Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.690
Filtrar
1.
Toxins (Basel) ; 16(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38922156

RESUMO

Cytotoxins (CTs) are three-finger membrane-active toxins present mainly in cobra venom. Our analysis of the available CT amino acid sequences, literature data on their membrane activity, and conformational equilibria in aqueous solution and detergent micelles allowed us to identify specific amino acid residues which interfere with CT incorporation into membranes. They include Pro9, Ser28, and Asn/Asp45 within the N-terminal, central, and C-terminal loops, respectively. There is a hierarchy in the effect of these residues on membrane activity: Pro9 > Ser28 > Asn/Asp45. Taking into account all the possible combinations of special residues, we propose to divide CTs into eight groups. Group 1 includes toxins containing all of the above residues. Their representatives demonstrated the lowest membrane activity. Group 8 combines CTs that lack these residues. For the toxins from this group, the greatest membrane activity was observed. We predict that when solely membrane activity determines the cytotoxic effects, the activity of CTs from a group with a higher number should exceed that of CTs from a group with a lower number. This classification is supported by the available data on the cytotoxicity and membranotropic properties of CTs. We hypothesize that the special amino acid residues within the loops of the CT molecule may indicate their involvement in the interaction with non-lipid targets.


Assuntos
Membrana Celular , Citotoxinas , Membrana Celular/efeitos dos fármacos , Animais , Citotoxinas/química , Citotoxinas/toxicidade , Venenos Elapídicos/química , Venenos Elapídicos/toxicidade , Aminoácidos/química , Sequência de Aminoácidos , Humanos
2.
Int J Nanomedicine ; 19: 5381-5395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859950

RESUMO

Background: Current immunotherapies with unexpected severe side effects and treatment resistance have not resulted in the desired outcomes for patients with melanoma, and there is a need to discover more effective medications. Cytotoxin (CTX) from Cobra Venom has been established to have favorable cytolytic activity and antitumor efficacy and is regarded as a promising novel anticancer agent. However, amphiphilic CTX with excellent anionic phosphatidylserine lipid-binding ability may also damage normal cells. Methods: We developed pH-responsive liposomes with a high CTX load (CTX@PSL) for targeted acidic-stimuli release of drugs in the tumor microenvironment. The morphology, size, zeta potential, drug-release kinetics, and preservation stability were characterized. Cell uptake, apoptosis-promoting effects, and cytotoxicity were assessed using MTT assay and flow cytometry. Finally, the tissue distribution and antitumor effects of CTX@PSL were systematically assessed using an in vivo imaging system. Results: CTX@PSL exhibited high drug entrapment efficiency, drug loading, stability, and a rapid release profile under acidic conditions. These nanoparticles, irregularly spherical in shape and small in size, can effectively accumulate at tumor sites (six times higher than free CTX) and are rapidly internalized into cancer cells (2.5-fold higher cell uptake efficiency). CTX@PSL displayed significantly stronger cytotoxicity (IC50 0.25 µg/mL) and increased apoptosis in than the other formulations (apoptosis rate 71.78±1.70%). CTX@PSL showed considerably better tumor inhibition efficacy than free CTX or conventional liposomes (tumor inhibition rate 79.78±5.93%). Conclusion: Our results suggest that CTX@PSL improves tumor-site accumulation and intracellular uptake for sustained and targeted CTX release. By combining the advantages of CTX and stimuli-responsive nanotechnology, the novel CTX@PSL nanoformulation is a promising therapeutic candidate for cancer treatment.


Assuntos
Antineoplásicos , Venenos Elapídicos , Lipossomos , Lipossomos/química , Concentração de Íons de Hidrogênio , Animais , Venenos Elapídicos/química , Venenos Elapídicos/farmacologia , Humanos , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Camundongos , Apoptose/efeitos dos fármacos , Liberação Controlada de Fármacos , Citotoxinas/química , Citotoxinas/farmacologia , Citotoxinas/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Distribuição Tecidual , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química
3.
Int J Nanomedicine ; 19: 4163-4180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751660

