Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 619
Filtrar
1.
Curr Alzheimer Res ; 21(4): 242-257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161146

RESUMO

BACKGROUND: Neurodegenerative disorders like Alzheimer's disease (AD) involve the abnormal aggregation of tau protein, which forms toxic oligomers and amyloid deposits. The structure of tau protein is influenced by the conformational states of distinct proline residues, which are regulated by peptidyl-prolyl isomerases (PPIases). However, there has been no research on the impact of human cyclophilin A (CypA) as a PPIase on (non-phosphorylated) tau protein aggregation. METHODS: On the basis of these explanations, we used various spectroscopic techniques to explore the effects of CypA on tau protein aggregation behavior. RESULTS: We demonstrated the role of the isomerization activity of CypA in promoting the formation of tau protein amyloid fibrils with well-defined and highly ordered cross-ß structures. According to the "cistauosis hypothesis," CypA's ability to enhance tau protein fibril formation in AD is attributed to the isomerization of specific proline residues from the trans to cis configuration. To corroborate this theory, we conducted refolding experiments using lysozyme as a model protein. The presence of CypA increased lysozyme aggregation and impeded its refolding process. It is known that proper refolding of lysozyme relies on the correct (trans) isomerization of two critical proline residues. CONCLUSION: Thus, our findings confirmed that CypA induces the trans-to-cis isomerization of specific proline residues, ultimately leading to increased aggregation. Overall, this study highlights the emerging role of isomerization in tau protein pathogenesis in AD.


Assuntos
Doença de Alzheimer , Ciclofilina A , Proteínas tau , Proteínas tau/metabolismo , Ciclofilina A/metabolismo , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Agregação Patológica de Proteínas/metabolismo , Agregados Proteicos/fisiologia , Agregados Proteicos/efeitos dos fármacos , Amiloide/metabolismo , Muramidase/metabolismo
2.
J Autoimmun ; 148: 103293, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096717

RESUMO

Psoriasis is a chronic, proliferative, and inflammatory skin disease closely associated with inflammatory cytokine production. Cyclophilin A (CypA) is an important proinflammatory factor; however, its role in psoriasis remains unclear. The present data indicate that CypA levels are increased in the lesion skin and serum of patients with psoriasis, which is positively correlated with the psoriasis area severity index. Furthermore, extracellular CypA (eCypA) triggered psoriasis-like inflammatory responses in keratinocytes. Moreover, anti-CypA mAb significantly reduced pathological injury, keratinocyte proliferation, cytokine expression in imiquimod-induced mice. Notably, the therapeutic effect of anti-CypA mAb was better than that of the clinically used anti-IL-17A mAb and methotrexate. Mechanistically, eCypA binds to ACE2 and CD147 and is blocked by anti-CypA mAb. eCypA not only induces the dimerization and phosphorylation of ACE2 to trigger the JAK1/STAT3 signaling pathway for cytokine expression but also interacts with CD147 to promote PI3K/AKT/mTOR signaling-mediated keratinocyte proliferation. These findings demonstrate that the binding of eCypA to ACE2 and CD147 cooperatively triggers psoriasis-like inflammation and anti-CypA mAb is a promising candidate for the treatment of psoriasis.


Assuntos
Enzima de Conversão de Angiotensina 2 , Basigina , Ciclofilina A , Queratinócitos , Ligação Proteica , Psoríase , Transdução de Sinais , Basigina/metabolismo , Basigina/imunologia , Ciclofilina A/metabolismo , Humanos , Animais , Psoríase/metabolismo , Psoríase/imunologia , Camundongos , Queratinócitos/metabolismo , Queratinócitos/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Inflamação/metabolismo , Inflamação/imunologia , Modelos Animais de Doenças , Masculino , Feminino , Proliferação de Células , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Citocinas/metabolismo
3.
Vet Microbiol ; 297: 110190, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084161

