Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.110
Filtrar
1.
Biol Pharm Bull ; 47(6): 1218-1223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38925922

RESUMO

Unknown interactions between drugs remain the limiting factor for clinical application of drugs, and the induction and inhibition of drug-metabolizing CYP enzymes are considered the key to examining the drug-drug interaction (DDI). In this study, using human HepaRG cells as an in vitro model system, we analyzed the potential DDI based on the expression levels of CYP3A4 and CYP1A2. Rifampicin and omeprazole, the potent inducers for CYP3A4 and CYP1A2, respectively, induce expression of the corresponding CYP enzymes at both the mRNA and protein levels. We noticed that, in addition to inducing CYP1A2, omeprazole induced CYP3A4 mRNA expression in HepaRG cells. However, unexpectedly, CYP3A4 protein expression levels were not increased after omeprazole treatment. Concurrent administration of rifampicin and omeprazole showed an inhibitory effect of omeprazole on the CYP3A4 protein expression induced by rifampicin, while its mRNA induction remained intact. Cycloheximide chase assay revealed increased CYP3A4 protein degradation in the cells exposed to omeprazole. The data presented here suggest the potential importance of broadening the current DDI examination beyond conventional transcriptional induction and enzyme-activity inhibition tests to include post-translational regulation analysis of CYP enzyme expression.


Assuntos
Citocromo P-450 CYP3A , Interações Medicamentosas , Omeprazol , RNA Mensageiro , Rifampina , Omeprazol/farmacologia , Humanos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Rifampina/farmacologia , RNA Mensageiro/metabolismo , Indutores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A2/biossíntese , Linhagem Celular
2.
BMC Cancer ; 24(1): 728, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877514

RESUMO

BACKGROUND: Circular RNA (circRNAs) have been found to play major roles in the progression of colorectal cancer (CRC). However, the functions of circ_0008345 (transcribed by PTK2) in regulating CRC development remain undefined. In this study, we aimed to explore the roles and underlying mechanisms of circ_0008345 in CRC. METHODS: RNase R-treated total cellular RNA was used to verify the circular structure of circ_0008345, and a subcellular fractionation assay was performed to detect the subcellular localization of circ_0008345. RNA pull-down and dual-luciferase assays were used to verify the binding relation between microRNA (miR)-182-5p and circ_0008345 and/or CYP1A2. Colony formation assay, EdU, and Transwell assays were performed to detect the biological behavior of CRC cells in vitro, and CRC cells were injected into mice to observe the tumor formation. m6A immunoprecipitation was used to detect the m6A modification of circ_0008345 in CRC cells. RESULTS: Circ_0008345, upregulated in CRC tissues and cells, was mainly present in the cytoplasm. Circ_0008345 bound to miR-182-5p, and miR-182-5p targeted CYP1A2, an oncogene in CRC. The colony formation, mobility, EdU-positive cell rate in vitro, and tumor growth in mice were inhibited after the knockdown of circ_0008345. However, the suppressing effects of sh-circ_0008345 on CRC and CYP1A2 expression were significantly reversed after further knockdown of miR-182-5p. METTL3 was the m6A modifier mediating circ_0008345 expression, and the suppression of METTL3 reduced the expression of circ_0008345. CONCLUSIONS: METTL3-dependent m6A methylation upregulated circ_0008345, which blocked the inhibitory effect of miR-182-5p on CYP1A2, thereby exacerbating the malignant phenotype of CRC cells.


Assuntos
Neoplasias Colorretais , Citocromo P-450 CYP1A2 , Progressão da Doença , Metiltransferases , MicroRNAs , RNA Circular , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Animais , Camundongos , Metiltransferases/metabolismo , Metiltransferases/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Linhagem Celular Tumoral , Masculino , Feminino , Transdução de Sinais , Camundongos Nus
3.
CNS Drugs ; 38(7): 571-581, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38836990

