Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.195
Filtrar
1.
An Acad Bras Cienc ; 96(3): e20230348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166650

RESUMO

Cyanobacterial phycocyanin and phycoerythrin are gaining commercial interest due to their nutrition and healthcare values. This research analyzed the biomass accumulation and pigment production of two strains of Leptolyngbya under different combinations of light colors and intensities. The results showed that while Leptolyngbya sp.4 B1 (B1) produced all phycobiliproteins, Leptolyngbya sp.5 F2 (F2) only had phycocyanin and allophycocyanin. Both the color of the light and its light intensity affect the biomass accumulation and phycoerythrin concentration in strain B1. Although white light at medium intensity (50 µmol m-2 s-1) causes greater biomass accumulation (1.66 ± 0.13 gDW L-1), low-intensity (25 µmol m-2 s-1) green light induces lower biomass accumulation with twice the pigment content (87.70 ± 2.46 mg gDW -1), culminating in 71% greater productivity. In contrast, for the F2 strain, light intensity positively influenced biomass and pigment accumulation, being observed 2.25 ± 0.10 gDW L-1 under white light at 100 µmol m-2 s-1 and higher phycocyanin concentration (138.38 ± 3.46 mg gDW -1) under red light at 100 µmol m-2 s-1. These findings provide insights into optimizing the growth conditions by altering the intensity and wavelength of light for future production of phycocyanin and phycoerythrin from local cyanobacteria.


Assuntos
Biomassa , Cianobactérias , Luz , Ficobiliproteínas , Ficobiliproteínas/metabolismo , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Cianobactérias/classificação , Florestas , Ficocianina/metabolismo , Ficocianina/biossíntese , Ficoeritrina/metabolismo , Ficoeritrina/biossíntese
2.
Microb Ecol ; 87(1): 106, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141097

RESUMO

Seagrass meadows play pivotal roles in coastal biochemical cycles, with nitrogen fixation being a well-established process associated with living seagrass. Here, we tested the hypothesis that nitrogen fixation is also associated with seagrass debris in Danish coastal waters. We conducted a 52-day in situ experiment to investigate nitrogen fixation (proxied by acetylene reduction) and dynamics of the microbial community (16S rRNA gene amplicon sequencing) and the nitrogen fixing community (nifH DNA/RNA amplicon sequencing) associated with decomposing Zostera marina leaves. The leaves harboured distinct microbial communities, including distinct nitrogen fixers, relative to the surrounding seawater and sediment throughout the experiment. Nitrogen fixation rates were measurable on most days, but highest on days 3 (dark, 334.8 nmol N g-1 dw h-1) and 15 (light, 194.6 nmol N g-1 dw h-1). Nitrogen fixation rates were not correlated with the concentration of inorganic nutrients in the surrounding seawater or with carbon:nitrogen ratios in the leaves. The composition of nitrogen fixers shifted from cyanobacterial Sphaerospermopsis to heterotrophic genera like Desulfopila over the decomposition period. On the days with highest fixation, nifH RNA gene transcripts were mainly accounted for by cyanobacteria, in particular by Sphaerospermopsis and an unknown taxon (order Nostocales), alongside Proteobacteria. Our study shows that seagrass debris in temperate coastal waters harbours substantial nitrogen fixation carried out by cyanobacteria and heterotrophic bacteria that are distinct relative to the surrounding seawater and sediments. This suggests that seagrass debris constitutes a selective environment where degradation is affected by the import of nitrogen via nitrogen fixation.


Assuntos
Microbiota , Fixação de Nitrogênio , Folhas de Planta , Água do Mar , Zosteraceae , Folhas de Planta/microbiologia , Água do Mar/microbiologia , Água do Mar/química , Zosteraceae/microbiologia , Zosteraceae/metabolismo , Nitrogênio/metabolismo , Nitrogênio/análise , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Dinamarca , Cianobactérias/metabolismo , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/isolamento & purificação
3.
Microbiome ; 12(1): 150, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127705