RESUMO

Porcine deltacoronavirus (PDCoV) is an important enteric coronavirus that has caused major worldwide economic losses in the pig industry. Previous studies have shown that cyclophilin A (CypA), a key player in aetiological agent infection, is involved in regulating viral infection. However, the role of CypA during PDCoV replication remains unknown. Therefore, in this study, the role of CypA in PDCoV replication was determined. The results demonstrated that PDCoV infection increased CypA expression in LLC-PK1 cells. CypA overexpression substantially promoted PDCoV replication. Proteomic analysis was subsequently used to assess changes in total protein expression levels after CypA overexpression. Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to further determine the mechanisms by which CypA affects viral replication. Proteomic analysis revealed that CypA protein overexpression significantly upregulated 75 differentially expressed proteins and significantly downregulated 172 differentially expressed proteins. The differentially expressed proteins were involved mainly in autophagy and activation of the host innate immune pathway. Subsequent experimental results revealed that the CypA protein promoted viral replication by reducing the levels of natural immune cytokines and mitigated the inhibitory effect of chloroquine (CQ) on viral replication. Further investigation revealed that CypA could activate the Ras/AKT/NF-κB pathway, mediate autophagy signalling and promote PDCoV replication. In summary, the findings of this study may help elucidate the role of CypA in PDCoV replication.


Assuntos
Autofagia , Ciclofilina A , Deltacoronavirus , NF-kappa B , Transdução de Sinais , Doenças dos Suínos , Replicação Viral , Animais , Ciclofilina A/genética , Ciclofilina A/metabolismo , Suínos , NF-kappa B/metabolismo , Deltacoronavirus/genética , Deltacoronavirus/fisiologia , Doenças dos Suínos/virologia , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteômica , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária
4.
EMBO Rep ; 25(8): 3432-3455, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943005

RESUMO

Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.


Assuntos
Hidrolases Anidrido Ácido , Proteínas de Ciclo Celular , Ciclofilina A , Reparo do DNA , Replicação do DNA , Humanos , Hidrolases Anidrido Ácido/metabolismo , Hidrolases Anidrido Ácido/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ciclofilina A/metabolismo , Ciclofilina A/genética , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP/metabolismo , DNA Ligase Dependente de ATP/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
5.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930843

RESUMO

Cyclophilin A (CypA), the cellular receptor of the immunosuppressant cyclosporin A (CsA), is an abundant cytosolic protein and is involved in a variety of diseases. For example, CypA supports cancer proliferation and mediates viral infections, such as the human immunodeficiency virus 1 (HIV-1). Here, we present the design of PROTAC (proteolysis targeting chimera) compounds against CypA to induce its intracellular proteolysis and to investigate their effect on immune cells. Interestingly, upon connecting to E3 ligase ligands, both peptide-based low-affinity binders and CsA-based high-affinity binders can degrade CypA at nM concentration in HeLa cells and fibroblast cells. As the immunosuppressive effect of CsA is not directly associated with the binding of CsA to CypA but the inhibition of phosphatase calcineurin by the CypA:CsA complex, we investigated whether a CsA-based PROTAC compound could induce CypA degradation without affecting the activation of immune cells. P3, the most efficient PROTAC compound discovered from this study, could deplete CypA in lymphocytes without affecting cell proliferation and cytokine production. This work demonstrates the feasibility of the PROTAC approach in depleting the abundant cellular protein CypA at low drug dosage without affecting immune cells, allowing us to investigate the potential therapeutic effects associated with the endogenous protein in the future.


Assuntos
Ciclofilina A , Ciclosporina , Ativação Linfocitária , Proteólise , Linfócitos T , Humanos , Ciclofilina A/metabolismo , Ciclosporina/farmacologia , Proteólise/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Células HeLa , Proliferação de Células/efeitos dos fármacos , Imunossupressores/farmacologia , Imunossupressores/química , Quimera de Direcionamento de Proteólise
6.
Biochem Pharmacol ; 225: 116271, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723722

