mixed' samples drawn from pre-homogenized lake water and incubated in BIOLOG EcoPlate substrate arrays. Fewer compounds promoted bacterial growth in the syringe than in the mixed samples, in particular during the pre- and late bloom periods. Community analysis of enrichments on three frequently utilized substrates revealed both pronounced heterogeneity and functional redundancy. Bacterial consortia had higher richness in mixed than in syringe samples and differed in composition. Members of the Enterobacter cloacae complex dominated the EcoPlate assemblages during the mid-bloom period irrespective of treatment or substrate. We conclude that small-scale functional dispersal limitation among free-living copiotrophs in lake water reduces local biotransformation potential, and that lacustrine blooms of harmful cyanobacteria can be environmental reservoirs for metabolically versatile potential pathogens.


Assuntos
Cianobactérias , Água Doce , Lagos , Microbiota , Lagos/microbiologia , Cianobactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Água Doce/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Suíça , Consórcios Microbianos/fisiologia
13.
Nat Commun ; 15(1): 6758, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117643

RESUMO

Cyanobacteria are a diverse group of prokaryotic organisms that have been the subject of intense basic research, resulting in a wealth of knowledge about fundamental cellular processes such as photosynthesis. However, the translation of that research towards industry-relevant applications is still limited. To understand the reasons for this contradictory situation, we conducted a quantitative survey among researchers in the cyanobacterial community, a set of individual interviews with established researchers, and a literature analysis. Our results show that the community seems to be committed to embracing cyanobacterial diversity and promoting collaboration. Additionally, participants expressed a strong desire to develop standardized protocols for research and establish larger consortia to accelerate progress. The results of the survey highlight the need for a more integrated approach to cyanobacterial research that encompasses both basic and applied aspects. Based on the survey and interview results as well as our literature analysis, we highlight areas for potential improvement, strategies to enhance cyanobacterial research, and open questions that demand further exploration. Addressing these challenges should accelerate the development of industrial applications based on cyanobacterial research.


Assuntos
Cianobactérias , Inquéritos e Questionários , Pesquisa , Humanos , Fotossíntese , Pesquisadores
14.
Arch Microbiol ; 206(9): 367, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105810

RESUMO

2-methylisoborneol (2-MIB) is an odiferous metabolite mainly produced by cyanobacteria, contributing to taste and odor problems in drinking water. The mechanisms involved in 2-MIB biosynthesis in cyanobacteria are not yet completely understood. This study investigated the effect of light availability and wavelength on growth, 2-MIB synthesis, and related gene expression in Pseudanabaena foetida var. intermedia. A significantly lower 2-MIB production was observed in P. foetida var. intermedia during the dark period of a 12-h photoperiod. Exposure to green light resulted in a significant decrease in 2-MIB production compared to white light and red light. The relative expression levels of 2-MIB-related genes in P. foetida var. intermedia were significantly lower during the dark period of a 12-h photoperiod and when cultured under green light. The expression of 2-MIB-related genes in cyanobacteria appears to be light-dependent. This study suggests that the demand for photopigment synthesis under unfavorable light conditions affects the 2-MIB synthesis in cyanobacteria.


Assuntos
Canfanos , Cianobactérias , Luz , Cianobactérias/genética , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Cianobactérias/crescimento & desenvolvimento , Canfanos/metabolismo , Fotoperíodo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
15.
Sci Rep ; 14(1): 18658, 2024 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134591

RESUMO

Cyanobacteria are globally occurring photosynthetic bacteria notable for their contribution to primary production and production of toxins which have detrimental ecosystem impacts. Furthermore, cyanobacteria can form mutualistic symbiotic relationships with a diverse set of eukaryotes, including land plants, aquatic plankton and fungi. Nevertheless, not all cyanobacteria are found in symbiotic associations suggesting symbiotic cyanobacteria have evolved specializations that facilitate host-interactions. Photosynthetic capabilities, nitrogen fixation, and the production of complex biochemicals are key functions provided by host-associated cyanobacterial symbionts. To explore if additional specializations are associated with such lifestyles in cyanobacteria, we have conducted comparative phylogenomics of molecular functions and of biosynthetic gene clusters (BGCs) in 984 cyanobacterial genomes. Cyanobacteria with host-associated and symbiotic lifestyles were concentrated in the family Nostocaceae, where eight monophyletic clades correspond to specific host taxa. In agreement with previous studies, symbionts are likely to provide fixed nitrogen to their eukaryotic partners, through multiple different nitrogen fixation pathways. Additionally, our analyses identified chitin metabolising pathways in cyanobacteria associated with specific host groups, while obligate symbionts had fewer BGCs. The conservation of molecular functions and BGCs between closely related symbiotic and free-living cyanobacteria suggests the potential for additional cyanobacteria to form symbiotic relationships than is currently known.