RESUMO

Purpose: The study aimed to address the non-specific toxicity of cytotoxins (CTX) in liver cancer treatment and explore their combined application with the photosensitizer Ce6, co-loaded into carbonized Zn/Co bimetallic organic frameworks. The goal was to achieve controlled CTX release and synergistic photodynamic therapy, with a focus on evaluating anti-tumor activity against human liver cancer cell lines (Hep G2). Methods: Purified cobra cytotoxin (CTX) and photosensitizer Ce6 were co-loaded into carbonized Zn/Co bimetallic organic frameworks, resulting in RGD-PDA@C-ZIF@(CTX+Ce6). The formulation was designed with surface-functionalization using polydopamine and tumor-penetrating peptide RGD. This approach aimed to facilitate controlled CTX release and enhance the synergistic effect of photodynamic therapy. The accumulation of RGD-PDA@C-ZIF@(CTX+Ce6) at tumor sites was achieved through RGD's active targeting and the enhanced permeability and retention (EPR) effect. In the acidic tumor microenvironment, the porous structure of the metal-organic framework disintegrated, releasing CTX and Ce6 into tumor cells. Results: Experiments demonstrated that RGD-PDA@C-ZIF@(CTX+Ce6) nanoparticles, combined with near-infrared laser irradiation, exhibited optimal anti-tumor effects against human liver cancer cells. The formulation showcased heightened anti-tumor activity without discernible systemic toxicity. Conclusion: The study underscores the potential of utilizing metal-organic frameworks as an efficient nanoplatform for co-loading cytotoxins and photodynamic therapy in liver cancer treatment. The developed formulation, RGD-PDA@C-ZIF@(CTX+Ce6), offers a promising avenue for advancing the clinical application of cytotoxins in oncology, providing a solid theoretical foundation for future research and development.


Assuntos
Indóis , Neoplasias Hepáticas , Estruturas Metalorgânicas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Zinco , Humanos , Fotoquimioterapia/métodos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Zinco/química , Zinco/farmacologia , Indóis/química , Indóis/farmacologia , Indóis/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Células Hep G2 , Cobalto/química , Cobalto/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Oligopeptídeos/farmacocinética , Polímeros/química , Camundongos , Citotoxinas/química , Citotoxinas/farmacologia , Citotoxinas/farmacocinética , Camundongos Nus , Camundongos Endogâmicos BALB C , Sobrevivência Celular/efeitos dos fármacos
4.
Sci Rep ; 14(1): 10561, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719884

RESUMO

This study focuses on understanding the structural and molecular changes in lipid membranes under the influence of six halogenated flavonoid derivatives differing in the number and position of substitution of chlorine and bromine atoms (D1-D6). Utilizing various analytical techniques, including fluorometric methods, dynamic light scattering (DLS), attenuated Fourier transform infrared spectroscopy (ATR- FTIR), and FT-Raman spectroscopy, the research aims to elucidate the mechanisms underlying the interaction of flavonoids with cell membranes. Additionally, the study includes in silico analyses to explore the physicochemical properties of these compounds and their potential pharmaceutical applications, along with toxicity studies to assess their effects on cancer, normal, and red blood cells. Our study showed the ability of halogenated derivatives to interact mostly with the outer part of the membrane, especially in the lipid heads region however, some of them were able to penetrate deeper into the membrane and affect the fluidity of hydrocarbon chains. The potential to reduce cancer cell viability, the lack of toxicity towards erythrocytes, and the favourable physicochemical and pharmacokinetic properties suggest these halogenated flavonoids potential candidates for exploring their potential for medical use.


Assuntos
Flavonoides , Lipídeos de Membrana , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Membrana Celular/metabolismo , Halogenação , Citotoxinas/química , Citotoxinas/farmacologia , Citotoxinas/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Análise Espectral Raman , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral
5.
J Virol ; 97(10): e0115423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772823

RESUMO

IMPORTANCE: HIV infection can be effectively treated to prevent the development of AIDS, but it cannot be cured. We have attached poisons to anti-HIV antibodies to kill the infected cells that persist even after years of effective antiviral therapy. Here we show that the killing of infected cells can be markedly enhanced by the addition of soluble forms of the HIV receptor CD4 or by mimics of CD4.


Assuntos
Antígenos CD4 , Citotoxinas , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Imunoconjugados , Humanos , Antígenos CD4/química , Antígenos CD4/imunologia , Antígenos CD4/uso terapêutico , Linhagem Celular , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/uso terapêutico , Peso Molecular , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/uso terapêutico , Citotoxinas/química , Citotoxinas/uso terapêutico
6.
Chem Biol Interact ; 378: 110489, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37059213

RESUMO

We assessed the mechanism of human androgen receptor-mediated endocrine-disrupting effect by a triazole fungicide, metconazole in this study. The internationally validated stably transfected transactivation (STTA) in vitro assay, which was established for determination of a human androgen receptor (AR) agonist/antagonist by using 22Rv1/MMTV_GR-KO cell line, alongside an in vitro reporter-gene assay to confirm AR homodimerization was used. The STTA in vitro assay results showed that metconazole is a true AR antagonist. Furthermore, the results from the in vitro reporter-gene assay and western blotting showed that metconazole blocks the nuclear transfer of cytoplasmic AR proteins by suppressing the homodimerization of AR. These results suggest that metconazole can be considered to have an AR-mediated endocrine-disrupting effect. Additionally, the evidence from this study might help identify the endocrine-disrupting mechanism of triazole fungicides containing a phenyl ring.