RESUMO

Cardiac fibrosis is characterized by abnormal proliferation of cardiac fibroblasts (CFs) and ventricular remodeling, which finally leads to heart failure. Inflammation and oxidative stress play a central role in the development of cardiac fibrosis. CyPA (Cyclophilin A) is a main proinflammatory cytokine secreted under the conditions of oxidative stress. The mechanisms by which intracellular and extracellular CyPA interact with CFs are unclear. Male C57BL/6 J mice received angiotensin Ⅱ (Ang Ⅱ) or vehicle for 4 weeks. Inhibition of CyPA significantly reversed Ang Ⅱ-induced cardiac hypertrophy and fibrosis. Mechanically, TGF-ß (Transforming growth factor-ß) signaling was found to be an indispensable downstream factor of CyPA-mediated myofibroblast differentiation and proliferation. Furthermore, intracellular CyPA and extracellular CyPA activate TGF-ß signaling through NOD-like receptor protein 3 (NLRP3) inflammasome and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, respectively. Pharmacological inhibition of CyPA and its receptor CD147 implemented by Triptolide also attenuated the expression of TGF-ß signaling and cardiac fibrosis in Ang Ⅱ-model. These studies elucidate a novel mechanism by which CyPA promotes TGF-ß and its downstream signaling in CFs and identify CyPA (both intracellular and extracellular) as plausible therapeutic targets for preventing or treating cardiac fibrosis induced by chronic Ang Ⅱ stimulation.


Assuntos
Angiotensina II , Ciclofilina A , Miocárdio , Transdução de Sinais , Animais , Masculino , Camundongos , Angiotensina II/metabolismo , Ciclofilina A/metabolismo , Fibrose/metabolismo , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
7.
Cardiovasc Diabetol ; 23(1): 129, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622592

RESUMO

The long-term high-fat diet (HFD) can cause myocardial lipotoxicity, which is characterized pathologically by myocardial hypertrophy, fibrosis, and remodeling and clinically by cardiac dysfunction and heart failure in patients with obesity and diabetes. Circular RNAs (circRNAs), a novel class of noncoding RNA characterized by a ring formation through covalent bonds, play a critical role in various cardiovascular diseases. However, few studies have been conducted to investigate the role and mechanism of circRNA in myocardial lipotoxicity. Here, we found that circ_005077, formed by exon 2-4 of Crmp1, was significantly upregulated in the myocardium of an HFD-fed rat. Furthermore, we identified circ_005077 as a novel ferroptosis-related regulator that plays a role in palmitic acid (PA) and HFD-induced myocardial lipotoxicity in vitro and in vivo. Mechanically, circ_005077 interacted with Cyclophilin A (CyPA) and inhibited its degradation via the ubiquitination proteasome system (UBS), thus promoting the interaction between CyPA and p47phox to enhance the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase responsible for ROS generation, subsequently inducing ferroptosis. Therefore, our results provide new insights into the mechanisms of myocardial lipotoxicity, potentially leading to the identification of a novel therapeutic target for the treatment of myocardial lipotoxicity in the future.


Assuntos
Ciclofilina A , Dieta Hiperlipídica , Ferroptose , Animais , Ratos , Ciclofilina A/metabolismo , Miocárdio/metabolismo , Obesidade/metabolismo
8.
Clin Hemorheol Microcirc ; 87(4): 491-513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669522

RESUMO

BACKGROUND: The progression and persistence of myocardial ischemia/reperfusion injury (MI/RI) are strongly linked to local inflammatory responses and oxidative stress. Cyclophilin A (CypA), a pro-inflammatory factor, is involved in various cardiovascular diseases. However, the role and mechanism of action of CypA in MI/RI are still not fully understood. METHODS: We used the Gene Expression Omnibus (GEO) database for bioinformatic analysis. We collected blood samples from patients and controls for detecting the levels of serum CypA using enzyme-linked immunosorbent assay (ELISA) kits. We then developed a myocardial ischemia/reperfusion (I/R) injury model in wild-type (WT) mice and Ppia-/- mice. We utilized echocardiography, hemodynamic measurements, hematoxylin and eosin (H&E) staining, immunohistochemistry, enzyme-linked immunosorbent assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to determine the role of CypA in myocardial I/R injury. Finally, we conducted an in vitrostudy, cell transfection, flow cytometry, RNA interference, and a co-immunoprecipitation assay to clarify the mechanism of CypA in aggravating cardiomyocyte apoptosis. RESULTS: We found that CypA inhibited TXNIP degradation to enhance oxidative stress-induced cardiomyocyte apoptosis during MI/RI. By comparing and analyzing CypA expression in patients with coronary atherosclerotic heart disease and in healthy controls, we found that CypA was upregulated in patients with Coronary Atmospheric Heart Disease, and its expression was positively correlated with Gensini scores. In addition, CypA deficiency decreased cytokine expression, oxidative stress, and cardiomyocyte apoptosis in I/R-treated mice, eventually alleviating cardiac dysfunction. CypA knockdown also reduced H2O2-induced apoptosis in H9c2 cells. Mechanistically, we found that CypA inhibited K48-linked ubiquitination mediated by atrophin-interacting protein 4 (AIP4) and proteasomal degradation of TXNIP, a thioredoxin-binding protein that mediates oxidative stress and induces apoptosis. CONCLUSION: These findings highlight the critical role CypA plays in myocardial injury caused by oxidative stress-induced apoptosis, indicating that CypA can be a viable biomarker and a therapeutic target candidate for MI/RI.