RESUMO

BACKGROUND: Picocyanobacteria from the genera Prochlorococcus, Synechococcus, and Cyanobium are the most widespread photosynthetic organisms in aquatic ecosystems. However, their freshwater populations remain poorly explored, due to uneven and insufficient sampling across diverse inland waterbodies. RESULTS: In this study, we present 170 high-quality genomes of freshwater picocyanobacteria from non-axenic cultures collected across Central Europe. In addition, we recovered 33 genomes of their potential symbiotic partners affiliated with four genera, Pseudomonas, Mesorhizobium, Acidovorax, and Hydrogenophaga. The genomic basis of symbiotic interactions involved heterotrophs benefiting from picocyanobacteria-derived nutrients while providing detoxification of ROS. The global abundance patterns of picocyanobacteria revealed ecologically significant ecotypes, associated with trophic status, temperature, and pH as key environmental factors. The adaptation of picocyanobacteria in (hyper-)eutrophic waterbodies could be attributed to their colonial lifestyles and CRISPR-Cas systems. The prevailing CRISPR-Cas subtypes in picocyanobacteria were I-G and I-E, which appear to have been acquired through horizontal gene transfer from other bacterial phyla. CONCLUSIONS: Our findings provide novel insights into the population diversity, ecology, and evolutionary strategies of the most widespread photoautotrophs within freshwater ecosystems. Video Abstract.


Assuntos
Cianobactérias , Água Doce , Genoma Bacteriano , Filogenia , Simbiose , Água Doce/microbiologia , Cianobactérias/genética , Cianobactérias/classificação , Adaptação Fisiológica/genética , Europa (Continente) , Ecossistema , Transferência Genética Horizontal , Genômica
4.
An Acad Bras Cienc ; 96(3): e20220870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38958359

RESUMO

The littoral zone is an essential compartment for lake biota because of its high productivity and diversity. Moreover, phytoplankton is expected to have non-equilibrium dynamics on it. The study's aimed to explore phytoplankton in the littoral zone of a shallow lake over a short-term scale. Daily sampling was conducted for 25 consecutive summer days in 2016, at two marginal points of a continuously warm, polymictic, and oligo-mesotrophic subtropical lake (Lake Mangueira, Brazil). Cyanobacteria and Chlorophyta contributed 86% of total biomass. We observed high variability in phytoplankton structure, with species turnover over diel cycles. Redundancy analysis indicated spatial differentiation for phytoplankton structure in relation to abiotic conditions. Nutrient dynamics and humic substances were significant drivers for phytoplankton variability. Phytoplankton was positively correlated with SRP and negatively with humic substances. Our results showed a non- equilibrium state for the littoral phytoplankton of Lake Mangueira, given the high variability of abiotic conditions, even at short distances. Due to its high temporal and spatial variability, the littoralzone seems to contribute to the recruitment and maintenance of phytoplankton biodiversity in shallow lakes. Further studies should consider the functional attributes of species and the complex biological interactions of phytoplankton and macrophytes along the littoral zone.


Assuntos
Biomassa , Lagos , Fitoplâncton , Estações do Ano , Fitoplâncton/classificação , Brasil , Biodiversidade , Cianobactérias/classificação , Monitoramento Ambiental/métodos , Clorófitas/classificação
5.
Harmful Algae ; 137: 102655, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39003021

RESUMO

Microseira wollei, a globally distributed freshwater bloom-forming benthic cyanobacterium, is known for its production of cyanotoxins and taste and odor (T&O). While CYN (Cylindrospermopsin)-producing populations of M. wollei are confined to Australia, PST (Paralytic shellfish toxins)-producing populations have been exclusively documented in North America. In this study, four benthic cyanobacterial strains, isolated from West Lake in China, were identified as M. wollei based on morphological and phylogenetic analyses. Detection of sxtA gene and UPLC-MS/MS analysis conclusively confirmed the PST-producing capability of M. wollei CHAB5998. In the phylogenetic tree of 16S rDNA, M. wollei strains formed a monophyletic group with two subclades. Notably, non-PST-producing Chinese strains clustered with Australian strains in Clade II, while all other strains, including PST-producing ones, clustered in Clade I. Additionally, CHAB5998 contains ten PST variants, of which STX, NEO, GTX2, GTX3, GTX5 and C1 were identified for the first time in M. wollei. Sequence analysis of PST biosynthetic gene cluster (sxt) genes indicated potential base variations, gene rearrangements, insertions, and deletions in the strain CHAB5998. Also, sxt gene has a longer evolutionary history in M. wollei than that in cyanobacteria from Nostocales. Multiple recombination breakpoints detected in sxt genes and the inconsistency in the topology of the phylogenetic trees between sxt and 16S rDNA suggested that multiple horizontal gene transfers (HGT) have occurred. Overall, the present study marks the first documented occurrence of PST-producing M. wollei outside of North America and identifies it as the first toxic freshwater benthic cyanobacterium in China. This revelation implies that benthic cyanobacteria may pose a higher environmental risk in China than previously acknowledged.