RESUMO

BACKGROUND AND OBJECTIVES: Clozapine is the medication of choice for treatment-resistant schizophrenia. However, it has a complex metabolism and unexplained interindividual variability. The current work aims to develop a pharmacokinetic model of clozapine and norclozapine in non-smokers and assess the impact of demographic and genetic predictors. METHODS: Healthy volunteers were recruited in a population pharmacokinetic study. Blood samples were collected at 30 min and 1, 2, 3, 5 and 8 h following a single flat dose of clozapine (12.5 mg). The clozapine and norclozapine concentrations were measured via high-performance liquid chromatography-ultraviolet method. A semi-physiological pharmacokinetic model of clozapine and norclozapine was developed using nonlinear mixed-effects modeling. Clinical and genetic predictors were evaluated, including CYP1A2 (rs762551) and ABCB1 (rs2032582), using restriction fragment length polymorphism. RESULTS: A total of 270 samples were collected from 33 participants. The data were best described using a two-compartment model for clozapine and a two-compartment model for norclozapine with first-order absorption and elimination and pre-systemic metabolism. The estimated (relative standard error) clearance of clozapine and norclozapine were 27 L h-1 (31.5 %) and 19.6 L h-1 (30%), respectively. Clozapine clearance was lower in sub-Saharan Africans (n = 4) and higher in Caucasians (n = 9) than Asians (n = 20). Participants with CYP1A2 (rs762551) (n = 18) and ABCB1 (rs2032582) (n = 12) mutant alleles had lower clozapine clearance in the univariate analysis. CONCLUSIONS: This is the first study to develop a semi-physiological pharmacokinetic model of clozapine and norclozapine accounting for the pre-systemic metabolism. Asians required lower doses of clozapine as compared with Caucasians, while clozapine pharmacokinetics in sub-Saharan Africans should be further investigated in larger trials.


Assuntos
Antipsicóticos , Clozapina , Citocromo P-450 CYP1A2 , Voluntários Saudáveis , Modelos Biológicos , Clozapina/farmacocinética , Clozapina/análogos & derivados , Clozapina/administração & dosagem , Clozapina/sangue , Humanos , Adulto , Masculino , Antipsicóticos/farmacocinética , Antipsicóticos/administração & dosagem , Feminino , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Adulto Jovem , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Pessoa de Meia-Idade
4.
J Hazard Mater ; 474: 134850, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850947

RESUMO

Titanium dioxide nanoparticles (nTiO2) have been considered a possible carcinogen to humans, but most existing studies have overlooked the role of human enzymes in assessing the genotoxicity of nTiO2. Here, a toxicogenomics-based in vitro genotoxicity assay using a GFP-fused yeast reporter library was employed to elucidate the genotoxic potential and mechanisms of nTiO2. Moreover, two new GFP-fused yeast reporter libraries containing either human CYP1A1 or CYP1A2 genes were constructed by transformation to investigate the potential modulation of nTiO2 genotoxicity in the presence of human CYP enzymes. This study found a lack of appreciable nTiO2 genotoxicity as indicated by the yeast reporter library in the absence of CYP expression but a significantly elevated indication of genotoxicity in either CYP1A1- or CYP1A2-expressing yeast. The intracellular reactive oxygen species (ROS) measurement indicated significantly higher ROS in yeast expressing either enzyme. The detected mitochondrial DNA damage suggested mitochondria as one of the target sites for oxidative damage by nTiO2 in the presence of either one of the CYP enzymes. The results thus indicated that the genotoxicity of nTiO2 was enhanced by human CYP1A1 or CYP1A2 enzyme and was associated with elevated oxidative stress, which suggested that the similar mechanisms could occur in human cells.


Assuntos
Citocromo P-450 CYP1A1 , Dano ao DNA , Testes de Mutagenicidade , Espécies Reativas de Oxigênio , Saccharomyces cerevisiae , Titânio , Humanos , Titânio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Genes Reporter , Nanopartículas/toxicidade , Nanopartículas Metálicas/toxicidade , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
5.
Xenobiotica ; 54(5): 226-232, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38646717

RESUMO

Various cytochrome P450 enzymes (CYPs) that contribute to drug metabolism are expressed in the skin. However, variation among individuals in CYP expression profiles is not well-understood.To investigate CYPs related to the metabolism of transdermal preparations in Japan, multiple skin tissue specimens of individuals of Japanese descent were prepared, and the mRNA expression levels of CYP1A2, CYP3A4, and CYP3A5 were measured. Associations between the expression patterns of these CYPs and body mass index (BMI) were also investigated.There were considerable individual differences in epidermal CYP1A2 mRNA expression levels, and CYP1A2 showed a weak positive correlation with CYP3A4 mRNA expression levels. In contrast to previous results for other organs, epidermal CYP3A4 mRNA expression levels showed a weak positive correlation with BMI.CYP3A4 in the epidermis may have been locally enhanced as a defence mechanism against xenobiotics in response to impaired barrier function. These differences in mRNA expression in the skin may affect the transdermal absorption of drugs, such as lidocaine and fentanyl, which are metabolised by multiple overlapping CYPs.Our study provides new insights into drug metabolism in the skin. These results are valuable for predicting drug effects and transdermal drug transfer rates in Japanese patients.