Assuntos
Antagonistas de Receptores de Andrógenos , Disruptores Endócrinos , Fungicidas Industriais , Multimerização Proteica , Receptores Androgênicos , Ativação Transcricional , Triazóis , Triazóis/química , Triazóis/toxicidade , Fungicidas Industriais/química , Fungicidas Industriais/toxicidade , Multimerização Proteica/efeitos dos fármacos , Humanos , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Disruptores Endócrinos/química , Disruptores Endócrinos/farmacologia , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/toxicidade , Linhagem Celular Tumoral , Ativação Transcricional/efeitos dos fármacos , Citotoxinas/química , Citotoxinas/toxicidade
7.
ACS Appl Bio Mater ; 6(9): 3387-3394, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-36972339

RESUMO

Intracellular bacteria are able to survive and grow in host cells and often cause serious infectious diseases. The B subunit of the subtilase cytotoxin (SubB) found in enterohemorrhagic Escherichia coli O113:H21 recognizes sialoglycans on cell surfaces and triggers the uptake of cytotoxin by the cells, meaning that Sub B is a ligand molecule that is expected to be useful for drug delivery into cells. In this study, we conjugated SubB to silver nanoplates (AgNPLs) for use as an antibacterial drug and examined their antimicrobial activity against intracellularly infecting Salmonella typhimurium (S. typhimurium). The modification of AgNPLs with SubB improved their dispersion stability and antibacterial activity against planktonic S. typhimurium. The SubB modification enhanced the cellular uptake of AgNPLs, and intracellularly infecting S. typhimurium were killed at low concentrations of AgNPLs. Interestingly, larger amounts of SubB-modified AgNPLs were taken up by infected cells compared with uninfected cells. These results suggest that the S. typhimurium infection activated the uptake of the nanoparticles into the cells. SubB-modified AgNPLs are expected to be useful bactericidal systems for intracellularly infecting bacteria.


Assuntos
Anti-Infecciosos , Toxinas Bacterianas , Prata/farmacologia , Prata/química , Escherichia coli/metabolismo , Toxinas Bacterianas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Citotoxinas/química , Citotoxinas/metabolismo , Anti-Infecciosos/metabolismo
8.
J Biol Chem ; 298(10): 102441, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055404

RESUMO

Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging ß-barrel pore-forming toxin. Upon binding to the target membranes, VCC monomers first assemble into oligomeric prepore intermediates and subsequently transform into transmembrane ß-barrel pores. VCC harbors a designated pore-forming motif, which, during oligomeric pore formation, inserts into the membrane and generates a transmembrane ß-barrel scaffold. It remains an enigma how the molecular architecture of the pore-forming motif regulates the VCC pore-formation mechanism. Here, we show that a specific pore-forming motif residue, E289, plays crucial regulatory roles in the pore-formation mechanism of VCC. We find that the mutation of E289A drastically compromises pore-forming activity, without affecting the structural integrity and membrane-binding potential of the toxin monomers. Although our single-particle cryo-EM analysis reveals WT-like oligomeric ß-barrel pore formation by E289A-VCC in the membrane, we demonstrate that the mutant shows severely delayed kinetics in terms of pore-forming ability that can be rescued with elevated temperature conditions. We find that the pore-formation efficacy of E289A-VCC appears to be more profoundly dependent on temperature than that of the WT toxin. Our results suggest that the E289A mutation traps membrane-bound toxin molecules in the prepore-like intermediate state that is hindered from converting into the functional ß-barrel pores by a large energy barrier, thus highlighting the importance of this residue for the pore-formation mechanism of VCC.