Assuntos
Apoptose , Proteínas de Transporte , Ciclofilina A , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Ciclofilina A/metabolismo , Camundongos , Humanos , Proteínas de Transporte/metabolismo , Estresse Oxidativo , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Tiorredoxinas/metabolismo , Camundongos Knockout
9.
Proteins ; 92(9): 1113-1126, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38687146

RESUMO

An explicit analytic solution is given for the Langevin equation applied to the Gaussian Network Model of a protein subjected to both a random and a deterministic periodic force. Synchronous and asynchronous components of time correlation functions are derived and an expression for phase differences in the time correlations of residue pairs is obtained. The synchronous component enables the determination of dynamic communities within the protein structure. The asynchronous component reveals causality, where the time correlation function between residues i and j differs depending on whether i is observed before j or vice versa, resulting in directional information flow. Driver and driven residues in the allosteric process of cyclophilin A and human NAD-dependent isocitrate dehydrogenase are determined by a perturbation-scanning technique. Factors affecting phase differences between fluctuations of residues, such as network topology, connectivity, and residue centrality, are identified. Within the constraints of the isotropic Gaussian Network Model, our results show that asynchronicity increases with viscosity and distance between residues, decreases with increasing connectivity, and decreases with increasing levels of eigenvector centrality.


Assuntos
Ciclofilina A , Humanos , Ciclofilina A/química , Ciclofilina A/metabolismo , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/genética , Regulação Alostérica , Proteínas/química , Proteínas/metabolismo , Modelos Moleculares , Conformação Proteica , Distribuição Normal
10.
J Ethnopharmacol ; 327: 118042, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38493907

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The cluster of differentiation 147 (CD147) is identified as the signaling protein relevant importantly in various cancers, inflammations, and coronavirus disease 2019 (COVID-19) via interacting with extracellular cyclophilin A (CypA). The reduction of CD147 levels inhibits the progression of CD147-associated diseases. Thai traditional medicines (TTMs): Keaw-hom (KH), Um-ma-ruek-ka-wa-tee (UM), Chan-ta-lee-la (CT), and Ha-rak (HR) have been used as anti-pyretic and anti-respiratory syndromes caused from various conditions including cancers, inflammations, and infections. Thus, these medicines would play a crucial role in the reduction of CD147 levels. AIM OF THE STUDY: This article aimed to investigate the effects of KH, UM, CT, and HR for reducing the CD147 levels through in vitro study. Additionally, in silico study was employed to screen the active compounds reflexing the reduction of CD147 levels. MATERIALS AND METHODS: The immunofluorescent technique was used to evaluate the reduction of CD147 levels in human lung epithelial cells (BEAS-2B) stimulated with CypA for eight extracts of KH, UM, CT, and HR obtained from water decoction (D) and 70% ethanol maceration (M) including, KHD, UMD, CTD, HRD, KHM, UMM, CTM, and HRM. RESULTS: UM extracts showed the most efficiency for reduction of CD147 levels in the cytoplasm and perinuclear of BEAS-2B cells stimulated with CypA. Phenolic compounds composing polyphenols, polyphenol sugars, and flavonoids were identified as the major chemical components of UMD and UMM. Further, molecular docking calculations identified polyphenol sugars as CypA inhibitors. CONCLUSIONS: UMD and UMM are potential for reduction of CD147 levels which provide a useful information for further development of UM as potential therapeutic candidates for CD147-associated diseases such as cancers, inflammations, and COVID-19.


