Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.003
Filtrar
1.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963813

RESUMO

Vitamin D signals through the vitamin D receptor (VDR) to induce its end-organ effects. Hepatic stellate cells control development of liver fibrosis in response to stressors and vitamin D signaling decreases fibrogenesis. VDR expression in hepatocytes is low in healthy liver, and the role of VDR in hepatocyte proliferation is unclear. Hepatocyte-VDR null mice (hVDR) were used to assess the role of VDR and vitamin D signaling in hepatic regeneration. hVDR mice have impaired liver regeneration and impaired hepatocyte proliferation associated with significant differential changes in bile salts. Notably, mice lacking hepatocyte VDR had significant increases in expression of conjugated bile acids after partial hepatectomy, consistent with failure to normalize hepatic function by the 14-day time point tested. Real-time PCR of hVDR and control livers showed significant changes in expression of cell-cycle genes including cyclins D1 and E1 and cyclin-dependent kinase 2. Gene expression profiling of hepatocytes treated with vitamin D or control showed regulation of groups of genes involved in liver proliferation, hepatitis, liver hyperplasia/hyperproliferation, and liver necrosis/cell death. Together, these studies demonstrate an important functional role for VDR in hepatocytes during liver regeneration. Combined with the known profibrotic effects of impaired VDR signaling in stellate cells, the studies provide a mechanism whereby vitamin D deficiency would both reduce hepatocyte proliferation and permit fibrosis, leading to significant liver compromise.


Assuntos
Ácidos e Sais Biliares , Proliferação de Células , Hepatectomia , Hepatócitos , Regeneração Hepática , Camundongos Knockout , Receptores de Calcitriol , Animais , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Masculino , Camundongos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Ciclina D1/metabolismo , Ciclina D1/genética , Ciclina E/metabolismo , Ciclina E/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/genética , Camundongos Endogâmicos C57BL , Vitamina D/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Oncogênicas
2.
Ann Diagn Pathol ; 72: 152320, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38703529

RESUMO

CIC-rearranged sarcoma (CRS) is a group of high-grade undifferentiated small round cell sarcomas examined as a separate entity in the current WHO classification; since it shows more aggressive clinical behavior and distinct morphological and molecular features compared to Ewing sarcoma (ES). As CCNE1 expression is associated with tumor growth in CIC::DUX4 sarcomas, we aimed to demonstrate the value of cyclin E1 expression in CRS. Cyclin E1 immunohistochemistry and break-apart FISH for EWSR1 and CIC gene rearrangements were performed on 3-mm tissue microarrays composed of 40 small round cell tumors. Five cases were classified as CRS, whereas 22 were ES and 13 were unclassified (EWSR1-/CIC-). Among all three diagnostic groups, we found cyclin E1 expression level to be higher in CRS (80 %) and unclassified groups (61.5 %) compared to ES (4.5 %, p < 0.001). In addition, high cyclin E1 expression levels were associated with higher mean age at diagnosis, presence of atypical histology and myxoid stroma, low CD99 expression, and presence of metastasis at diagnosis. The sensitivity and specificity of high cyclin E1 expression in detecting non-ES cases were 95.5 % and 66.7 %, respectively. However, the correlation between cyclin E1 expression level and survival was not statistically significant. This is the first study that shows cyclin E1 immunohistochemical expression in EWSR1-negative undifferentiated small cell sarcomas, particularly CRS.


Assuntos
Biomarcadores Tumorais , Ciclina E , Rearranjo Gênico , Proteínas Oncogênicas , Proteínas Repressoras , Humanos , Masculino , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Feminino , Adulto , Ciclina E/metabolismo , Ciclina E/genética , Pessoa de Meia-Idade , Adolescente , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Adulto Jovem , Criança , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Imuno-Histoquímica/métodos , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Sarcoma de Ewing/genética , Sarcoma/patologia , Sarcoma/metabolismo , Sarcoma/genética , Sarcoma/diagnóstico , Hibridização in Situ Fluorescente/métodos , Idoso , Pré-Escolar , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Células Pequenas/metabolismo , Sarcoma de Células Pequenas/genética , Sarcoma de Células Pequenas/patologia , Sarcoma de Células Pequenas/diagnóstico
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167250, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763409