Assuntos
Citocromo P-450 CYP3A , Epiderme , RNA Mensageiro , Humanos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Epiderme/metabolismo , Japão , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A2/genética , Masculino , Feminino , Povo Asiático , Pessoa de Meia-Idade , Adulto , Índice de Massa Corporal , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , População do Leste Asiático
6.
Pathol Res Pract ; 257: 155290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640781

RESUMO

The intricate relationship between smoking and the effects of the antiplatelet drug clopidogrel has been termed the "smoker's paradox". This paradox details the enhanced efficacy of clopidogrel in smokers compared to non-smokers. This review begins with an exploration of the proposed mechanisms of the smoker's paradox, particularly drawing attention to the induction of cytochrome P450 (CYP) isoenzymes via tobacco smoke, specifically the enzymes CYP1A2 and CYP2C19. Moreover, an investigation of the effects of genetic variability on the smoker's paradox was undertaken from both clinical and molecular perspectives, delving into the effects of ethnicity and genetic polymorphisms. The intriguing role of CYP1A2 genotypes and the response to clopidogrel in smoking and non-smoking populations was examined conferring insight into the individuality rather than universality of the smoker's paradox. CYP1A2 induction is hypothesised to elucidate the potency of smoking in exerting a counteracting effect in those taking clopidogrel who possess CYP2C19 loss of function polymorphisms. Furthermore, we assess the comparative efficacies of clopidogrel and other antiplatelet agents, namely prasugrel and ticagrelor. Studies indicated that prasugrel and ticagrelor provided a more consistent effect and further reduced platelet reactivity compared to clopidogrel within both smoking and non-smoking populations. Personalised dosing was another focus of the review considering patient comorbidities, genetic makeup, and smoking status with the objective of improving the antiplatelet response of those taking clopidogrel. In summation, this review provides insight into multiple areas of research concerning clopidogrel and the smoker's paradox taking into account proposed mechanisms, genetics, other antiplatelet agents, and personalised dosing.


Assuntos
Clopidogrel , Inibidores da Agregação Plaquetária , Fumar , Humanos , Clopidogrel/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/farmacologia , Fumar/efeitos adversos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Fumantes , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo
7.
Drug Metab Dispos ; 52(6): 555-564, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38565301

RESUMO

Cytochrome P450 1A2 (CYP1A2) is a known tumor suppressor in hepatocellular carcinoma (HCC), but its expression is repressed in HCC and the underlying mechanism is unclear. In this study, we investigated the epigenetic mechanisms of CYP1A2 repression and potential therapeutic implications. In HCC tumor tissues, the methylation rates of CYP1A2 CpG island (CGI) and DNA methyltransferase (DNMT) 3A protein levels were significantly higher, and there was a clear negative correlation between DNMT3A and CYP1A2 protein expression. Knockdown of DNMT3A by siRNA significantly increased CYP1A2 expression in HCC cells. Additionally, treating HCC cells with decitabine (DAC) resulted in a dose-dependent upregulation of CYP1A2 expression by reducing the methylation level of CYP1A2 CGI. Furthermore, we observed a decreased enrichment of H3K27Ac in the promoter region of CYP1A2 in HCC tissues. Treatment with the trichostatin A (TSA) restored CYP1A2 expression in HCC cells by increasing H3K27Ac levels in the CYP1A2 promoter region. Importantly, combination treatment of sorafenib with DAC or TSA resulted in a leftward shift of the dose-response curve, lower IC50 values, and reduced colony numbers in HCC cells. Our findings suggest that hypermethylation of the CGI at the promoter, mediated by the high expression of DNMT3A, and hypoacetylation of H3K27 in the CYP1A2 promoter region, leads to CYP1A2 repression in HCC. Epigenetic drugs DAC and TSA increase HCC cell sensitivity to sorafenib by restoring CYP1A2 expression. Our study provides new insights into the epigenetic regulation of CYP1A2 in HCC and highlights the potential of epigenetic drugs as a therapeutic approach for HCC. SIGNIFICANCE STATEMENT: This study marks the first exploration of the epigenetic mechanisms underlying cytochrome P450 (CYP) 1A2 suppression in hepatocellular carcinoma (HCC). Our findings reveal that heightened DNA methyltransferase expression induces hypermethylation of the CpG island at the promoter, coupled with diminished H3K27Ac levels, resulting in the repression of CYP1A2 in HCC. The use of epigenetic drugs such as decitabine and trichostatin A emerges as a novel therapeutic avenue, demonstrating their potential to restore CYP1A2 expression and enhance sorafenib sensitivity in HCC cells.