Assuntos
Proteínas de Bactérias , Citotoxinas , Proteínas Citotóxicas Formadoras de Poros , Vibrio cholerae , Fatores de Virulência , Membrana Celular/metabolismo , Citotoxinas/química , Citotoxinas/genética , Vibrio cholerae/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fatores de Virulência/química , Fatores de Virulência/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Motivos de Aminoácidos , Mutação , Ácido Glutâmico/química , Ácido Glutâmico/genética
9.
Soft Matter ; 18(28): 5293-5301, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35790122

RESUMO

Pore-forming toxins (PFTs) produced by pathogenic bacteria serve as prominent virulence factors with potent cell-killing activity. Most of the ß-barrel PFTs form transmembrane oligomeric pores in the membrane lipid bilayer in the presence of cholesterol. The pore-formation mechanisms of the PFTs highlight well-orchestrated regulated events in the membrane environment, which involve dramatic changes in the protein structure and organization. Also, concerted crosstalk between protein and membrane lipid components appears to play crucial roles in the process. Membrane-damaging lesions formed by the pore assembly of the PFTs would also be expected to impose drastic alterations in the membrane organization, details of which remain obscure in most of the cases. Prior reports have established that aqueous interfaces of liquid crystals (LCs) offer promise as responsive interfaces for biomolecular events (at physiologically relevant concentrations), which can be visualized as optical signals. Inspired by this, herein, we sought to understand the lipid membrane interactions of a ß-barrel PFT i.e., Vibrio cholerae cytolysin (VCC), using LC-aqueous interfaces. Our results show the formation of dendritic patterns upon the addition of VCC to the lipid embedded with cholesterol over the LC film. In contrast, we did not observe any LC reorientation upon the addition of VCC to the lipid-laden LC-aqueous interface in the absence of cholesterol. An array of techniques such as polarizing optical microscopy (POM), atomic force microscopy (AFM), and fluorescence measurements were utilized to decipher the LC response to the lipid interactions of VCC occurring at these interfaces. Altogether, the results obtained from our study provide a novel platform to explore the mechanistic aspects of the protein-membrane interactions, in the process of membrane pore-formation by the membrane-damaging PFTs.


Assuntos
Cristais Líquidos , Vibrio cholerae , Membrana Celular/química , Colesterol , Citotoxinas/química , Citotoxinas/metabolismo , Citotoxinas/farmacologia , Bicamadas Lipídicas/química , Vibrio cholerae/química , Vibrio cholerae/metabolismo , Água/metabolismo
10.
Carbohydr Polym ; 292: 119699, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725216

RESUMO

In this paper, we report a simple approach to fabricate diselenide-crosslinked carboxymethyl chitosan nanoparticles (DSe-CMC NPs) for doxorubicin (DOX) delivery, with disulfide analogs (DS-CMC NPs) as control. DS-CMC NPs and DSe-CMC NPs featured a spherical morphology and narrow size distribution with the average size about 200 nm. Carboxymethyl chitosan (CMC) as the starting material not only improved the biocompatibility of the nanocarriers but also enhanced physiological stability. Due to electrostatic interactions between DOX and CMC, the nanoparticles had high drug encapsulation efficiency (∼25 %). The nanoparticles disintegration and drug release were accelerated by the cleavage of diselenide bonds through oxidation by H2O2 or reduction by GSH. In vitro cell experiments revealed that DOX-loaded DSe-CMC NPs possessed the highest drug accumulation and cytotoxicity in tumor cells. Moreover, DOX-loaded DSe-CMC NPs performed the enhanced growth inhibition in vivo than that of DS-CMC NPs. Thus, the diselenide-crosslinked nanoparticles possess great potentials for DOX delivery.


Assuntos
Quitosana , Nanopartículas , Quitosana/química , Citotoxinas/química , Citotoxinas/toxicidade , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Peróxido de Hidrogênio , Nanopartículas/química , Oxirredução
11.
Toxins (Basel) ; 14(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35202176

RESUMO

Cobra cytotoxins (CTs) belong to the three-fingered protein family and possess membrane activity. Here, we studied cytotoxin 13 from Naja naja cobra venom (CT13Nn). For the first time, a spatial model of CT13Nn with both "water" and "membrane" conformations of the central loop (loop-2) were determined by X-ray crystallography. The "water" conformation of the loop was frequently observed. It was similar to the structure of loop-2 of numerous CTs, determined by either NMR spectroscopy in aqueous solution, or the X-ray method. The "membrane" conformation is rare one and, to date has only been observed by NMR for a single cytotoxin 1 from N. oxiana (CT1No) in detergent micelle. Both CT13Nn and CT1No are S-type CTs. Membrane-binding of these CTs probably involves an additional step-the conformational transformation of the loop-2. To confirm this suggestion, we conducted molecular dynamics simulations of both CT1No and CT13Nn in the Highly Mimetic Membrane Model of palmitoiloleoylphosphatidylglycerol, starting with their "water" NMR models. We found that the both toxins transform their "water" conformation of loop-2 into the "membrane" one during the insertion process. This supports the hypothesis that the S-type CTs, unlike their P-type counterparts, require conformational adaptation of loop-2 during interaction with lipid membranes.