RESUMO

Despite considerable therapeutic advancements, the global survival rate for lung cancer patients remains poor, posing challenges in developing an effective treatment strategy. In many cases, microRNAs (miRNAs) exhibit abnormal expression levels in cancers, including lung cancer. Dysregulated miRNAs often play a crucial role in the development and progression of cancer. Therefore, understanding the mechanisms underlying aberrant miRNA expression during carcinogenesis may provide crucial clues to develop novel therapeutics. In this study, we identified and cloned a novel miRNA, hsa-miR-CHA2, which is abnormally downregulated in non-small cell lung cancer (NSCLC)-derived cell lines and tissues of patients with NSCLC. Furthermore, we found that hsa-miR-CHA2 regulates the post-transcriptional levels of Cyclin E1 (CCNE1) by binding to the 3'-UTR of CCNE1 mRNA. CCNE1, a cell cycle regulator involved in the G1/S transition, is often amplified in various cancers. Notably, hsa-miR-CHA2 overexpression led to the alteration of the Rb-E2F pathway, a significant signaling pathway in the cell cycle, by targeting CCNE1 in A549 and SK-LU-1 cells. Subsequently, we confirmed that hsa-miR-CHA2 induced G1-phase arrest and exhibited an anti-proliferative effect by targeting CCNE1. Moreover, in subcutaneous xenograft mouse models, intra-tumoral injection of polyplexed hsa-miR-CHA2 mimic suppressed tumor growth and development. In conclusion, hsa-miR-CHA2 exhibited an anticancer effect by targeting CCNE1 both in vitro and in vivo. These findings suggest the potential role of hsa-miR-CHA2 as an important regulator of cell proliferation in molecular-targeted therapy for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ciclina E , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , Proteínas Oncogênicas , Humanos , Ciclina E/genética , Ciclina E/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Camundongos , Proliferação de Células/genética , Linhagem Celular Tumoral , Células A549 , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Regiões 3' não Traduzidas/genética , Camundongos Endogâmicos BALB C , Transdução de Sinais
4.
Cancer Res Commun ; 4(6): 1399-1409, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38717153

RESUMO

Cyclin E overexpression as a result of CCNE1 amplification is a critical driver of genomic instability in gastric cancer, but its clinical implication is largely unknown. Thus, we integrated genomic, transcriptomic, and immune profiling analysis of 7,083 esophagogastric tumors and investigated the impact of CCNE1 amplification on molecular features and treatment outcomes. We identified CCNE1 amplification in 6.2% of esophageal adenocarcinoma samples, 7.0% of esophagogastric junction carcinoma, 4.2% of gastric adenocarcinoma samples, and 0.8% of esophageal squamous cell carcinoma. Metastatic sites such as lymph node and liver showed an increased frequency of CCNE1 amplification relative to primary tumors. Consistent with a chromosomal instability phenotype, CCNE1 amplification was associated with decreased CDH1 mutation and increased TP53 mutation and ERBB2 amplification. We observed no differences in immune biomarkers such as PD-L1 expression and tumor mutational burden comparing CCNE1-amplified and nonamplified tumors, although CCNE1 amplification was associated with changes in immune populations such as decreased B cells and increased M1 macrophages from transcriptional analysis. Real-world survival analysis demonstrated that patients with CCNE1-amplified gastric cancer had worse survival after trastuzumab for HER2-positive tumors, but better survival after immunotherapy. These data suggest that CCNE1-amplified gastric cancer has a distinct molecular and immune profile with important therapeutic implications, and therefore further investigation of CCNE1 amplification as a predictive biomarker is warranted. SIGNIFICANCE: Advanced gastric cancer has a relatively dismal outcome with a 5-year overall survival of less than 10%. Furthermore, while comprehensive molecular analyses have established molecular subtypes within gastric cancers, biomarkers of clinical relevance in this cancer type are lacking. Overall, this study demonstrates that CCNE1 amplification is associated with a distinct molecular profile in gastric cancer and may impact response to therapy, including targeted therapy and/or immunotherapy.


Assuntos
Ciclina E , Neoplasias Esofágicas , Amplificação de Genes , Proteínas Oncogênicas , Neoplasias Gástricas , Humanos , Ciclina E/genética , Proteínas Oncogênicas/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/patologia , Receptor ErbB-2/genética , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Biomarcadores Tumorais/genética , Mutação , Masculino , Junção Esofagogástrica/patologia , Feminino , Trastuzumab/uso terapêutico , Proteína Supressora de Tumor p53/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/mortalidade , Antígenos CD/genética , Caderinas
5.
Aging (Albany NY) ; 16(9): 8019-8030, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713155