Assuntos
Toxinas Bacterianas , Cianobactérias , Filogenia , Cianobactérias/metabolismo , Cianobactérias/genética , Cianobactérias/classificação , China , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas de Cianobactérias , RNA Ribossômico 16S/genética , Toxinas Marinhas/metabolismo
6.
Microb Ecol ; 87(1): 96, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046558

RESUMO

In aquatic ecosystems with low nutrient levels, organic aggregates (OAs) act as nutrient hotspots, hosting a diverse range of microbial species compared to those in the water column. Lake eutrophication, marked by intensified and prolonged cyanobacterial blooms, significantly impacts material and energy cycling processes, potentially altering the ecological traits of both free-living (FL) and particle-attached (PA) bacteria. However, the extent to which observed patterns of FL and PA bacterial diversity, community assembly, and stability extend to hypereutrophic lakes remains understudied. To address this gap, we investigated bacterial diversity, composition, assembly processes, and stability within hypereutrophic Lake Xingyun. Our results revealed that FL bacterial communities exhibited higher α-diversity than PA counterparts, coupled with discernible taxonomic compositions. Both bacterial communities showed distinct seasonality, influenced by cyanobacterial bloom intensity. Environmental factors accounted for 71.1% and 54.2% of the variation among FL and PA bacteria, respectively. The assembly of the PA bacterial community was predominantly stochastic, while FL assembly was more deterministic. The FL network demonstrated greater stability, complexity, and negative interactions, indicative of competitive relationships, while the PA network showed a prevalence of positive correlations, suggesting mutualistic interactions. Importantly, these findings differ from observations in oligotrophic, mesotrophic, and eutrophic lakes. Overall, this research provides valuable insights into the interplay among bacterial fractions, enhancing our understanding of nutrient status and cyanobacterial blooms in shaping bacterial communities.


Assuntos
Bactérias , Biodiversidade , Cianobactérias , Eutrofização , Lagos , Microbiota , Lagos/microbiologia , Cianobactérias/genética , Cianobactérias/classificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Estações do Ano , Ecossistema , China
7.
Antonie Van Leeuwenhoek ; 117(1): 99, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985203

RESUMO

A novel Gram-negative, white-pigmented, and auxin-producing strain, 20NA77.5T, was isolated from fresh water during cyanobacterial bloom period. Pairwise comparison of the 16S rRNA gene sequences showed that strain 20NA77.5T belonged to the genus Undibacterium and exhibited the highest sequence similarity to the type strains of Undibacterium danionis (98.00%), Undibacterium baiyunense (97.93%), Undibacterium macrobrachii (97.92%), and Undibacterium fentianense (97.71%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain 20NA77.5T and its related type strains were below 79.93 and 23.80%, respectively. The predominant fatty acids (> 10% of the total fatty acids) were C16:0 and summed feature 3 (C16:1ω7c and/or C16:1ω6c). The genomic DNA G + C content of strain 20NA77.5T was found to be 48.61%. Based on the phylogenetic distinctness, chemotaxonomic features, and phenotypic features, strain 20NA77.5T is considered to represent a novel species of the genus Undibacterium, for which the name Undibacterium cyanobacteriorum sp. nov is proposed. The type strain is 20NA77.5T (= KCTC 8005T = LMG 33136T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , Cianobactérias , DNA Bacteriano , Ácidos Graxos , Água Doce , Ácidos Indolacéticos , Filogenia , RNA Ribossômico 16S , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Água Doce/microbiologia , Ácidos Indolacéticos/metabolismo , Ácidos Graxos/análise , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Hibridização de Ácido Nucleico , Análise de Sequência de DNA , Microbiologia da Água
8.
Extremophiles ; 28(3): 37, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080013