Assuntos
Carcinoma Hepatocelular , Citocromo P-450 CYP1A2 , Metilação de DNA , Epigênese Genética , Neoplasias Hepáticas , Sorafenibe , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Sorafenibe/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Metilação de DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , DNA Metiltransferase 3A , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Decitabina/farmacologia , Ilhas de CpG/genética , Ácidos Hidroxâmicos/farmacologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/efeitos dos fármacos
8.
Basic Clin Pharmacol Toxicol ; 134(6): 805-817, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599832

RESUMO

Clozapine is characterized by a large within- and between-patient variability in its pharmacokinetics, attributed to non-genetic and genetic factors. A cross-sectional analysis of clozapine trough concentration (Clz C0) issued from Tunisian schizophrenic patients was collected and analysed using a nonparametric modelling approach. We assessed the impact of demographic covariates (age, weight and sex), patient's habits (smoking status, alcohol and caffeine intake) and the genetic factors (CYP1A2*1C, CYP1A2*1F and CYP2C19*2 polymorphisms) on each pharmacokinetic parameter. An external validation of this pharmacokinetic model using an independent data set was performed. Fit goodness between observed- and individual-predicted data was evaluated using the mean prediction error (% MPE), the mean absolute prediction error (% MAPE) as a measure of bias, and the root mean squared error (% RMSE) as a measure of precision. Sixty-three CLz C0 values issued from 51 schizophrenic patients were assessed in this study and divided into building and validation groups. CYP1A2*1F polymorphism and smoking status were the only covariates significantly associated with clozapine clearance. Precision parameters were as follows: 1.02%, 0.95% and 22.4%, respectively, for % MPE, % MAPE and % RMSE. We developed and validated an accurate pharmacokinetic model able to predict Clz C0 in Tunisian schizophrenic patients using the two parameters CYP1A2*1F polymorphism and smoking.


Assuntos
Antipsicóticos , Clozapina , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2C19 , Esquizofrenia , Humanos , Clozapina/farmacocinética , Clozapina/sangue , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Masculino , Feminino , Tunísia , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Adulto , Antipsicóticos/farmacocinética , Estudos Transversais , Pessoa de Meia-Idade , Citocromo P-450 CYP2C19/genética , Modelos Biológicos , Fumar , Adulto Jovem , Polimorfismo Genético
9.
Free Radic Biol Med ; 211: 35-46, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081439

RESUMO

Pregnant women exposed to polycyclic aromatic hydrocarbons (PAHs) are at increased risk for premature delivery. Premature infants often require supplemental oxygen, a known risk factor for bronchopulmonary dysplasia (BPD). Cytochrome P450 (CYP) enzymes have been implicated in hyperoxic lung injury. We hypothesize that prenatal PAH exposure exacerbates oxygen-mediated lung injury in neonatal mice, and that this effect is differentially altered in mice lacking the gene for (Cyp)1a1, 1a2, or 1b1. Timed pregnant wild type (WT) (C57BL/6J) mice were orally administered a PAH mixture of benzo[a]pyrene (BP) and benzo[b]fluoranthene (BbF) or the vehicle corn oil (CO) once daily on gestational days 16-19, and the dose response on postnatal lung injury was examined. In addition, timed pregnant mice with one of four genotypes, WT, Cyp1a1-null, Cyp1a2-null, and Cyp1b1-null, were treated orally with CO or PAH on gestational days 16-19 and exposed to hyperoxia or room air for 14 days. Lung injury was assessed on PND15 by radial alveolar count (RAC) and mean linear intercept (MLI) Gene expression of DNA repair genes in lung and liver were measured. Results showed that neonatal hyperoxic lung injury is augmented by prenatal PAH exposure in a dose-dependent manner. This effect was differentially altered in the Cyp-null mice, with Cyp1a2-null showing the greatest extent of lung injury. We concluded that newborn mice exposed to PAH in utero had more significant lung injury in response to hyperoxia than non-PAH exposed pups, and that CYP1A1 and CYP1A2 are protective against lung injury while CYP1B1 augments lung injury.


Assuntos
Hiperóxia , Lesão Pulmonar , Hidrocarbonetos Policíclicos Aromáticos , Efeitos Tardios da Exposição Pré-Natal , Humanos , Recém-Nascido , Feminino , Animais , Camundongos , Gravidez , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Lesão Pulmonar/induzido quimicamente , Hiperóxia/complicações , Hiperóxia/genética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Sistema Enzimático do Citocromo P-450 , Oxigênio , Camundongos Knockout
10.
Eur J Epidemiol ; 39(1): 81-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37906419