RESUMO

Aurora kinase B (AURKB) initiates the phosphorylation of serine 10 on histone H3 (pH3S10), a crucial process for chromosome condensation and cytokinesis in mammalian mitosis. Nonetheless, the precise mechanisms through which AURKB regulates the cell cycle and contributes to tumorigenesis as an oncogenic factor in colorectal cancer (CRC) remain unclear. Here, we report that AURKB was highly expressed and positively correlated with Ki-67 expression in CRC. The abundant expression of AURKB promotes the growth of CRC cells and xenograft tumors in animal model. AURKB knockdown substantially suppressed CRC proliferation and triggered cell cycle arrest in G2/M phase. Interestingly, cyclin E1 (CCNE1) was discovered as a direct downstream target of AURKB and functioned synergistically with AURKB to promote CRC cell proliferation. Mechanically, AURKB activated CCNE1 expression by triggering pH3S10 in the promoter region of CCNE1. Furthermore, it was showed that the inhibitor specific for AURKB (AZD1152) can suppress CCNE1 expression in CRC cells and inhibit tumor cell growth. To conclude, this research demonstrates that AURKB accelerated the tumorigenesis of CRC through its potential to epigenetically activate CCNE1 expression, suggesting AURKB as a promising therapeutic target in CRC.


Assuntos
Aurora Quinase B , Proliferação de Células , Neoplasias Colorretais , Ciclina E , Histonas , Proteínas Oncogênicas , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ciclina E/metabolismo , Ciclina E/genética , Histonas/metabolismo , Aurora Quinase B/metabolismo , Aurora Quinase B/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fosforilação , Animais , Proliferação de Células/genética , Camundongos , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Serina/metabolismo , Progressão da Doença , Masculino , Camundongos Nus , Feminino
6.
Cell Cycle ; 23(5): 613-627, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38752903

RESUMO

Ubiquitin like with PHD and ring finger domains 2 (UHRF2) regulates the cell cycle and epigenetics as a multi-domain protein sharing homology with UHRF1. UHRF1 functions with DNMT1 to coordinate daughter strand methylation during DNA replication, but UHRF2 can't perform this function, and its roles during cell cycle progression are not well defined. UHRF2 role as an oncogene vs. tumor suppressor differs in distinct cell types. UHRF2 interacts with E2F1 to control Cyclin E1 (CCNE1) transcription. UHRF2 also functions in a reciprocal loop with Cyclin E/CDK2 during G1, first as a direct target of CDK2 phosphorylation, but also as an E3-ligase with direct activity toward both Cyclin E and Cyclin D. In this study, we demonstrate that UHRF2 is expressed in early G1 following either serum stimulation out of quiescence or in cells transiting directly out of M-phase, where UHRF2 protein is lost. Further, UHRF2 depletion in G2/M is reversed with a CDK1 specific inhibitor. UHRF2 controls expression levels of cyclins and CDK inhibitors and controls its own transcription in a negative-feedback loop. Deletion of UHRF2 using CRISPR/Cas9 caused a delay in passage through each cell cycle phase. UHRF2 loss culminated in elevated levels of cyclins but also the CDK inhibitor p27KIP1, which regulates G1 passage, to reduce retinoblastoma phosphorylation and increase the amount of time required to reach G1/S passage. Our data indicate that UHRF2 is a central regulator of cell-cycle pacing through its complex regulation of cell cycle gene expression and protein stability.


Assuntos
Ciclina E , Fase G1 , Mitose , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Humanos , Ciclina E/metabolismo , Ciclina E/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Ciclo Celular/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/genética , Fosforilação , Proteínas Oncogênicas
7.
Aging (Albany NY) ; 16(8): 7009-7021, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38637117

RESUMO

BACKGROUND: Reduced numbers and dysfunction of thymic epithelial cells (TECs) are important factors of thymic degeneration. Previous studies have found that umbilical cord mesenchymal stem cells (UCMSCs) reverse the structure and function of the senescent thymus in vivo. However, the transcriptomic regulation mechanism is unclear. METHODS: TECs were cultured with H2O2 for 72 hours to induce senescence. UCMSCs were cocultured with senescent TECs for 48 hours to detect SA-ß-gal, P16 and Ki67. The cocultured TECs were collected for lncRNA, mRNA and miRNA sequencing to establish a competitive endogenous regulatory network (ceRNA). And RT-qPCR, immunofluorescence staining, and western blot were used to identified key genes. RESULTS: Our results showed that H2O2 induced TEC aging and that UCMSCs reversed these changes. Compared with those in aged TECs, 2260 DE mRNAs, 1033 DE lncRNAs and 67 DE miRNAs were differentially expressed, and these changes were reversed by coculturing the cells with UCMSCs. Differential mRNA enrichment analysis of ceRNA regulation revealed that the PI3K-AKT pathway was a significant signaling pathway. UCMSC coculture upregulated VEGFA, which is the upstream factor of the PI3K-AKT signaling pathway, and the expression of the key proteins PI3K and AKT. Thus, the expression of the cell cycle suppressor P27, which is downstream of the PI3K-AKT signaling pathway, was downregulated, while the expression of the cell cycle regulators CDK2 and CCNE was upregulated. CONCLUSION: UCMSC coculture upregulated the expression of VEGFA, activated the PI3K-AKT signaling pathway, increased the expression of CDK2 and CCNE, decreased the expression of P27, and promoted the proliferation of TECs.