RESUMO

Today, the biodiversity of endolithic microbial colonisations are only partly understood. In this study, we used a combination of molecular community metabarcoding using the 16S rRNA gene, light microscopy, CT-scan analysis, and Raman spectroscopy to describe gypsum endolithic communities in 2 sites-southern Poland and northern Israel. The obtained results have shown that despite different geographical areas, climatic conditions, and also physical features of colonized gypsum outcrops, both of these sites have remarkably similar microbial and pigment compositions. Cyanobacteria dominate both of the gypsum habitats, followed by Chloroflexi and Pseudomonadota. Among cyanobacteria, Thermosynechococcaceae were more abundant in Israel while Chroococcidiopsidaceae in Poland. Interestingly, no Gloeobacteraceae sequences have been found in Poland, only in Israel. Some of the obtained 16S rRNA gene sequences of cyanobacteria matched previously detected sequences from endolithic communities in various substrates and geographical regions, supporting the hypothesis of global metacommunity, but more data are still needed. Using Raman spectroscopy, cyanobacterial UV-screening pigments-scytonemin and gloeocapsin have been detected alongside carotenoids, chlorophyll a and melanin. These pigments can serve as potential biomarkers for basic taxonomic identification of cyanobacteria. Overall, this study provides more insight into the diversity of cyanobacterial endolithic colonisations in gypsum across different areas.


Assuntos
Sulfato de Cálcio , Cianobactérias , Cianobactérias/genética , Cianobactérias/metabolismo , Cianobactérias/classificação , Sulfato de Cálcio/química , Israel , Polônia , RNA Ribossômico 16S/genética , Microbiota
9.
Environ Microbiol ; 26(7): e16681, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054868

RESUMO

Geosiphon pyriformis, a representative of the fungal sub-phylum Glomeromycotina, is unique in its endosymbiosis with cyanobacteria within a fungal cell. This symbiotic relationship occurs in bladders containing nuclei of G. pyriformis, Mollicutes-like bacterial endosymbionts (MRE), and photosynthetically active and dividing cells of Nostoc punctiforme. Recent genome analyses have shed light on the biology of G. pyriformis, but the genome content and biology of its endosymbionts remain unexplored. To fill this gap, we gathered and examined metagenomic data from the bladders of G. pyriformis, where N. punctiforme and MRE are located. This ensures that our analyses are focused on the organs directly involved in the symbiosis. By comparing this data with the genetic information of related cyanobacteria and MREs from other species of Arbuscular Mycorrhizal Fungi, we aimed to reveal the genetic content of these organisms and understand how they interact at a genetic level to establish a symbiotic relationship. Our analyses uncovered significant gene expansions in the Nostoc endosymbiont, particularly in mobile elements and genes potentially involved in xenobiotic degradation. We also confirmed that the MRE of Glomeromycotina are monophyletic and possess a highly streamlined genome. These genomes show dramatic differences in both structure and content, including the presence of enzymes involved in environmental sensing and stress response.


Assuntos
Metagenoma , Simbiose , Filogenia , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/metabolismo , Nostoc/genética , Nostoc/metabolismo , Metagenômica , Genoma Fúngico , Genoma Bacteriano
10.
J Phycol ; 60(4): 871-885, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922955

RESUMO

Cyanobacterial taxonomy is entering the genomic era, but only a few taxonomic studies have employed population genomics, which provides a framework and a multitude of tools to understand species boundaries. Phylogenomic and population genomic analyses previously suggested that several cryptic lineages emerged within the genus Laspinema. Here, we apply population genomics to define boundaries between these lineages and propose two new cryptic species, Laspinema olomoucense and L. palackyanum. Moreover, we sampled soil and puddles across Central Europe and sequenced the 16S rRNA gene and 16S-23S ITS region of the isolated Laspinema strains. Together with database mining of 16S rRNA gene sequences, we determined that the genus Laspinema has a cosmopolitan distribution and inhabits a wide variety of habitats, including freshwater, saline water, mangroves, soil crusts, soils, puddles, and the human body.