RESUMO

Higher coffee consumption has been associated with reduced dementia risk, yet with inconsistencies across studies. CYP1A2 polymorphisms, which affects caffeine metabolism, may modulate the association between coffee and the risk of dementia and Alzheimer's disease (AD). We included 5964 participants of the Three-City Study (mean age 74 years-old), free of dementia at baseline when they reported their daily coffee consumption, with available genome-wide genotyping and followed for dementia over a median of 9.0 (range 0.8-18.7) years. In Cox proportional-hazards models, the relationship between coffee consumption and dementia risk was modified by CYP1A2 polymorphism at rs762551 (p for interaction = 0.034). In multivariable-adjusted models, coffee intake was linearly associated with a decreased risk of dementia among carriers of the C allele only ("slower caffeine metabolizers"; HR for 1-cup increased [95% CI] 0.90 [0.83-0.97]), while in non-carriers ("faster caffeine metabolizers"), there was no significant association but a J-shaped trend toward a decrease in dementia risk up to 3 cups/day and increased risk beyond. Thus, compared to null intake, drinking ≥ 4 cups of coffee daily was associated with a reduced dementia risk in slower but not faster metabolizers (HR [95% CI] for ≥ 4 vs. 0 cup/day = 0.45 [0.25-0.80] and 1.32 [0.89-1.96], respectively). Results were similar when studying AD and another CYP1A2 candidate polymorphism (rs2472304), but no interaction was found with CYP1A2 rs2472297 or rs2470893. In this cohort, a linear association of coffee intake to lower dementia risk was apparent only among carriers of CYP1A2 polymorphisms predisposing to slower caffeine metabolism.


Assuntos
Café , Citocromo P-450 CYP1A2 , Demência , Idoso , Humanos , Cafeína/farmacologia , Cafeína/uso terapêutico , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Demência/epidemiologia , Demência/genética , Fatores de Risco
11.
Med Sci Sports Exerc ; 56(2): 328-339, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844569

RESUMO

PURPOSE: This study aimed to summarize and meta-analyze existing evidence regarding the influence of CYP1A2 genotypes on the acute effects of caffeine for exercise performance and to investigate the interaction between genotype, dosage, and timing of caffeine supplementation. METHODS: Six databases were searched for studies determining the effect of caffeine (except mouth rinsing) on exercise performance between CYP1A2 genotypes. Three-level meta-analyses were performed using standardized mean differences (SMD; Hedge's g ) to determine the effect of caffeine on exercise outcomes within and between CYP1A2 genotypes (AA, AC, and CC). Meta-regressions were performed for dose, timing, and presence of reported conflict of interests (RCOI). A meta-analysis was also performed with placebo values to assess for imbalances between genotypes. RESULTS: Thirteen studies, totaling 119 outcomes and 440 participants, were included (233 AA, 175 AC, ad 34 CC). Caffeine improved performance for AA (SMD = 0.30, 95% confidence interval [CI] = 0.21-0.39, P < 0.0001) and AC (SMD = 0.16, 95% CI = 0.06-0.25, P = 0.022) but worsened performance for CC (SMD = -0.22, 95% CI = -0.44 to -0.01, P < 0.0001). Dose affected only CC, with greater doses generating more positive SMD (CC-dose estimate: +0.19/1 mg·kg -1 body mass, 95% CI = 0.04-0.33, P = 0.01). Timing influenced only CC, with better performance with later onset of exercise after supplementation (CC-timing estimate: +0.01/min, 95% CI = 0.00-0.02, P = 0.02). RCOI only affected SMD of CC (CC-RCOI estimate: -0.57, 95% CI = -1.02 to -0.12, P = 0.01). After excluding studies with RCOI, no influence of genotype was seen (all P ≥ 0.19). Small, nonsignificant differences were seen in placebo between genotypes (SMD AA vs CC: -0.13; AA vs AC: -0.12; AC vs CC: -0.05; all P ≥ 0.26). CONCLUSIONS: Caffeine improved performance for AA and AC but worsened performance for CC. Dose and timing moderated the efficacy of caffeine for CC only. Caution is advised because baseline differences and studies with RCOI could have influenced these results.


Assuntos
Cafeína , Substâncias para Melhoria do Desempenho , Humanos , Cafeína/farmacologia , Citocromo P-450 CYP1A2/genética , Genótipo , Exercício Físico
12.
Bipolar Disord ; 26(1): 95-97, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097824

RESUMO

We report the case of a Chinese male with schizoaffective disorder, an active smoker and a nonresponder to clozapine (600 mg daily). Therapeutic clozapine monitoring was analyzed, revealing a low concentration-dose ratio. A pharmacogenetic test showed that the patient had the CYP1A2*1F/*1F genotype, indicating an ultra-rapid clozapine metabolizer. In combination with fluvoxamine, a CYP1A2 enzyme inhibitor, clozapine plasma concentrations approached the reference range and achieved clinical improvement. This case demonstrates how pharmacogenetics can help understand the value of therapeutic drug monitoring to enhance the treatment of refractory schizoaffective disorder.