Assuntos
Senescência Celular , Técnicas de Cocultura , Células Epiteliais , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais , MicroRNAs , Proteínas Oncogênicas , Timo , Cordão Umbilical , Células-Tronco Mesenquimais/metabolismo , Humanos , Células Epiteliais/metabolismo , Cordão Umbilical/citologia , Timo/citologia , Timo/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/genética , Ciclina E/metabolismo , Ciclina E/genética , Biomarcadores/metabolismo , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células Cultivadas , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcriptoma , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética
8.
Cell Rep ; 43(4): 114116, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625790

RESUMO

Overexpression of Cyclin E1 perturbs DNA replication, resulting in DNA lesions and genomic instability. Consequently, Cyclin E1-overexpressing cancer cells increasingly rely on DNA repair, including RAD52-mediated break-induced replication during interphase. We show that not all DNA lesions induced by Cyclin E1 overexpression are resolved during interphase. While DNA lesions upon Cyclin E1 overexpression are induced in S phase, a significant fraction of these lesions is transmitted into mitosis. Cyclin E1 overexpression triggers mitotic DNA synthesis (MiDAS) in a RAD52-dependent fashion. Chemical or genetic inactivation of MiDAS enhances mitotic aberrations and persistent DNA damage. Mitosis-specific degradation of RAD52 prevents Cyclin E1-induced MiDAS and reduces the viability of Cyclin E1-overexpressing cells, underscoring the relevance of RAD52 during mitosis to maintain genomic integrity. Finally, analysis of breast cancer samples reveals a positive correlation between Cyclin E1 amplification and RAD52 expression. These findings demonstrate the importance of suppressing mitotic defects in Cyclin E1-overexpressing cells through RAD52.


Assuntos
Ciclina E , Instabilidade Genômica , Mitose , Proteínas Oncogênicas , Proteína Rad52 de Recombinação e Reparo de DNA , Humanos , Ciclina E/metabolismo , Ciclina E/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Replicação do DNA , Linhagem Celular Tumoral , Dano ao DNA , DNA/metabolismo , DNA/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia
9.
Aging (Albany NY) ; 16(5): 4631-4653, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38446584

RESUMO

Psoriasis is a chronic inflammatory proliferative dermatological ailment that currently lacks a definitive cure. Employing data mining techniques, this study identified a collection of substantially downregulated miRNAs (top 10). Notably, 32 targets were implicated in both the activation of the IL-17 signaling pathway and cell cycle dysregulation. In silico analysis revealed that one of these miRNAs, miR-26a-5p, is a highly conserved cross-species miRNA. Strikingly, the miR-26a-5p sequences in humans and mice are identical, and mmu-miR-26a-5p was found to target the same 7 cell cycle targets as its human counterpart, hsa-miR-26a-5p. Among these targets, CDC6 and CCNE1 were the most effective targets of miR-26a-5p, which was further validated in vitro using a dual luciferase reporter system and qPCR assay. The therapeutic assessment of miR-26a-5p revealed its remarkable efficacy in inhibiting the proliferation and G1/S transition of keratinocytes (HaCaT and HEKs) in vitro. In vivo experiments corroborated these findings, demonstrating that miR-26a-5p effectively suppressed imiquimod (IMQ)-induced psoriasis-like skin lesions in mice over an 8-day treatment period. Histological analysis via H&E staining revealed that miR-26a-5p treatment resulted in reduced keratinocyte thickness and immune cell infiltration into the spleens of IMQ-treated mice. Mechanistic investigations revealed that miR-26a-5p induced a cascade of downregulated genes associated with the IL-23/IL-17A axis, which is known to be critical in psoriasis pathogenesis, while concomitantly suppressing CDC6 and CCNE1 expression. These findings were corroborated by qPCR and Western blot analyses. Collectively, our study provides compelling evidence supporting the therapeutic potential of miR-26a-5p as a safe and reliable endogenous small nucleic acid for the treatment of psoriasis.