Assuntos
Cianobactérias , Filogenia , RNA Ribossômico 16S , Cianobactérias/genética , Cianobactérias/classificação , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Microbiologia do Solo , Análise de Sequência de DNA , DNA Bacteriano/genética
11.
Environ Microbiol ; 26(6): e16663, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881221

RESUMO

Lake Untersee, a lake in Antarctica that is perennially covered with ice, is home to unique microbial structures that are not lithified. We have evaluated the structure of the community and its metabolic potential across the pigmented upper layers and the sediment-enriched deeper layers in these pinnacle and cone-shaped microbial structures using metagenomics. These microbial structures are inhabited by distinct communities. The upper layers of the cone-shaped structures have a higher abundance of the cyanobacterial MAG Microcoleus, while the pinnacle-shaped structures have a higher abundance of Elainellacea MAG. This suggests that cyanobacteria influence the morphologies of the mats. We identified stark contrasts in the composition of the community and its metabolic potential between the upper and lower layers of the mat. The upper layers of the mat, which receive light, have an increased abundance of photosynthetic pathways. In contrast, the lower layer has an increased abundance of heterotrophic pathways. Our results also showed that Lake Untersee is the first Antarctic lake with a substantial presence of ammonia-oxidizing Nitrospiracea and amoA genes. The genomic capacity for recycling biological molecules was prevalent across metagenome-assembled genomes (MAGs) that cover 19 phyla. This highlights the importance of nutrient scavenging in ultra-oligotrophic environments. Overall, our study provides new insights into the formation of microbial structures and the potential metabolic complexity of Antarctic laminated microbial mats. These mats are important environments for biodiversity that drives biogeochemical cycling in polar deserts.


Assuntos
Bactérias , Cianobactérias , Lagos , Metagenômica , Regiões Antárticas , Lagos/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/metabolismo , Microbiota/genética , Filogenia , Sedimentos Geológicos/microbiologia , Metagenoma , Genoma Bacteriano , Archaea/genética , Archaea/classificação , Archaea/metabolismo
12.
Toxins (Basel) ; 16(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38922157

RESUMO

Harmful algal bloom (HAB) formation leads to the eutrophication of water ecosystems and may render recreational lakes unsuitable for human use. We evaluated the applicability and comparison of metabarcoding, metagenomics, qPCR, and ELISA-based methods for cyanobacteria/cyanotoxin detection in bloom and non-bloom sites for the Great Lakes region. DNA sequencing-based methods robustly identified differences between bloom and non-bloom samples (e.g., the relative prominence of Anabaena and Planktothrix). Shotgun sequencing strategies also identified the enrichment of metabolic genes typical of cyanobacteria in bloom samples, though toxin genes were not detected, suggesting deeper sequencing or PCR methods may be needed to detect low-abundance toxin genes. PCR and ELISA indicated microcystin levels and microcystin gene copies were significantly more abundant in bloom sites. However, not all bloom samples were positive for microcystin, possibly due to bloom development by non-toxin-producing species. Additionally, microcystin levels were significantly correlated (positively) with microcystin gene copy number but not with total cyanobacterial 16S gene copies. In summary, next-generation sequencing-based methods can identify specific taxonomic and functional targets, which can be used for absolute quantification methods (qPCR and ELISA) to augment conventional water monitoring strategies.


Assuntos
Cianobactérias , Monitoramento Ambiental , Proliferação Nociva de Algas , Lagos , Microcistinas , Microcistinas/genética , Microcistinas/análise , Lagos/microbiologia , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/classificação , Monitoramento Ambiental/métodos , Ecossistema , Metagenômica , Recreação , Microbiologia da Água , Ensaio de Imunoadsorção Enzimática
13.
Environ Microbiol Rep ; 16(3): e13290, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923208