Assuntos
COVID-19 , Neoplasias , Humanos , Basigina/metabolismo , Medicina Tradicional Tailandesa , Simulação de Acoplamento Molecular , Ciclofilina A/química , Ciclofilina A/metabolismo , Ciclofilina A/farmacologia , Inflamação , Pulmão/metabolismo , Polifenóis , Açúcares
11.
Mol Ther ; 32(5): 1510-1525, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454605

RESUMO

The acute respiratory virus infection can induce uncontrolled inflammatory responses, such as cytokine storm and viral pneumonia, which are the major causes of death in clinical cases. Cyclophilin A (CypA) is mainly distributed in the cytoplasm of resting cells and released into the extracellular space in response to inflammatory stimuli. Extracellular CypA (eCypA) is upregulated and promotes inflammatory response in severe COVID-19 patients. However, how eCypA promotes virus-induced inflammatory response remains elusive. Here, we observe that eCypA is induced by influenza A and B viruses and SARS-CoV-2 in cells, mice, or patients. Anti-CypA mAb reduces pro-inflammatory cytokines production, leukocytes infiltration, and lung injury in virus-infected mice. Mechanistically, eCypA binding to integrin ß2 triggers integrin activation, thereby facilitating leukocyte trafficking and cytokines production via the focal adhesion kinase (FAK)/GTPase and FAK/ERK/P65 pathways, respectively. These functions are suppressed by the anti-CypA mAb that specifically blocks eCypA-integrin ß2 interaction. Overall, our findings reveal that eCypA-integrin ß2 signaling mediates virus-induced inflammatory response, indicating that eCypA is a potential target for antibody therapy against viral pneumonia.


Assuntos
COVID-19 , Ciclofilina A , Ciclofilina A/metabolismo , Animais , Humanos , Camundongos , COVID-19/metabolismo , COVID-19/virologia , COVID-19/imunologia , Antígenos CD18/metabolismo , SARS-CoV-2 , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Pneumonia Viral/metabolismo , Pneumonia Viral/imunologia , Citocinas/metabolismo , Anticorpos Monoclonais/farmacologia , Transdução de Sinais , Vírus da Influenza A , Modelos Animais de Doenças
12.
Mol Ther ; 32(6): 1805-1816, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38532628

RESUMO

The novel coronavirus disease 2019 has stimulated the rapid development of new biological therapeutics to inhibit SARS-CoV-2 infection; however, this remains a challenging task. In a previous study using structural analysis, we revealed that human cyclophilin A inhibits the entry of SARS-CoV-2 into host cells by interfering with the interaction of the receptor-binding domain of the spike protein with angiotensin-converting enzyme 2 on the host cell surface, highlighting its potential for antiviral therapy. For a comprehensive experimental validation, in this study, we verified the antiviral effects of human cyclophilin A against SARS-CoV-2, including its variants, using in vitro assays and experiments on an in vivo mouse model. Human cyclophilin A demonstrated a highly effective antiviral effect, with an 85% survival rate upon SARS-CoV-2 infection. It also reduced viral titers, inflammation in the lungs and brain, and cytokine release in the serum, suggesting a controlled immune response and potentially faster recovery. Overall, our study provides insights into the potential of human cyclophilin A as a therapeutic agent against SARS-CoV-2, which should guide future clinical trials that might provide an additional therapeutic option for patients.