Assuntos
MicroRNAs , Psoríase , Humanos , Animais , Camundongos , Queratinócitos/metabolismo , MicroRNAs/metabolismo , Psoríase/genética , Psoríase/tratamento farmacológico , Transdução de Sinais , Proliferação de Células/genética , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Oncogênicas/metabolismo , Ciclina E/genética
10.
Clin Cancer Res ; 30(11): 2461-2474, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38536067

RESUMO

PURPOSE: Shallow whole-genome sequencing (sWGS) can detect copy-number (CN) aberrations. In high-grade serous ovarian cancer (HGSOC) sWGS identified CN signatures such as homologous recombination deficiency (HRD) to direct therapy. We applied sWGS with targeted sequencing to p53abn endometrial cancers to identify additional prognostic stratification and therapeutic opportunities. EXPERIMENTAL DESIGN: sWGS and targeted panel sequencing was performed on formalin-fixed, paraffin-embedded p53abn endometrial cancers. CN alterations, mutational data and CN signatures were derived, and associations to clinicopathologic and outcomes data were assessed. RESULTS: In 187 p53abn endometrial cancers, 5 distinct CN signatures were identified. Signature 5 was associated with BRCA1/2 CN loss with features similar to HGSOC HRD signature. Twenty-two percent of potential HRD cases were identified, 35 patients with signature 5, and 8 patients with BRCA1/2 somatic mutations. Signatures 3 and 4 were associated with a high ploidy state, and CCNE1, ERBB2, and MYC amplifications, with mutations in PIK3CA enriched in signature 3. We observed improved overall survival (OS) for patients with signature 2 and worse OS for signatures 1 and 3. Twenty-eight percent of patients had CCNE1 amplification and this subset was enriched with carcinosarcoma histotype. Thirty-four percent of patients, across all histotypes, had ERBB2 amplification and/or HER2 overexpression on IHC, which was associated with worse outcomes. Mutations in PPP2R1A (29%) and FBXW7 (16%) were among the top 5 most common mutations. CONCLUSIONS: sWGS and targeted sequencing identified therapeutic opportunities in 75% of patients with p53abn endometrial cancer. Further research is needed to determine the efficacy of treatments targeting these identified pathways within p53abn endometrial cancers.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias do Endométrio , Proteína 7 com Repetições F-Box-WD , Mutação , Proteína Supressora de Tumor p53 , Sequenciamento Completo do Genoma , Humanos , Feminino , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/mortalidade , Neoplasias do Endométrio/terapia , Proteína Supressora de Tumor p53/genética , Proteína 7 com Repetições F-Box-WD/genética , Pessoa de Meia-Idade , Idoso , Proteína BRCA2/genética , Proteína BRCA1/genética , Prognóstico , Classe I de Fosfatidilinositol 3-Quinases/genética , Ciclina E/genética , Adulto , Ubiquitina-Proteína Ligases/genética , Biomarcadores Tumorais/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/mortalidade , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/terapia , Idoso de 80 Anos ou mais , Proteínas Oncogênicas
11.
PLoS One ; 19(2): e0298884, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394175

RESUMO

The methyltransferase N6AMT1 has been associated with the progression of different pathological conditions, such as tumours and neurological malfunctions, but the underlying mechanism is not fully understood. Analysis of N6AMT1-depleted cells revealed that N6AMT1 is involved in the cell cycle and cell proliferation. In N6AMT1-depleted cells, the cell doubling time was increased, and cell progression out of mitosis and the G0/G1 and S phases was disrupted. It was discovered that in N6AMT1-depleted cells, the transcription of cyclin E was downregulated, which indicates that N6AMT1 is involved in the regulation of cyclin E transcription. Understanding the functions and importance of N6AMT1 in cell proliferation and cell cycle regulation is essential for developing treatments and strategies to control diseases that are associated with N6AMT1.


Assuntos
Metiltransferases , DNA Metiltransferases Sítio Específica (Adenina-Específica) , Metiltransferases/genética , Metiltransferases/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Ciclina E/genética , Ciclo Celular , Divisão Celular
12.
Mol Oncol ; 18(1): 6-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37067201

RESUMO

Oncogene-induced replication stress has been recognized as a major cause of genome instability in cancer cells. Increased expression of cyclin E1 caused by amplification of the CCNE1 gene is a common cause of replication stress in various cancers. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and has been implicated in termination of the cell cycle checkpoint. Amplification of the PPM1D gene or frameshift mutations in its final exon promote tumorigenesis. Here, we show that PPM1D activity further increases the replication stress caused by overexpression of cyclin E1. In particular, we demonstrate that cells expressing a truncated mutant of PPM1D progress faster from G1 to S phase and fail to complete licensing of the replication origins. In addition, we show that transcription-replication collisions and replication fork slowing caused by CCNE1 overexpression are exaggerated in cells expressing the truncated PPM1D. Finally, replication speed and accumulation of focal DNA copy number alterations caused by induction of CCNE1 expression was rescued by pharmacological inhibition of PPM1D. We propose that increased activity of PPM1D suppresses the checkpoint function of p53 and thus promotes genome instability in cells expressing the CCNE1 oncogene.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Instabilidade Genômica , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo
13.
Mol Cell ; 83(20): 3720-3739.e8, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37591242