Assuntos
Cianobactérias , Fixação de Nitrogênio , Filogenia , Simbiose , Cianobactérias/genética , Cianobactérias/metabolismo , Genoma Bacteriano , Família Multigênica , Fotossíntese
16.
Nat Commun ; 15(1): 7201, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169020

RESUMO

Photosynthesis converting solar energy to chemical energy is one of the most important chemical reactions on earth. In cyanobacteria, light energy is captured by antenna system phycobilisomes (PBSs) and transferred to photosynthetic reaction centers of photosystem II (PSII) and photosystem I (PSI). While most of the protein complexes involved in photosynthesis have been characterized by in vitro structural analyses, how these protein complexes function together in vivo is not well understood. Here we implemented STAgSPA, an in situ structural analysis strategy, to solve the native structure of PBS-PSII supercomplex from the cyanobacteria Arthrospira sp. FACHB439 at resolution of ~3.5 Å. The structure reveals coupling details among adjacent PBSs and PSII dimers, and the collaborative energy transfer mechanism mediated by multiple super-PBS in cyanobacteria. Our results provide insights into the diversity of photosynthesis-related systems between prokaryotic cyanobacteria and eukaryotic red algae but are also a methodological demonstration for high-resolution structural analysis in cellular or tissue samples.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema II , Ficobilissomas , Ficobilissomas/metabolismo , Ficobilissomas/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Cianobactérias/metabolismo , Fotossíntese , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Transferência de Energia , Modelos Moleculares , Microscopia Crioeletrônica
17.
An Acad Bras Cienc ; 96(3): e20230348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166650

RESUMO

Cyanobacterial phycocyanin and phycoerythrin are gaining commercial interest due to their nutrition and healthcare values. This research analyzed the biomass accumulation and pigment production of two strains of Leptolyngbya under different combinations of light colors and intensities. The results showed that while Leptolyngbya sp.4 B1 (B1) produced all phycobiliproteins, Leptolyngbya sp.5 F2 (F2) only had phycocyanin and allophycocyanin. Both the color of the light and its light intensity affect the biomass accumulation and phycoerythrin concentration in strain B1. Although white light at medium intensity (50 µmol m-2 s-1) causes greater biomass accumulation (1.66 ± 0.13 gDW L-1), low-intensity (25 µmol m-2 s-1) green light induces lower biomass accumulation with twice the pigment content (87.70 ± 2.46 mg gDW -1), culminating in 71% greater productivity. In contrast, for the F2 strain, light intensity positively influenced biomass and pigment accumulation, being observed 2.25 ± 0.10 gDW L-1 under white light at 100 µmol m-2 s-1 and higher phycocyanin concentration (138.38 ± 3.46 mg gDW -1) under red light at 100 µmol m-2 s-1. These findings provide insights into optimizing the growth conditions by altering the intensity and wavelength of light for future production of phycocyanin and phycoerythrin from local cyanobacteria.


Assuntos
Biomassa , Cianobactérias , Luz , Ficobiliproteínas , Ficobiliproteínas/metabolismo , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Cianobactérias/classificação , Florestas , Ficocianina/metabolismo , Ficocianina/biossíntese , Ficoeritrina/metabolismo , Ficoeritrina/biossíntese
18.
Geobiology ; 22(4): e12615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149974