Assuntos
Proteínas Cardiotóxicas de Elapídeos/química , Cristalografia por Raios X/métodos , Citotoxinas/química , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
12.
Toxins (Basel) ; 14(2)2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35202183

RESUMO

The subtilase cytotoxin (SubAB) belongs to the family of AB5 toxins and is produced together with Shiga toxin (Stx) by certain Stx-producing E. coli strains (STEC). For most AB-type toxins, it is assumed that cytotoxic effects can only be induced by a complete holotoxin complex consisting of SubA and SubB. However, it has been shown for SubAB that the enzymatically active subunit SubA, without its transport and binding domain SubB, induces cell death in different eukaryotic cell lines. Interestingly, the molecular structure of SubA resembles that of the SubAB complex. SubA alone is capable of binding to cells and then being taken up autonomously. Once inside the host cell, SubA is transported, similar to the SubAB holotoxin, via a retrograde transport into the endoplasmatic reticulum (ER). In the ER, it exhibits its enzymatic activity by cleaving the chaperone BiP/GRP78 and thereby triggering cell death. Therefore, the existence of toxic single SubA subunits that have not found a B-pentamer for holotoxin assembly might improve the pathogenic potential of subtilase-producing strains. Moreover, from a pharmacological aspect, SubA might be an interesting molecule for the targeted transport of therapeutic molecules into the ER, in order to investigate and specifically modulate processes in the context of ER stress-associated diseases. Since recent studies on bacterial AB5 toxins contributed mainly to the understanding of the biology of AB-type holotoxins, this mini-review specifically focus on that recently observed single A-effect of the subtilase cytotoxin and addresses whether a fundamental shift of the traditional AB5 paradigm might be required.


Assuntos
Citotoxinas/química , Citotoxinas/toxicidade , Estrutura Molecular , Subtilisinas/química
13.
Molecules ; 27(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35209210

RESUMO

Chromatographic investigation of the aerial parts of the Rhazya stricta (Apocynaceae) resulted in the isolation of two new monoterpene indole alkaloids, 6-nor-antirhine-N1-methyl (1) and razyamide (2), along with six known compounds, eburenine (3), epi-rhazyaminine (4), rhazizine (5), 20-epi-sitsirikine (6), antirhine (7), and 16-epi-stemmadenine-N-oxide (8). The chemical structures were established by various spectroscopic experiments. Compounds 1-8 exhibited cytotoxic effects against three cancer cells with IC50 values ranging between 5.1 ± 0.10 and 93.2 ± 9.73 µM against MCF-7; 5.1 ± 0.28 and 290.2 ± 7.50 µM against HepG2, and 3.1 ± 0.17 and 55.7 ± 4.29 µM against HeLa cells. Compound 2 showed the most potent cytotoxic effect against all cancer cell lines (MCF-7, HepG2 and HeLa with IC50 values = 5.1 ± 0.10, 5.1 ± 0.28, and 3.1 ± 0.17 µM, respectively). Furthermore, compound 2 revealed a significant increase in the apoptotic cell population of MCF-7, HepG2, and HeLa cells, with 31.4 ± 0.2%, 29.2 ± 0.5%, and 34.9 ± 0.6%, respectively. Compound 2 decreased the percentage of the phagocytic pathway on HepG2 cells by 15.0 ± 0.1%. These findings can explain the antiproliferative effect of compound 2.


Assuntos
Adenocarcinoma , Antineoplásicos Fitogênicos , Apocynaceae/química , Apoptose/efeitos dos fármacos , Citotoxinas , Monoterpenos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Citotoxinas/química , Citotoxinas/farmacologia , Calcanhar , Células Hep G2 , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Células MCF-7 , Monoterpenos/química , Monoterpenos/farmacologia
14.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164023

RESUMO

A series of quaternary diammonium salts derivatives of 1,4:3,6-dianhydro-l-iditol were synthesized, using isommanide (1,4:3,6-dianhydro-d-mannitol) as a starting material. Both aromatic (pyridine, 4-(N,N-dimethylamino)pyridine (DMAP), (3-carboxamide)pyridine; N-methylimidazole) and aliphatic (trimethylamine, N,N-dimethylhexylamine, N,N-dimethyloctylamine, N,N-dimethyldecylamine) amines were used, giving eight gemini quaternary ammonium salts (QAS). All salts were tested for their antimicrobial activity against yeasts, Candida albicans and Candida glabrata, as well as bacterial Staphylococcus aureus and Escherichia coli reference strains. Moreover, antibacterial activity against 20 isolates of S. aureus collected from patients with skin and soft tissue infections (n = 8) and strains derived from subclinical bovine mastitis milk samples (n = 12) were evaluated. Two QAS with octyl and decyl residues exhibited antimicrobial activity, whereas those with two decyl residues proved to be the most active against the tested pathogens, with MIC of 16-32, 32, and 8 µg/mL for yeast, E. coli, and S. aureus reference and clinical strains, respectively. Only QAS with decyl residues proved to be cytotoxic in MTT assay against human keratinocytes (HaCaT), IC50 12.8 ± 1.2 µg/mL. Ames test was used to assess the mutagenic potential of QAS, and none of them showed mutagenic activity in the concentration range 4-2000 µg/plate.