RESUMO

Fanconi anemia (FA) signaling, a key genomic maintenance pathway, is activated in response to replication stress. Here, we report that phosphorylation of the pivotal pathway protein FANCD2 by CHK1 triggers its FBXL12-dependent proteasomal degradation, facilitating FANCD2 clearance at stalled replication forks. This promotes efficient DNA replication under conditions of CYCLIN E- and drug-induced replication stress. Reconstituting FANCD2-deficient fibroblasts with phosphodegron mutants failed to re-establish fork progression. In the absence of FBXL12, FANCD2 becomes trapped on chromatin, leading to replication stress and excessive DNA damage. In human cancers, FBXL12, CYCLIN E, and FA signaling are positively correlated, and FBXL12 upregulation is linked to reduced survival in patients with high CYCLIN E-expressing breast tumors. Finally, depletion of FBXL12 exacerbated oncogene-induced replication stress and sensitized cancer cells to drug-induced replication stress by WEE1 inhibition. Collectively, our results indicate that FBXL12 constitutes a vulnerability and a potential therapeutic target in CYCLIN E-overexpressing cancers.


Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Sobrevivência Celular/genética , Cromatina/genética , Ciclina E/genética , Ciclina E/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Neoplasias/genética
14.
Cell Death Dis ; 14(8): 549, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620309

RESUMO

Hepatocellular carcinoma (HCC) is one of the most severe malignancies with increasing incidence and limited treatment options. Typically, HCC develops during a multistep process involving chronic liver inflammation and liver fibrosis. The latter is characterized by the accumulation of extracellular matrix produced by Hepatic Stellate Cells (HSCs). This process involves cell cycle re-entry and proliferation of normally quiescent HSCs in an ordered sequence that is highly regulated by cyclins and associated cyclin-dependent kinases (CDKs) such as the Cyclin E1 (CCNE1)/CDK2 kinase complex. In the present study, we examined the role of Cyclin E1 (Ccne1) and Cdk2 genes in HSCs for liver fibrogenesis and hepatocarcinogenesis. To this end, we generated conditional knockout mice lacking Ccne1 or Cdk2 specifically in HSCs (Ccne1∆HSC or Cdk2∆HSC). Ccne1∆HSC mice showed significantly reduced liver fibrosis formation and attenuated HSC activation in the carbon tetrachloride (CCl4) model. In a combined model of fibrosis-driven hepatocarcinogenesis, Ccne1∆HSC mice revealed decreased HSC activation even after long-term observation and substantially reduced tumor load in the liver when compared to wild-type controls. Importantly, the deletion of Cdk2 in HSCs also resulted in attenuated liver fibrosis after chronic CCl4 treatment. Single-cell RNA sequencing revealed that only a small fraction of HSCs expressed Ccne1/Cdk2 at a distinct time point after CCl4 treatment. In summary, we provide evidence that Ccne1 expression in a small population of HSCs is sufficient to trigger extensive liver fibrosis and hepatocarcinogenesis in a Cdk2-dependent manner. Thus, HSC-specific targeting of Ccne1 or Cdk2 in patients with liver fibrosis and high risk for HCC development could be therapeutically beneficial.


Assuntos
Carcinoma Hepatocelular , Ciclina E , Cirrose Hepática , Neoplasias Hepáticas , Animais , Camundongos , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Células Estreladas do Fígado , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Ciclina E/genética
15.
Cell Biochem Biophys ; 81(3): 569-576, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572218

RESUMO

Colorectal cancer is a malignant tumor with higher morbidity and mortality. The purpose of this study is to investigate whether inhibition of Protein Kinase, Membrane Associated Tyrosine/Threonine 1 (PKMYT1) affects tumor cell proliferation, survival and migration in colon tumors with high Cyclin E1 (CCNE1) expression. PcDNA3.1-CCNE1 vector and si-PKMYT1 were transfected in SW480 cells by Lipofectamine 2000. Q-PCR and western blot assay were processed to detect the expression. Transwell assay and Edu assay were undertaken to verify the migration and proliferation. CCNE1 promotes the proliferation and migration of SW480. Silencing of PKMYT1 inhibited the proliferation of tumor cells. Silencing the expression of PKMYT1 under the premise of overexpression of CCNE1, the level of Cyclin Dependent Kinase 1 (CDK1)-PT14 was reduced, indicating that the cell cycle was blocked. The expression of γH2AX increased significantly, indicating that the DDR pathway of tumor cells was activated and DNA damage accumulated. The results of immunofluorescence microscopy showed significantly increased expression of DNA damage-associated marker (γH2AX: H2AX Variant Histone). In CCNE1 amplificated colorectal tumor cells, knockdown of PKMYT1 reduced cells in S phase, inhibited cell proliferation and promoted cell apoptosis, confirming that PKMYT1 was a potential therapeutic target for colorectal tumor. This study may verify a potential therapeutic target and provide a new idea for the treatment of colorectal cancer in the future.