RESUMO

The earliest evidence of complex macroscopic life on Earth is preserved in Ediacaran-aged siliciclastic deposits as three-dimensional casts and molds, known as Ediacara-style preservation. The mechanisms that led to this extraordinary preservation of soft-bodied organisms in fine- to medium-grained sandstones have been extensively debated. Ediacara-style fossilization is recorded in a variety of sedimentary facies characterized by clean quartzose sandstones (as in the eponymous Ediacara Member) as well as less compositionally mature, clay-rich sandstones and heterolithic siliciclastic deposits. To investigate this preservational process, we conducted experiments using different mineral substrates (quartzose sand, kaolinite, and iron oxides), a variety of soft-bodied organisms (microalgae, cyanobacteria, marine invertebrates), and a range of estimates for Ediacaran seawater dissolved silica (DSi) levels (0.5-2.0 mM). These experiments collectively yielded extensive amorphous silica and authigenic clay coatings on the surfaces of organisms and in intergranular pore spaces surrounding organic substrates. This was accompanied by a progressive drawdown of the DSi concentration of the experimental solutions. These results provide evidence that soft tissues can be rapidly preserved by silicate minerals precipitated under variable substrate compositions and a wide range of predicted scenarios for Ediacaran seawater DSi concentrations. These observations suggest plausible mechanisms explaining how interactions between sediments, organic substrates, and seawater DSi played a significant role in the fossilization of the first complex ecosystems on Earth.


Assuntos
Cianobactérias , Fósseis , Sedimentos Geológicos , Sedimentos Geológicos/química , Animais , Cianobactérias/metabolismo , Invertebrados , Microalgas , Água do Mar/química , Dióxido de Silício/química , Compostos Férricos/metabolismo
19.
Environ Microbiol ; 26(7): e16681, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054868

RESUMO

Geosiphon pyriformis, a representative of the fungal sub-phylum Glomeromycotina, is unique in its endosymbiosis with cyanobacteria within a fungal cell. This symbiotic relationship occurs in bladders containing nuclei of G. pyriformis, Mollicutes-like bacterial endosymbionts (MRE), and photosynthetically active and dividing cells of Nostoc punctiforme. Recent genome analyses have shed light on the biology of G. pyriformis, but the genome content and biology of its endosymbionts remain unexplored. To fill this gap, we gathered and examined metagenomic data from the bladders of G. pyriformis, where N. punctiforme and MRE are located. This ensures that our analyses are focused on the organs directly involved in the symbiosis. By comparing this data with the genetic information of related cyanobacteria and MREs from other species of Arbuscular Mycorrhizal Fungi, we aimed to reveal the genetic content of these organisms and understand how they interact at a genetic level to establish a symbiotic relationship. Our analyses uncovered significant gene expansions in the Nostoc endosymbiont, particularly in mobile elements and genes potentially involved in xenobiotic degradation. We also confirmed that the MRE of Glomeromycotina are monophyletic and possess a highly streamlined genome. These genomes show dramatic differences in both structure and content, including the presence of enzymes involved in environmental sensing and stress response.


Assuntos
Metagenoma , Simbiose , Filogenia , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/metabolismo , Nostoc/genética , Nostoc/metabolismo , Metagenômica , Genoma Fúngico , Genoma Bacteriano
20.
Protein Sci ; 33(8): e5132, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39072823

RESUMO

Cyanobacteriochromes (CBCRs) are unique cyanobacteria-specific photoreceptors that share a distant relation with phytochromes. Most CBCRs contain conserved cysteine residues known as canonical Cys, while some CBCRs have additional cysteine residues called second Cys within the DXCF motif, leading to their classification as DXCF CBCRs. They typically undergo a process where they incorporate phycocyanobilin (PCB) and subsequently isomerize it to phycoviolobilin (PVB). Conversely, CBCRs with conserved Trp residues and without the second Cys are called extended red/green (XRG) CBCRs. Typical XRG CBCRs bind PCB without undergoing PCB-to-PVB isomerization, displaying red/green reversible photoconversion, and there are also atypical CBCRs that exhibit diverse photoconversions. We discovered novel XRG CBCRs with Cys residue instead of the conserved Trp residue. These novel XRG CBCRs exhibited the ability to isomerize PCB to PVB, displaying green/teal reversible photoconversion. Through sequence- and structure-based comparisons coupled with mutagenesis experiments, we identified three amino acid residues, including the Cys residue, crucial for facilitating PCB-to-PVB isomerization. This research expands our understanding of the diversity of XRG CBCRs, highlighting the remarkable molecular plasticity of CBCRs.


Assuntos
Proteínas de Bactérias , Cianobactérias , Ficobilinas , Ficocianina , Ficobilinas/química , Ficobilinas/metabolismo , Ficocianina/química , Ficocianina/metabolismo , Cianobactérias/metabolismo , Cianobactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Isomerismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...