Assuntos
Antivirais , COVID-19 , Ciclofilina A , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , SARS-CoV-2/efeitos dos fármacos , Humanos , Ciclofilina A/metabolismo , Camundongos , Antivirais/farmacologia , COVID-19/virologia , COVID-19/metabolismo , Ligação Proteica , Tratamento Farmacológico da COVID-19 , Enzima de Conversão de Angiotensina 2/metabolismo , Modelos Animais de Doenças , Células Vero , Chlorocebus aethiops , Feminino
13.
PLoS Pathog ; 20(3): e1011830, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512975

RESUMO

Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced GTPase that inhibits human immunodeficiency virus-1 (HIV-1) infection by preventing nuclear import of the viral preintegration complex. The HIV-1 capsid (CA) is the major viral determinant for sensitivity to MX2, and complex interactions between MX2, CA, nucleoporins (Nups), cyclophilin A (CypA), and other cellular proteins influence the outcome of viral infection. To explore the interactions between MX2, the viral CA, and CypA, we utilized a CRISPR-Cas9/AAV approach to generate CypA knock-out cell lines as well as cells that express CypA from its endogenous locus, but with specific point mutations that would abrogate CA binding but should not affect enzymatic activity or cellular function. We found that infection of CypA knock-out and point mutant cell lines with wild-type HIV-1 and CA mutants recapitulated the phenotypes observed upon cyclosporine A (CsA) addition, indicating that effects of CsA treatment are the direct result of blocking CA-CypA interactions and are therefore independent from potential interactions between CypA and MX2 or other cellular proteins. Notably, abrogation of GTP hydrolysis by MX2 conferred enhanced antiviral activity when CA-CypA interactions were abolished, and this effect was not mediated by the CA-binding residues in the GTPase domain, or by phosphorylation of MX2 at position T151. We additionally found that elimination of GTPase activity also altered the Nup requirements for MX2 activity. Our data demonstrate that the antiviral activity of MX2 is affected by CypA-CA interactions in a virus-specific and GTPase activity-dependent manner. These findings further highlight the importance of the GTPase domain of MX2 in regulation of substrate specificity and interaction with nucleocytoplasmic trafficking pathways.


Assuntos
Capsídeo , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Capsídeo/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ciclofilina A/genética , Ciclofilina A/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Antivirais/metabolismo , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo
14.
Nat Cell Biol ; 26(4): 593-603, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553595

RESUMO

Loss of protein function is a driving force of ageing. We have identified peptidyl-prolyl isomerase A (PPIA or cyclophilin A) as a dominant chaperone in haematopoietic stem and progenitor cells. Depletion of PPIA accelerates stem cell ageing. We found that proteins with intrinsically disordered regions (IDRs) are frequent PPIA substrates. IDRs facilitate interactions with other proteins or nucleic acids and can trigger liquid-liquid phase separation. Over 20% of PPIA substrates are involved in the formation of supramolecular membrane-less organelles. PPIA affects regulators of stress granules (PABPC1), P-bodies (DDX6) and nucleoli (NPM1) to promote phase separation and increase cellular stress resistance. Haematopoietic stem cell ageing is associated with a post-transcriptional decrease in PPIA expression and reduced translation of IDR-rich proteins. Here we link the chaperone PPIA to the synthesis of intrinsically disordered proteins, which indicates that impaired protein interaction networks and macromolecular condensation may be potential determinants of haematopoietic stem cell ageing.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Ciclofilina A/genética , Ciclofilina A/metabolismo , Proteínas de Ligação a RNA , Células-Tronco Hematopoéticas/metabolismo
15.
J Neurosci Res ; 102(2): e25301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361405

RESUMO

Our previous study found that receptor interacting protein 3 (RIP3) and apoptosis-inducing factor (AIF) were involved in neuronal programmed necrosis during global cerebral ischemia-reperfusion (I/R) injury. Here, we further studied its downstream mechanisms and the role of the autophagy inhibitors 3-methyladenine (3-MA) and bafilomycin A1 (BAF). A 20-min global cerebral I/R injury model was constructed using the 4-vessel occlusion (4-VO) method in male rats. 3-MA and BAF were injected into the lateral ventricle 1 h before ischemia. Spatial and activation changes of proteins were detected by immunofluorescence (IF), and protein interaction was determined by immunoprecipitation (IP). The phosphorylation of H2AX (γ-H2AX) and activation of mixed lineage kinase domain-like protein (p-MLKL) occurred as early as 6 h after reperfusion. RIP3, AIF, and cyclophilin A (CypA) in the neurons after I/R injury were spatially overlapped around and within the nucleus and combined with each other after reperfusion. The survival rate of CA1 neurons in the 3-MA and BAF groups was significantly higher than that in the I/R group. Autophagy was activated significantly after I/R injury, which was partially inhibited by 3-MA and BAF. Pretreatment with both 3-MA and BAF almost completely inhibited nuclear translocation, spatial overlap, and combination of RIP3, AIF, and CypA proteins. These findings suggest that after global cerebral I/R injury, RIP3, AIF, and CypA translocated into the nuclei and formed the DNA degradation complex RIP3/AIF/CypA in hippocampal CA1 neurons. Pretreatment with autophagy inhibitors could reduce neuronal necroptosis by preventing the formation of the RIP3/AIF/CypA complex and its nuclear translocation.