RESUMO

Type I hypolithons are microbial communities dominated by Cyanobacteria. They adhere to the underside of semi-translucent rocks in desert pavements, providing them with a refuge from the harsh abiotic stresses found on the desert soil surface. Despite their crucial role in soil nutrient cycling, our understanding of their growth rates and community development pathways remains limited. This study aimed to quantify the dynamics of hypolithon formation in the pavements of the Namib Desert. We established replicate arrays of sterile rock tiles with varying light transmission in two areas of the Namib Desert, each with different annual precipitation regimes. These were sampled annually over 7 years, and the samples were analysed using eDNA extraction and 16S rRNA gene amplicon sequencing. Our findings revealed that in the zone with higher precipitation, hypolithon formation became evident in semi-translucent rocks 3 years after the arrays were set up. This coincided with a Cyanobacterial 'bloom' in the adherent microbial community in the third year. In contrast, no visible hypolithon formation was observed at the array set up in the hyper-arid zone. This study provides the first quantitative evidence of the kinetics of hypolithon development in hot desert environments, suggesting that development rates are strongly influenced by precipitation regimes.


Assuntos
Cianobactérias , Clima Desértico , Microbiota , RNA Ribossômico 16S , Microbiologia do Solo , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/classificação , Cianobactérias/metabolismo , RNA Ribossômico 16S/genética , Namíbia , Cinética , Filogenia , DNA Bacteriano/genética , Solo/química
14.
Environ Microbiol Rep ; 16(3): e13297, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885952

RESUMO

The Winam Gulf (Kenya) is frequently impaired by cyanobacterial harmful algal blooms (cHABs) due to inadequate wastewater treatment and excess agricultural nutrient input. While phytoplankton in Lake Victoria have been characterized using morphological criteria, our aim is to identify potential toxin-producing cyanobacteria using molecular approaches. The Gulf was sampled over two successive summer seasons, and 16S and 18S ribosomal RNA gene sequencing was performed. Additionally, key genes involved in production of cyanotoxins were examined by quantitative PCR. Bacterial communities were spatially variable, forming distinct clusters in line with regions of the Gulf. Taxa associated with diazotrophy were dominant near Homa Bay. On the eastern side, samples exhibited elevated cyrA abundances, indicating genetic capability of cylindrospermopsin synthesis. Indeed, near the Nyando River mouth in 2022, cyrA exceeded 10 million copies L-1 where there were more than 6000 Cylindrospermopsis spp. cells mL-1. In contrast, the southwestern region had elevated mcyE gene (microcystin synthesis) detections near Homa Bay where Microcystis and Dolichospermum spp. were observed. These findings show that within a relatively small embayment, composition and toxin synthesis potential of cHABs can vary dramatically. This underscores the need for multifaceted management approaches and frequent cyanotoxin monitoring to reduce human health impacts.


Assuntos
Toxinas Bacterianas , Cianobactérias , Proliferação Nociva de Algas , Lagos , Lagos/microbiologia , Lagos/química , Quênia , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Toxinas Bacterianas/genética , Microcistinas/genética , RNA Ribossômico 16S/genética , Microbiota , Fitoplâncton/genética , Toxinas de Cianobactérias , Alcaloides/análise , Alcaloides/metabolismo , RNA Ribossômico 18S/genética , Filogenia
15.
Sci Rep ; 14(1): 12774, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834652

RESUMO

The diversity of marine cyanobacteria has been extensively studied due to their vital roles in ocean primary production. However, little is understood about the diversity of cyanobacterial species involved in symbiotic relationships. In this study, we successfully sequenced the complete genome of a cyanobacterium in symbiosis with Citharistes regius, a dinoflagellate species thriving in the open ocean. A phylogenomic analysis revealed that the cyanobacterium (CregCyn) belongs to the marine picocyanobacterial lineage, akin to another cyanobacterial symbiont (OmCyn) of a different dinoflagellate closely related to Citharistes. Nevertheless, these two symbionts are representing distinct lineages, suggesting independent origins of their symbiotic lifestyles. Despite the distinct origins, the genome analyses of CregCyn revealed shared characteristics with OmCyn, including an obligate symbiotic relationship with the host dinoflagellates and a degree of genome reduction. In contrast, a detailed analysis of genome subregions unveiled that the CregCyn genome carries genomic islands that are not found in the OmCyn genome. The presence of the genomic islands implies that exogenous genes have been integrated into the CregCyn genome at some point in its evolution. This study contributes to our understanding of the complex history of the symbiosis between dinoflagellates and cyanobacteria, as well as the genomic diversity of marine picocyanobacteria.