Assuntos
Antipsicóticos , Transtorno Bipolar , Clozapina , Transtornos Psicóticos , Masculino , Humanos , Clozapina/uso terapêutico , Citocromo P-450 CYP1A2/genética , Antipsicóticos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/genética , Testes Genéticos
13.
J Sport Health Sci ; 13(4): 499-508, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38158179

RESUMO

BACKGROUND: The ergogenic effects of caffeine intake on exercise performance are well-established, even if differences exist among individuals in response to caffeine intake. The genetic variation of a specific gene, human cytochrome P450 enzyme 1A2 (CYP1A2) (rs762551), may be one reason for this difference. This systematic review and meta-analysis aimed to comprehensively evaluate the influence of CYP1A2 gene types on athletes' exercise performance after caffeine intake. METHODS: A literature search through 4 databases (Web of Science, PubMed, Scopus, and China National Knowledge Infrastructure) was conducted until March 2023. The effect size was expressed as the weighted mean difference (WMD) by calculating fixed effects meta-analysis if heterogeneity was not significant (I2 ≤ 50% and p ≥ 0.1). Subgroup analyses were performed based on AA and AC/CC genotype of CYP1A2. RESULTS: The final number of studies meeting the inclusion criteria was 12 (n = 666 participants). The overall analysis showed that the cycling time trial significantly improved after caffeine intake (WMD = -0.48, 95% confidence interval (95%CI): -0.83 to -0.13, p = 0.007). In subgroup analyses, acute caffeine intake improved cycling time trial only in individuals with the A allele (WMD = -0.90, 95%CI: -1.48 to -0.33, p = 0.002), but not the C allele (WMD = -0.08, 95%CI: -0.32 to 0.17, p = 0.53). Caffeine supplementation did not influence the Wingate (WMD = 8.07, 95%CI: -22.04 to 38.18, p = 0.60) or countermovement jump test (CMJ) performance (WMD = 1.17, 95%CI: -0.02 to 2.36, p = 0.05), and these outcomes were not influenced by CYP1A2 genotype. CONCLUSION: Participants with the CYP1A2 genotype with A allele improved their cycling time trials after caffeine supplementation. However, compared to placebo, acute caffeine supplementation failed to increase the Wingate or CMJ performance, regardless of CYP1A2 genotype.


Assuntos
Desempenho Atlético , Cafeína , Citocromo P-450 CYP1A2 , Genótipo , Substâncias para Melhoria do Desempenho , Citocromo P-450 CYP1A2/genética , Humanos , Cafeína/administração & dosagem , Cafeína/farmacologia , Desempenho Atlético/fisiologia , Substâncias para Melhoria do Desempenho/administração & dosagem , Suplementos Nutricionais , Ciclismo/fisiologia
14.
Yakugaku Zasshi ; 143(12): 1013-1025, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-38044107

RESUMO

Since commencing my role as a professor in a newly established Department of Pharmacodynamics and Molecular Genetics at the School of Pharmacy, Iwate Medical University, on April 1, 2007, my research has focused on modifying gene expression of cytochrome P-450 (CYP) in established human colon cancer cells. Additionally, I have been investigating methods to enhance the anti-tumor effects of irinotecan (CPT-11) and 5-fluorouracil (5-FU) using epigenetic modifying inhibitors of DNA methyltransferase and histone deacetylase. Treating colon cancer cells with a DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (DAC), led to elevated expression levels of CYP1B1 and CYP3A4 through demethylation of the promoter regions of related genes. Furthermore, the administration of DAC and the histone deacetylase inhibitor depsipeptide [(DEP), an anti-cancer drug romidepsin] significantly increased the cellular sensitivities of human colon cancer cells to CPT-11 and 5-FU, respectively. Remarkably, DAC treatment also increased colon cancer cell sensitivity to SN-38, an active metabolite of CPT-11, through the suppression of the anti-apoptotic protein Bcl-2. DEP increased colon cancer cell sensitivity to 5-FU in association with increased expressions of tumor-suppressor p21 and major histocompatibility complex class II genes. Another facet of my research is centered around understanding the gene regulatory mechanisms of the CYP1 family through aryl hydrocarbon receptors (AhR)s under glucose-deprivation stress and in three-dimensional (3D) culture systems of human solid tumor cells. In the 3D culture of human liver cancer cells, I found Pregnane X Receptor being implicated in the regulation of CYP1A2, which aligns with the in vivo mode of CYP1A2 expression.