Assuntos
Isquemia Encefálica , Macrolídeos , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Ciclofilina A/genética , Ciclofilina A/metabolismo , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Necroptose , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Apoptose , Neurônios/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Autofagia
16.
Cardiovasc Res ; 120(4): 385-402, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38175781

RESUMO

AIMS: Cyclophilin A (CyPA) induces leucocyte recruitment and platelet activation upon release into the extracellular space. Extracellular CyPA therefore plays a critical role in immuno-inflammatory responses in tissue injury and thrombosis upon platelet activation. To date, CD147 (EMMPRIN) has been described as the primary receptor mediating extracellular effects of CyPA in platelets and leucocytes. The receptor for advanced glycation end products (RAGE) shares inflammatory and prothrombotic properties and has also been found to have similar ligands as CD147. In this study, we investigated the role of RAGE as a previously unknown interaction partner for CyPA. METHODS AND RESULTS: Confocal imaging, proximity ligation, co-immunoprecipitation, and atomic force microscopy were performed and demonstrated an interaction of CyPA with RAGE on the cell surface. Static and dynamic cell adhesion and chemotaxis assays towards extracellular CyPA using human leucocytes and leucocytes from RAGE-deficient Ager-/- mice were conducted. Inhibition of RAGE abrogated CyPA-induced effects on leucocyte adhesion and chemotaxis in vitro. Accordingly, Ager-/- mice showed reduced leucocyte recruitment and endothelial adhesion towards CyPA in vivo. In wild-type mice, we observed a downregulation of RAGE on leucocytes when endogenous extracellular CyPA was reduced. We furthermore evaluated the role of RAGE for platelet activation and thrombus formation upon CyPA stimulation. CyPA-induced activation of platelets was found to be dependent on RAGE, as inhibition of RAGE, as well as platelets from Ager-/- mice showed a diminished activation and thrombus formation upon CyPA stimulation. CyPA-induced signalling through RAGE was found to involve central signalling pathways including the adaptor protein MyD88, intracellular Ca2+ signalling, and NF-κB activation. CONCLUSION: We propose RAGE as a hitherto unknown receptor for CyPA mediating leucocyte as well as platelet activation. The CyPA-RAGE interaction thus represents a novel mechanism in thrombo-inflammation.


Assuntos
Ciclofilina A , Trombose , Camundongos , Humanos , Animais , Ciclofilina A/genética , Ciclofilina A/metabolismo , Produtos Finais de Glicação Avançada , Ligantes , Inflamação , Basigina/metabolismo , Trombose/genética
17.
Am J Pathol ; 194(4): 612-625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38040091

RESUMO

Pathologic opening of the blood-brain barrier accelerates the progression of various neural diseases. Basigin, as an essential molecule for the opening of the blood-brain barrier, is a highly glycosylated transmembrane molecule specified in barrier-forming endothelial cells. This study analyzed the involvement of basigin in the regulation of the blood-brain barrier focusing on its glycosylation forms. First, basigin was found to be expressed as cell surface molecules with complex-type glycan as well as those with high-mannose-type glycan in barrier-forming endothelial cells. Monolayers of endothelial cells with suppressed expression of basigin with high-mannose-type glycan were then prepared and exposed to pathologic stimuli. These monolayers retained their barrier-forming properties even in the presence of pathologic stimuli, although their expression of basigin with complex-type glycan was maintained. In vivo, the blood-brain barrier in mice pretreated intravenously with endoglycosidase H was protected from opening under pathologic stimuli. Pathologically opened blood-brain barrier in streptozotocin-injected mice was successfully closed by intravenous injection of endoglycosidase H. These results show that high-mannose-type glycan of the basigin molecule is essential for the opening of the blood-brain barrier and therefore a specific target for protection as well as restoration of pathologic opening of the blood-brain barrier.