Assuntos
Cianobactérias , Dinoflagellida , Genoma Bacteriano , Filogenia , Simbiose , Dinoflagellida/genética , Dinoflagellida/fisiologia , Simbiose/genética , Cianobactérias/genética , Cianobactérias/classificação , Evolução Molecular
16.
Curr Microbiol ; 81(8): 237, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907801

RESUMO

Toxic cyanobacterial blooms in various water bodies have been given much attention nowadays as they release hazardous substances in the surrounding areas. These toxic planktonic cyanobacteria in shrimp ponds greatly affect the survival of shrimps. Ecuador is the second highest shrimp producing country in the Americas after Brazil; and the shrimp-based economy is under threat due to toxic cyanobacterial blooms in Ecuador shrimp ponds. This study investigated the abundance of different cyanobacteria in the shrimp ponds at the Chone and Jama rivers (in Manabi province) at Ecuadorian pacific coast, focusing on different environmental factors, such as temperature, pH, salinity, and light. Temperature and pH were identified as key factors in influencing the abundance of cyanobacteria, with a significant positive correlation between Raphidiopsis raciborskii and pH. The highest and lowest abundance of cyanobacteria found during the dry season in the shrimp ponds near the Chone and Jama rivers were > 3 × 106 and 1 × 106 Cell.m-3, respectively. The Shannon-Wiener Diversity Index fluctuated between 0.41-1.15 and 0.31-1.15 for shrimp ponds of Chone and Jama rivers, respectively. This variation was linked to changes in salinity and the presence of harmful algal blooms, highlighting the importance of continuous monitoring. Additionally, the study areas showed eutrophic conditions with low diversity, underlining the need for additional spatiotemporal studies and expanded research in both rivers, to better understand these complex phenomena. The findings underscore the importance of continuous monitoring and expanded research in cyanobacteria ecology, with implications for public health and aquatic resource management.


Assuntos
Aquicultura , Cianobactérias , Lagoas , Equador , Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Animais , Lagoas/microbiologia , Humanos , Penaeidae/microbiologia , Salinidade , Proliferação Nociva de Algas , Estações do Ano , Temperatura
17.
FEMS Microbiol Ecol ; 100(7)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38816216

RESUMO

Biocrusts determine soil stability and resiliency, with a special role played by oxygenic photoautotrophic microorganisms in these communities. We evaluated temporal and geographic trends in studies focused on these microorganisms in biocrusts. Two databases were surveyed to obtain scientific articles published from 1998 to 2020 containing the terms 'biocrusts,' 'algae,' and 'cyanobacteria.' Although interest in biocrusts has increased recently, their ecological importance is still little explored. The scientific articles that mentioned a species list of cyanobacteria and/or algae revealed a very heterogeneous geographic distribution of research. Biocrusts have not been explored in many regions and knowledge in the tropics, where these communities showed high species richness, is limited. Geographic gaps were detected and more detailed studies are needed, mainly where biocrust communities are threatened by anthropogenic impacts. Aiming to address these knowledge gaps, we assembled a taxonomic list of all algae and cyanobacteria found in these articles, including information on their occurrence and ecology. This review is an updated global taxonomic survey of biocrusts, which importantly reveals their high species richness of oxygenic photoautotrophic microorganisms. We believe this database will be useful to future research by providing valuable taxonomic and biogeographic information regarding algae and cyanobacteria in biocrusts.


Assuntos
Cianobactérias , Microbiologia do Solo , Cianobactérias/classificação , Cianobactérias/genética , Biodiversidade , Solo
18.
BMC Ecol Evol ; 24(1): 57, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711016