Assuntos
Neoplasias Colorretais , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
16.
Cell Rep ; 42(7): 112768, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428633

RESUMO

Faithful DNA replication requires that cells fine-tune their histone pool in coordination with cell-cycle progression. Replication-dependent histone biosynthesis is initiated at a low level upon cell-cycle commitment, followed by a burst at the G1/S transition, but it remains unclear how exactly the cell regulates this burst in histone biosynthesis as DNA replication begins. Here, we use single-cell time-lapse imaging to elucidate the mechanisms by which cells modulate histone production during different phases of the cell cycle. We find that CDK2-mediated phosphorylation of NPAT at the restriction point triggers histone transcription, which results in a burst of histone mRNA precisely at the G1/S phase boundary. Excess soluble histone protein further modulates histone abundance by promoting the degradation of histone mRNA for the duration of S phase. Thus, cells regulate their histone production in strict coordination with cell-cycle progression by two distinct mechanisms acting in concert.


Assuntos
Ciclina E , Histonas , Histonas/metabolismo , Fase S , Ciclina E/genética , Ciclina E/metabolismo , Proteínas Nucleares/metabolismo , Retroalimentação , Proteínas de Ciclo Celular/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Ciclo Celular , RNA Mensageiro
17.
Clin Cancer Res ; 29(21): 4385-4398, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279095

RESUMO

PURPOSE: Cyclin E (CCNE1) has been proposed as a biomarker of sensitivity to adavosertib, a Wee1 kinase inhibitor, and a mechanism of resistance to HER2-targeted therapy. EXPERIMENTAL DESIGN: Copy number and genomic sequencing data from The Cancer Genome Atlas and MD Anderson Cancer Center databases were analyzed to assess ERBB2 and CCNE1 expression. Molecular characteristics of tumors and patient-derived xenografts (PDX) were assessed by next-generation sequencing, whole-exome sequencing, fluorescent in situ hybridization, and IHC. In vitro, CCNE1 was overexpressed or knocked down in HER2+ cell lines to evaluate drug combination efficacy. In vivo, NSG mice bearing PDXs were subjected to combinatorial therapy with various treatment regimens, followed by tumor growth assessment. Pharmacodynamic markers in PDXs were characterized by IHC and reverse-phase protein array. RESULTS: Among several ERBB2-amplified cancers, CCNE1 co-amplification was identified (gastric 37%, endometroid 43%, and ovarian serous adenocarcinoma 41%). We hypothesized that adavosertib may enhance activity of HER2 antibody-drug conjugate trastuzumab deruxtecan (T-DXd). In vitro, sensitivity to T-DXd was decreased by cyclin E overexpression and increased by knockdown, and adavosertib was synergistic with topoisomerase I inhibitor DXd. In vivo, the T-DXd + adavosertib combination significantly increased γH2AX and antitumor activity in HER2 low, cyclin E amplified gastroesophageal cancer PDX models and prolonged event-free survival (EFS) in a HER2-overexpressing gastroesophageal cancer model. T-DXd + adavosertib treatment also increased EFS in other HER2-expressing tumor types, including a T-DXd-treated colon cancer model. CONCLUSIONS: We provide rationale for combining T-DXd with adavosertib in HER2-expressing cancers, especially with co-occuring CCNE1 amplifications. See related commentary by Rolfo et al., p. 4317.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Animais , Camundongos , Ciclina E/genética , Hibridização in Situ Fluorescente , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Receptor ErbB-2/metabolismo , Camptotecina/farmacologia
18.
Cell Signal ; 107: 110649, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37164546