Assuntos
Compostos de Amônio Quaternário , Álcoois Açúcares/química , Álcoois Açúcares/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Candida albicans , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Escherichia coli , Células HaCaT , Humanos , Testes de Sensibilidade Microbiana , Testes de Mutagenicidade , Mutagênicos/síntese química , Mutagênicos/química , Mutagênicos/farmacologia , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Staphylococcus aureus , Álcoois Açúcares/síntese química
15.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164144

RESUMO

The CDK4/6 inhibitor palbociclib, combined with endocrine therapy, has been shown to be effective in postmenopausal women with estrogen receptor-positive, HER2-negative advanced or metastatic breast cancer. However, palbociclib is not as effective in the highly aggressive, triple-negative breast cancer that lacks sensitivity to chemotherapy or endocrine therapy. We hypothesized that conjugation of the near-infrared dye MHI-148 with palbociclib can produce a potential theranostic in triple-negative, as well as estrogen receptor-positive, breast cancer cells. In our study, the conjugate was found to have enhanced activity in all mammalian cell lines tested in vitro. However, the conjugate was cytotoxic and did not induce G1 cell cycle arrest in breast cancer cells, suggesting its mechanism of action differs from the parent compound palbociclib. The study highlights the importance of investigating the mechanism of conjugates of near-infrared dyes to therapeutic compounds, as conjugation can potentially result in a change of mechanism or target, with an enhanced cytotoxic effect in this case.


Assuntos
Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Carbocianinas , Citotoxinas , Indóis , Piperazinas , Piridinas , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Células CHO , Carbocianinas/química , Carbocianinas/farmacologia , Cricetulus , Citotoxinas/química , Citotoxinas/farmacologia , Feminino , Células HEK293 , Humanos , Indóis/química , Indóis/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Piridinas/química , Piridinas/farmacologia
16.
Molecules ; 27(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35208972

RESUMO

Three new polyhydroxylated oleanane triterpenoids, cissatriterpenoid A-C (1-3), along with one known analogue (4), were isolated from the whole plant of Cissampelos pareira var. hirsuta. Their chemical structures were elucidated by extensive spectroscopic data (IR, HR-ESI-MS, 1H-NMR, 13C-NMR, DEPT, 1H-1H COSY, HSQC, HMBC, NOESY) and the microhydrolysis method. The isolation of compounds 1-4 represents the first report of polyhydroxylated oleanane triterpenoids from the family Menispermaceae. All isolated compounds were evaluated for their cytotoxicity against five human cancer cell lines, and the inhibitory activity against NO release in LPS-induced RAW 264.7 cells. Compound 3 showed the most potent cytotoxic activities against the A549, SMMC-7721, MCF-7, and SW480 cell lines, with IC50 values of 17.55, 34.74, 19.77, and 30.39 µM, respectively, whereas three remaining ones were found to be inactive. The preliminary structure-activity relationship analysis indicated that the γ-lactone ring at C-22 and C-29, and the olefinic bond at C-12 and C-13 were structurally required for the cytotoxicity of polyhydroxylated oleanane triterpenoids against these four cell lines. Based on lipid-water partition coefficients, compound 3 is less lipophilic than 1 and 4, which agrees with their cytotoxic activities. This confirms the potential of C. pareira var. hirsuta in the tumor treatment.