Assuntos
Antineoplásicos , Neoplasias do Colo , Humanos , Citocromo P-450 CYP1A2/genética , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Preparações Farmacêuticas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Decitabina/uso terapêutico , Fluoruracila/farmacologia , Epigênese Genética , DNA , Técnicas de Cultura de Células , Metiltransferases/genética , Metiltransferases/uso terapêutico
15.
Curr Drug Metab ; 24(10): 684-699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927072

RESUMO

AIMS: To identify single nucleotide polymorphisms (SNPs) of paracetamol-metabolizing enzymes that can predict acute liver injury. BACKGROUND: Paracetamol is a commonly administered analgesic/antipyretic in critically ill and chronic renal failure patients and several SNPs influence the therapeutic and toxic effects. OBJECTIVE: To evaluate the role of machine learning algorithms (MLAs) and bioinformatics tools to delineate the predictor SNPs as well as to understand their molecular dynamics. METHODS: A cross-sectional study was undertaken by recruiting critically ill patients with chronic renal failure and administering intravenous paracetamol as a standard of care. Serum concentrations of paracetamol and the principal metabolites were estimated. Following SNPs were evaluated: CYP2E1*2, CYP2E1_-1295G>C, CYP2D6*10, CYP3A4*1B, CYP3A4*2, CYP1A2*1K, CYP1A2*6, CYP3A4*3, and CYP3A5*7. MLAs were used to identify the predictor genetic variable for acute liver failure. Bioinformatics tools such as Predict SNP2 and molecular docking (MD) were undertaken to evaluate the impact of the above SNPs with binding affinity to paracetamol. RESULTS: CYP2E1*2 and CYP1A2*1C genotypes were identified by MLAs to significantly predict hepatotoxicity. The predictSNP2 revealed that CYP1A2*3 was highly deleterious in all the tools. MD revealed binding energy of -5.5 Kcal/mol, -6.9 Kcal/mol, and -6.8 Kcal/mol for CYP1A2, CYP1A2*3, and CYP1A2*6 against paracetamol. MD simulations revealed that CYP1A2*3 and CYP1A2*6 missense variants in CYP1A2 affect the binding ability with paracetamol. In-silico techniques found that CYP1A2*2 and CYP1A2*6 are highly harmful. MD simulations revealed CYP3A4*2 (A>G) had decreased binding energy with paracetamol than CYP3A4, and CYP3A4*2(A>T) and CYP3A4*3 both have greater binding energy with paracetamol. CONCLUSION: Polymorphisms in CYP2E1, CYP1A2, CYP3A4, and CYP3A5 significantly influence paracetamol's clinical outcomes or binding affinity. Robust clinical studies are needed to identify these polymorphisms' clinical impact on the pharmacokinetics or pharmacodynamics of paracetamol.


Assuntos
Citocromo P-450 CYP1A2 , Falência Renal Crônica , Humanos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Polimorfismo de Nucleotídeo Único , Simulação de Acoplamento Molecular , Estado Terminal , Estudos Transversais , Fígado/metabolismo , Falência Renal Crônica/metabolismo , Aprendizado de Máquina Supervisionado , Algoritmos
16.
Clin Ter ; 174(Suppl 2(6)): 209-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994766

RESUMO

Abstract: Nutritional genomics, also known as nutrigenomics, is the study of how a person's diet and genes interact with each other. The field of nutrigenomics aims to explain how common nutrients, food additives and preservatives can change the body's genetic balance towards either health or sickness. This study reviews the effects of SNPs on detoxification, antioxidant capacity, and longevity. SNPs are mutations that only change one nucleotide at a specific site in the DNA. Specific SNPs have been associated to a variety of biological processes, including detoxification, antioxidant capacity, and longevity. This article mainly focuses on the following genes: SOD2, AS3MT, CYP1A2, and ADO-RA2A (detoxification); LEPR, TCF7L2, KCNJ11, AMY1, and UCP3 (antioxidant capacity); FOXO3 and BPIFB4 (longevity). This review underlines that many genes-among which FOXO3, TCF7L2, LEPR, CYP1A2, ADORA2A, and SOD2-have a unique effect on a person's health, susceptibility to disease, and general well-being. Due to their important roles in numerous biological processes and their implications for health, these genes have undergone intensive research. Examining the SNPs in these genes can provide insight into how genetic variants affect individuals' responses to their environment, their likelihood of developing certain diseases, and their general state of health.