RESUMO

Colorectal cancer (CRC) is one of the most prevalent malignancies with a high mortality rate worldwide. Circular RNAs (circRNAs) have lately emerged as key molecules involved in cancer development and metastasis. CircSEMA5 is reported to be oncogenic in some cancers, yet its role in the pathogenesis of CRC remains unknown. Herein, we attempted to investigate the functional role and molecular mechanism of circSEMA5A underlying CRC progression. RT-qPCR and RNase R digestion assays were used to evaluate circSEMA5A expression characteristics in CRC cells. Loss-of-function assays were performed to clarify circSEMA5A role in CRC biological processes. Bioinformatics and mechanism experiments were conducted to assess the association of circSEMA5A or CCNE1 with miR-195-5p in CRC cells. Rescue assays were conducted to explore the regulatory function of circSEMA5A-miR-195-5p-CCNE1 in CRC cellular processes. Through bioinformatics and functional screening, we found that circSEMA5A was highly expressed in CRC cells and was mainly localized in the nucleus. CircSEMA5A promoted CRC proliferative, migratory, and invasive capabilities in cultured cells and facilitated the tumorigenic process in xenografts; however, circSEMA5A silencing repressed tumor metastasis in CRC cells. Mechanistically, circSEMA5A was competitively bound with miR-195-5p to upregulate CCNE1 expression. Moreover, the impact of circSEMA5A knockdown on CRC cell proliferative, migratory, and invasive capabilities was countervailed by miR-195-5p inhibitor or CCNE1 overexpression. To summarize, circSEMA5A is a novel circRNA that serves as an oncogene in CRC progression. CircSEMA5A facilitates CRC cell malignancy and tumor growth through sponging miR-195-5p to upregulate CCNE1, thus providing a new direction for CRC diagnosis and targeted therapy.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/patologia , Carcinogênese/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ciclina E/genética , Ciclina E/metabolismo
19.
Crit Rev Eukaryot Gene Expr ; 33(3): 85-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37017672

RESUMO

Higher-order genomic organization supports the activation of histone genes in response to cell cycle regulatory cues that epigenetically mediates stringent control of transcription at the G1/S-phase transition. Histone locus bodies (HLBs) are dynamic, non-membranous, phase-separated nuclear domains where the regulatory machinery for histone gene expression is organized and assembled to support spatiotemporal epigenetic control of histone genes. HLBs provide molecular hubs that support synthesis and processing of DNA replication-dependent histone mRNAs. These regulatory microenvironments support long-range genomic interactions among non-contiguous histone genes within a single topologically associating domain (TAD). HLBs respond to activation of the cyclin E/CDK2/NPAT/HINFP pathway at the G1/S transition. HINFP and its coactivator NPAT form a complex within HLBs that controls histone mRNA transcription to support histone protein synthesis and packaging of newly replicated DNA. Loss of HINFP compromises H4 gene expression and chromatin formation, which may result in DNA damage and impede cell cycle progression. HLBs provide a paradigm for higher-order genomic organization of a subnuclear domain that executes an obligatory cell cycle-controlled function in response to cyclin E/CDK2 signaling. Understanding the coordinately and spatiotemporally organized regulatory programs in focally defined nuclear domains provides insight into molecular infrastructure for responsiveness to cell signaling pathways that mediate biological control of growth, differentiation phenotype, and are compromised in cancer.


Assuntos
Cromatina , Histonas , Histonas/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Epigênese Genética
20.
Hereditas ; 160(1): 13, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964635

RESUMO

BACKGROUND: CCNE1 plays an important oncogenic role in several tumors, especially high-stage serous ovarian cancer and endometrial cancer. Nevertheless, the fundamental function of CCNE1 has not been explored in multiple cancers. Therefore, bioinformatics analyses of pan-cancer datasets were carried out to explore how CCNE1 regulates tumorigenesis. METHODS: A variety of online tools and cancer databases, including GEPIA2, SangerBox, LinkedOmics and cBioPortal, were applied to investigate the expression of CCNE1 across cancers. The pan-cancer datasets were used to search for links between CCNE1 expression and prognosis, DNA methylation, m6A level, genetic alterations, CCNE1-related genes, and tumor immunity. We verified that CCNE1 has biological functions in UCEC cell lines using CCK-8, EdU, and Transwell assays. RESULTS: In patients with different tumor types, a high mRNA expression level of CCNE1 was related to a poor prognosis. Genes related to CCNE1 were connected to the cell cycle, metabolism, and DNA damage repair, according to GO and KEGG enrichment analyses. Genetic alterations of CCNE1, including duplications and deep mutations, have been observed in various cancers. Immune analysis revealed that CCNE1 had a strong correlation with TMB, MSI, neoantigen, and ICP in a variety of tumor types, and this correlation may have an impact on the sensitivity of various cancers to immunotherapy. CCK-8, EdU and Transwell assays suggested that CCNE1 knockdown can suppress UCEC cell proliferation, migration and invasion. CONCLUSION: Our study demonstrated that CCNE1 is upregulated in multiple cancers in the TCGA database and may be a promising predictive biomarker for the immunotherapy response in some types of cancers. Moreover, CCNE1 knockdown can suppress the proliferation, migration and invasion of UCEC cells.


Assuntos
Ciclina E , Neoplasias , Proteínas Oncogênicas , Humanos , Divisão Celular , Linhagem Celular , Proliferação de Células , Ciclina E/genética , Neoplasias/genética , Neoplasias/terapia , Proteínas Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...