Assuntos
Antineoplásicos Fitogênicos , Cissampelos/química , Citotoxinas , Neoplasias/tratamento farmacológico , Ácido Oleanólico , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Citotoxinas/química , Citotoxinas/isolamento & purificação , Citotoxinas/farmacologia , Humanos , Células MCF-7 , Camundongos , Neoplasias/metabolismo , Ácido Oleanólico/química , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Células RAW 264.7
17.
Sci Rep ; 12(1): 2733, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177749

RESUMO

Mangrove endophytic fungi are tolerant to numerous stresses and are inevitably capable of exhibiting excellent biological activity by producing impressive numbers of metabolites with special biological functions, based on previous work on the biological potential of mangrove-derived endophytic fungi. To obtain marked antimicrobial and cytotoxic fermentation products of culturable endophytic fungi from mangrove forests, our research evaluated the antimicrobial and cytotoxic activities of crude extracts of endophytic fungi from Rhizophora stylosa and Rhizophora mucronata. Forty-six fungal isolates were cultured on four different media, namely, dextrose agar (PDA), Czapek's agar (CZA), rice medium (RM) and grain medium (GM) and harvested by ethyl acetate solvent at 40 days. The extracts were tested for antimicrobial activity by the microdilution method against the gram-negative bacteria Pseudomonas adaceae (PA), gram-positive bacteria Enterococcus faecalis (EF), methicillin-resistant Staphylococcus aureus (MRSA) and pathogenic fungus Monilia albicans (MA). The cytotoxic activity of the extracts was evaluated by MTT assay using A549 human lung cancer cells, HeLa human cervical carcinoma cells, and HepG2 human hepatocellular cells. The results showed that rice medium could promote the secretion of antimicrobial and antitumour secondary metabolites of endophytic fungi in comparison with other cultivation media. Seventeen strains (68%) from R. stylosa exhibited inhibitory effects on indicators, especially N. protearum HHL46, which could inhibit the growth of four microbes with MIC values reaching 0.0625 mg/mL. Fifteen strains (71.4%) from R. mucronata displayed activities against human pathogenic microbes; in particular, Pestalotiopsis sp. HQD6 and N. protearum HQD5 could resist the growth of four microbes with MIC values ranging from 0.015 to 1 mg/mL. In the cytotoxicity assay, the extracts of 10 strains (40%), 9 strains (40%) and 13 strains (52%) of R. stylosa and 13 strains (61.9%), 10 strains (47.6%) and 10 strains (47.6%) of R. mucronata displayed cytotoxicity against A549, HeLa and HepG2 cancer cells with cell viability values ≤ 50%. Neopestalotiopsis protearum HHL46, Phomopsis longicolla HHL50, Botryosphaeria fusispora HQD83, Fusarium verticillioides HQD48 and Pestalotiopsis sp. HQD6 displayed significant antitumour activity with IC50 values below 20 µg/mL. These results highlighted the antimicrobial and antitumour potential of endophytic fungi from R. stylosa and R. mucronata and the possibility of exploiting their antimicrobial and cytotoxic agents.


Assuntos
Anti-Infecciosos , Bactérias/crescimento & desenvolvimento , Misturas Complexas , Citotoxinas , Endófitos/química , Fungos/química , Rhizophoraceae/microbiologia , Células A549 , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Misturas Complexas/química , Misturas Complexas/farmacologia , Citotoxinas/química , Citotoxinas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Células Hep G2 , Humanos
18.
Biomed Res Int ; 2022: 5562849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047637

RESUMO

The silver nanoparticles (AgNPs) were synthesized via green synthesis approach using Euporbia serpens Kunth aqueous extract. The synthesized AgNPs were characterized by UV-visible spectroscopy and Furrier Transformer Infra-Red spectroscopy to justify the reduction and stabilization of AgNPs from its precursors. AgNPs characteristic absorption peak was observed at 420 nm in the UV-visible spectrum. The SEM and TEM analysis demonstrated the spherical shape of the synthesized nanoparticles with particle sizes ranging from 30 nm to 80 nm. FTIR transmission bands at 2920 cm-1, 1639 cm-1, 1410 cm-1, 3290 cm-1, and 1085 cm-1 were attributed to C-H, C=O, C-C, N-H, and C-N functional groups, respectively. XRD peaks could be attributed to (111), (200), (220), and (311) crystalline plane of the faced-centered cube (FCC) crystalline structure of the metallic silver nanoparticles. The AgNPs showed good antibacterial activity against all the tested bacteria at each concentration. The particles were found to be more active against Escherichia coli (E. coli) with 20 ± 06 mm and Salmonella typhi (S. typhi) with 18 ± 0.5 mm zone of inhibition in reference to standard antibiotic amoxicillin with 23 ± 0.3 mm and 20 ± 0.4 mm zone of inhibition, respectively. Moderate antifungal activities were observed against Candida albicans (C. albicans) and Alternaria alternata (A. alternata) with zone of inhibitions 16.5 mm and 15 mm, respectively, compared to the standard with 23 mm of inhibition. Insignificant antifungal inhibition of 7.5 mm was observed against Fusarium gramium (F. gramium). All the tested concentrations of AgNPs showed comparable % RSA with the standard reference ascorbic acid in the range sixty percent to seventy five percent. The percent motility at 3 hours postincubation showed quick response and most Tetramorium caespitum were found deceased or paralyzed. Similarly, the percent mortality showed a linear response at concentration and time. It was observed that 1 µg/mL to 2 µg/mL concentration of AgNPs displayed a significant cytotoxic activity against Artemia salina with LD50 of 5.37 and 5.82, respectively.