Assuntos
Longevidade , Nutrigenômica , Humanos , Longevidade/genética , Antioxidantes , Citocromo P-450 CYP1A2/genética , Polimorfismo de Nucleotídeo Único , Dieta , Metiltransferases/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética
17.
Sci Rep ; 13(1): 18507, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898643

RESUMO

Olanzapine is a commonly prescribed atypical antipsychotic agent for treatment of patients with schizophrenia and bipolar disorders. Previous in vitro studies using human liver microsomes identified CYP1A2 and CYP2D6 enzymes being responsible for CYP-mediated metabolism of olanzapine. The present work focused on the impact of CYP1A2 and CYP2D6 genetic polymorphisms as well as of CYP1A2 metabolizing capacity influenced by non-genetic factors (sex, age, smoking) on olanzapine blood concentration in patients with psychiatric disorders (N = 139). CYP2D6 genotype-based phenotype appeared to have negligible contribution to olanzapine metabolism, whereas a dominant role of CYP1A2 in olanzapine exposure was confirmed. However, CYP1A2 expression rather than CYP1A2 genetic variability was demonstrated to be associated with olanzapine concentration in patients. Significant contribution of - 163C > A (rs762551), the most common SNP (single nucleotide polymorphism) in CYP1A2 gene, to enhanced inducibility was confirmed by an increase in CYP1A2 mRNA expression in smokers carrying - 163A, and smoking was found to have appreciable impact on olanzapine concentration normalized by the dose/bodyweight. Furthermore, patients' olanzapine exposure was in strong association with CYP1A2 expression; therefore, assaying CYP1A2 mRNA level in leukocytes can be an appropriate tool for the estimation of patients' olanzapine metabolizing capacity and may be relevant in optimizing olanzapine dosage.


Assuntos
Antipsicóticos , Citocromo P-450 CYP1A2 , Humanos , Olanzapina/efeitos adversos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Antipsicóticos/efeitos adversos , Genótipo , RNA Mensageiro
19.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686266

RESUMO

Depression is a global mental health concern, and personalized treatment approaches are needed to optimize its management. This study aimed to investigate the influence of the CYP2D6 and CYP1A2 gene polymorphisms on the efficacy of duloxetine in reducing depressive and anxiety symptoms. A sample of 100 outpatients with major depression, who initiated monotherapy with duloxetine, were followed up. Polymorphisms in the CYP2D6 and CYP1A2 genes were assessed. The severity of depressive and anxiety symptoms was recorded using standardized scales. Adverse drug reactions (ADRs) were analyzed. Statistical analyses, including linear regression, were conducted to examine the relationships between genetic polymorphisms, clinical variables, and treatment outcomes. Patients with higher values of the duloxetine metabolic index (DMI) for CYP2D6, indicating a faster metabolism, achieved a greater reduction in anxiety symptoms. The occurrence of ADRs was associated with a lower reduction in anxiety symptoms. However, no significant associations were found between studied gene polymorphisms and reduction in depressive symptoms. No significant effects of the DMI for CYP1A2 were found. Patients with a slower metabolism may experience less benefit from duloxetine therapy in terms of anxiety symptom reduction. Personalizing treatment based on the CYP2D6 and CYP1A2 gene polymorphisms can enhance the effectiveness of antidepressant therapy and improve patient outcomes.


Assuntos
Transtorno Depressivo Maior , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Citocromo P-450 CYP2D6/genética , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Citocromo P-450 CYP1A2/genética , Cloridrato de Duloxetina/uso terapêutico , Depressão/tratamento farmacológico , Depressão/genética , Polimorfismo Genético
20.
Biomolecules ; 13(7)2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37509119

RESUMO

A unique cytochrome P450 (CYP) oxidoreductase (CPR) sustains activities of human microsomal CYPs. Its function requires toggling between a closed conformation enabling electron transfers from NADPH to FAD and then FMN cofactors and open conformations forming complexes and transferring electrons to CYPs. We previously demonstrated that distinct features of the hinge region linking the FAD and FMN domain (FD) modulate conformer poses and their interactions with CYPs. Specific FD residues contribute in a CYP isoform-dependent manner to the recognition and electron transfer mechanisms that are additionally modulated by the structure of CYP-bound substrate. To obtain insights into the underlying mechanisms, we analyzed how hinge region and FD mutations influence CYP1A2-mediated caffeine metabolism. Activities, metabolite profiles, regiospecificity and coupling efficiencies were evaluated in regard to the structural features and molecular dynamics of complexes bearing alternate substrate poses at the CYP active site. Studies reveal that FD variants not only modulate CYP activities but surprisingly the regiospecificity of reactions. Computational approaches evidenced that the considered mutations are generally in close contact with residues at the FD-CYP interface, exhibiting induced fits during complexation and modified dynamics depending on caffeine presence and orientation. It was concluded that dynamic coupling between FD mutations, the complex interface and CYP active site exist consistently with the observed regiospecific alterations.


Assuntos
Cafeína , Citocromo P-450 CYP1A2 , Humanos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Transporte de Elétrons , Mutação , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...