Assuntos
Basigina , Barreira Hematoencefálica , Animais , Camundongos , Basigina/metabolismo , Barreira Hematoencefálica/metabolismo , Ciclofilina A/metabolismo , Células Endoteliais/metabolismo , Glicosídeo Hidrolases/metabolismo , Hipóxia , Manose , Polissacarídeos , Fator de Necrose Tumoral alfa/metabolismo
18.
Eur J Drug Metab Pharmacokinet ; 49(1): 57-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040985

RESUMO

BACKGROUND AND OBJECTIVE: Cyclophilin A (CypA) is an isomerase that functions as a chaperone, housekeeping protein, and cyclosporine A (CsA) ligand. Secreted CypA is a proinflammatory factor, chemoattractant, immune regulator, and factor of antitumor immunity. Experimental data suggest clinical applications of recombinant human CypA (rhCypA) as a biotherapeutic for cancer immunotherapy, stimulation of tissue regeneration, treatment of brain pathologies, and as a supportive treatment for CsA-based therapies. The objective of this study is to analyze the pharmacokinetics of rhCypA in a mouse model. METHODS: rhCypA was isotope-labeled with 125I and injected intraperitoneally (i.p.) or subcutaneously (s/c) into female mice as a single dose of 100 µg per mouse, equivalent to the estimated first-in-human dose. Analysis of 125I-rhCypA biodistribution and excretion was performed by direct radiometry of the blood, viscera, and urine of mice 0.5-72 h following its administration. RESULTS: rhCypA showed rapid and even tissue-organ distribution, with the highest tropism (fT = 1.56) and accumulation (maximum concentration, Cmax = 137-167 µg/g) in the kidneys, its primary excretory organ. rhCypA showed the lowest tropism to the bone marrow and the brain (fT = 0.07) but the longest retention in these organs [mean retention time (MRT) = 25-28 h]. CONCLUSION: This study identified promising target organs for rhCypA's potential therapeutic effects. The mode of rhCypA accumulation and retention in organs could be primarily due to the expression of its receptors in them. For the first time, rhCypA was shown to cross the blood-brain barrier and accumulate in the brain. These rhCypA pharmacokinetic data could be extrapolated to humans as preliminary data for possible clinical trials.


Assuntos
Ciclofilina A , Ciclosporina , Animais , Feminino , Humanos , Camundongos , Ciclofilina A/metabolismo , Ciclofilina A/farmacocinética , Ciclosporina/farmacologia , Rim/metabolismo , Distribuição Tecidual , Proteínas Recombinantes/farmacocinética
19.
Appl Microbiol Biotechnol ; 108(1): 28, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38159118

RESUMO

Cyclophilin A (CypA), the first member of cyclophilins, is distributed extensively in eukaryotic and prokaryotic cells, primarily localized in the cytoplasm. In addition to acting as an intracellular receptor for cyclosporin A (CSA), CypA plays a crucial role in diseases such as aging and tumorigenesis. Apoptosis, a form of programmed cell death, is able to balance the rate of cell viability and death. In this review, we focus on the effects of CypA on apoptosis and the relationship between specific mechanisms of CypA promoting or inhibiting apoptosis and diseases, including tumorigenesis, cardiovascular diseases, organ injury, and microbial infections. Notably, the process of CypA promoting or inhibiting apoptosis is closely related to disease development. Finally, future prospects for the association of CypA and apoptosis are discussed, and a comprehensive understanding of the effects of CypA on apoptosis in relation to diseases is expected to provide new insights into the design of CypA as a therapeutic target for diseases. KEY POINTS: • Understand the effect of CypA on apoptosis. • CypA affects apoptosis through specific pathways. • The effect of CypA on apoptosis is associated with a variety of disease processes.


Assuntos
Ciclofilina A , Ciclosporina , Humanos , Ciclofilina A/metabolismo , Ciclosporina/metabolismo , Proteínas de Transporte , Apoptose , Carcinogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...