Assuntos
Anti-Infecciosos , Antioxidantes , Citotoxinas , Euphorbia/química , Nanopartículas Metálicas , Extratos Vegetais/química , Prata , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Testes de Sensibilidade Microbiana , Prata/química , Prata/farmacologia
19.
Molecules ; 27(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35056860

RESUMO

A ferrofluid with 1,2-Benzenediol-coated iron oxide nanoparticles was synthesized and physicochemically analyzed. This colloidal system was prepared following the typical co-precipitation method, and superparamagnetic nanoparticles of 13.5 nm average diameter, 34 emu/g of magnetic saturation, and 285 K of blocking temperature were obtained. Additionally, the zeta potential showed a suitable colloidal stability for cancer therapy assays and the magneto-calorimetric trails determined a high power absorption density. In addition, the oxidative capability of the ferrofluid was corroborated by performing the Fenton reaction with methylene blue (MB) dissolved in water, where the ferrofluid was suitable for producing reactive oxygen species (ROS), and surprisingly a strong degradation of MB was also observed when it was combined with H2O2. The intracellular ROS production was qualitatively corroborated using the HT-29 human cell line, by detecting the fluorescent rise induced in 2,7-dichlorofluorescein diacetate. In other experiments, cell metabolic activity was measured, and no toxicity was observed, even with concentrations of up to 4 mg/mL of magnetic nanoparticles (MNPs). When the cells were treated with magnetic hyperthermia, 80% of cells were dead at 43 °C using 3 mg/mL of MNPs and applying a magnetic field of 530 kHz with 20 kA/m amplitude.


Assuntos
Coloides/química , Coloides/farmacologia , Hipertermia Induzida/métodos , Nanopartículas Magnéticas de Óxido de Ferro/química , Espécies Reativas de Oxigênio/metabolismo , Catecóis/química , Linhagem Celular , Coloides/síntese química , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Magnetismo , Microscopia Eletrônica de Transmissão , Oxidantes/síntese química , Oxidantes/química , Oxidantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
20.
Toxins (Basel) ; 14(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35051034

RESUMO

Linear cationic venom peptides are antimicrobial peptides (AMPs) that exert their effects by damaging cell membranes. These peptides can be highly specific, and for some, a significant therapeutic value was proposed, in particular for treatment of bacterial infections. A prolific source of novel AMPs are arthropod venoms, especially those of hitherto neglected groups such as pseudoscorpions. In this study, we describe for the first time pharmacological effects of AMPs discovered in pseudoscorpion venom. We examined the antimicrobial, cytotoxic, and insecticidal activity of full-length Checacin1, a major component of the Chelifer cancroides venom, and three truncated forms of this peptide. The antimicrobial tests revealed a potent inhibitory activity of Checacin1 against several bacteria and fungi, including methicillin resistant Staphylococcus aureus (MRSA) and even Gram-negative pathogens. All peptides reduced survival rates of aphids, with Checacin1 and the C-terminally truncated Checacin11-21 exhibiting effects comparable to Spinosad, a commercially used pesticide. Cytotoxic effects on mammalian cells were observed mainly for the full-length Checacin1. All tested peptides might be potential candidates for developing lead structures for aphid pest treatment. However, as these peptides were not yet tested on other insects, aphid specificity has not been proven. The N- and C-terminal fragments of Checacin1 are less potent against aphids but exhibit no cytotoxicity on mammalian cells at the tested concentration of 100 µM.


Assuntos
Anti-Infecciosos , Proteínas de Artrópodes , Venenos de Artrópodes , Citotoxinas , Inseticidas , Sequência de Aminoácidos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/toxicidade , Afídeos/efeitos dos fármacos , Aracnídeos , Proteínas de Artrópodes/química , Proteínas de Artrópodes/farmacologia , Proteínas de Artrópodes/toxicidade , Venenos de Artrópodes/química , Venenos de Artrópodes/farmacologia , Venenos de Artrópodes/toxicidade , Citotoxinas/química , Citotoxinas/farmacologia , Citotoxinas/toxicidade , Cães , Inseticidas/química , Inseticidas/farmacologia , Inseticidas/toxicidade , Células Madin Darby de Rim Canino , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...