RESUMO

BACKGROUND: Complex descriptions of new strains of cyanobacteria appear very frequently. The main importance of these descriptions concerns potential new substances that they could synthesise, as well as their different properties as a result of their different ecological niches. The main gene used for these descriptions is 16 S with ITS or whole genome sequencing. Neowestiellopsis persica represents a unique example of the influence of ecology on morphological changes, with almost identical 16 S identity. Although our previously described Neowestiellopsis persica strain A1387 was characterized by 16 S analysis, we used different molecular markers to provide a way to separate strains of this genus that are closely related at the genetic level. MATERIALS AND METHODS: In order to conduct an in-depth study, several molecular markers, namely psbA, rpoC1, nifD, nifH and cpcA were sequenced and studied in Neowestiellopsis persica strain A1387. RESULTS: The results of the phylogenetic analysis, based on cpcA, showed that the studied strain A 1387 falls into a separate clade than N. persica, indicating that this signature sequence could be a useful molecular marker for phylogenetic separation of similar strains isolated in the future. CONCLUSIONS: Analysis of strain A1387 based on gene differences confirmed that it is a Neowestiellopsis strain. The morphological changes observed in the previous study could be due to different ecological and cultivation conditions compared to the type species. At the same time, the sequences obtained have increased our understanding of this species and will help in the future to better identify strains belonging to the genus Neowestiellopsis.


Assuntos
Cianobactérias , Filogenia , Cianobactérias/genética , Cianobactérias/classificação , Proteínas de Bactérias/genética , Genes Bacterianos/genética
19.
Mol Phylogenet Evol ; 197: 108092, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723790

RESUMO

An acid-neutralizing, filamentous, non-heterocytous, marine cyanobacterium named 'LK' has been isolated from the seashore of Bangaram Island, an atoll of Lakshadweep, India, and is described here as a novel species. LK has been characterized using morphological, ecological, and genomic features. Based on 16S rRNA, whole-genome sequencing, and marker gene-based analysis, LK has been identified as a new species. LK clustered with Leptolyngbya-like strains belonging to the LPP group but diverged from Leptolyngbya sensu stricto, indicating the polyphyletic nature of the Leptolyngbya genus. Leptolyngbya sp. SIOISBB and Halomicronema sp. CCY15110 were identified as LK's two closest phylogenetic neighbors in various phylogenetic studies. The analysis of 16S rRNA, ITS secondary structures, and genome relatedness indices such as AAI, ANI, and gANI strongly support LK as a novel species of the Leptolyngbya genus. The mechanism behind acid neutralization in LK has been delineated, attributing it to a surface phenomenon most likely due to the presence of salts of calcium, magnesium, sodium, and potassium. We name LK as Leptolyngbya iicbica strain LK which is a novel species with prominent acidic pH-neutralizing properties.


Assuntos
Cianobactérias , Filogenia , RNA Ribossômico 16S , Cianobactérias/genética , Cianobactérias/classificação , RNA Ribossômico 16S/genética , Índia , Ilhas , DNA Bacteriano/genética , Água do Mar/microbiologia , Genoma Bacteriano/genética , Análise de Sequência de DNA
20.
Mol Phylogenet Evol ; 197: 108094, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723792

RESUMO

Thermophilic unicellular cyanobacteria of the family Thermosynechococcaceae are essential primary producers and integral components of many microbial mats found in hot springs of Asia and North America. Historically, based on their simple morphology, these organisms, along with members of taxonomically unrelated thermophilic Thermostichaceae have been described with a generic term, "Synechococcus", used for elongated unicellular cyanobacteria. This has created significant misperception in the scientific literature regarding the taxonomic status of these essential thermophilic primary producers and their relationship with Synechococcus sensu stricto. In this manuscript, we attempted a genome-driven taxonomic reevaluation of the family Thermosynechococcaceae. Application of genomic analyses such as GTDB classification, ANI/AAI and phylogenomics support the delineation of eight species within genus Thermosynechococcus. Two subspecies were further identified within T. taiwanensis by dDDH and phylogenomics. Moreover, the results also suggest the presence of two putative new genera phylogenetically alongside genus Thermosynechococcus, a thermophilic genus Parathermosynechococcus represented by PCC 6715 and a non-thermophilic genus represented by PCC 6312. The proposed genospecies and new genera were further integrated with morphological and/or ecological information. Interestingly, the phylogeny of 16S-23S ITS achieved a better taxonomic relationship than that of 16S rRNA and supported the genome-based classification of Thermosynechococcus spp. Finally, the pan-genome analysis indicated a conserved pattern of genomic core among known members of Thermosynechococcus.


Assuntos
Filogenia , Fenótipo , Thermosynechococcus/genética , Thermosynechococcus/classificação , Genoma Bacteriano/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Genômica , Cianobactérias/genética , Cianobactérias/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...