RESUMO
The ability of the attaching and effacing pathogens enterohaemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium to overcome colonisation resistance is reliant on a type 3 secretion system used to intimately attach to the colonic epithelium. This crucial virulence factor is encoded on a pathogenicity island known as the Locus of Enterocyte Effacement (LEE) but its expression is regulated by several core-genome encoded transcription factors. Here, we unveil that the core transcription factor PdhR, traditionally known as a regulator of central metabolism in response to cellular pyruvate levels, is a key activator of the LEE. Through genetic and molecular analyses, we demonstrate that PdhR directly binds to a specific motif within the LEE master regulatory region, thus activating type 3 secretion directly and enhancing host cell adhesion. Deletion of pdhR in EHEC significantly impacted the transcription of hundreds of genes, with pathogenesis and protein secretion emerging as the most affected functional categories. Furthermore, in vivo studies using C. rodentium, a murine model for EHEC infection, revealed that PdhR is essential for effective host colonization and maximal LEE expression within the host. Our findings provide new insights into the complex regulatory networks governing bacterial pathogenesis. This research highlights the intricate relationship between virulence and metabolic processes in attaching and effacing pathogens, demonstrating how core transcriptional regulators can be co-opted to control virulence factor expression in tandem with the cell's essential metabolic circuitry.
Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Escherichia coli Êntero-Hemorrágica , Regulação Bacteriana da Expressão Gênica , Fatores de Virulência , Citrobacter rodentium/genética , Citrobacter rodentium/patogenicidade , Animais , Camundongos , Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/genética , Humanos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/metabolismo , Carbono/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genéticaRESUMO
Introduction: Group 3 innate lymphoid cells (ILC3s) are enriched in the intestinal mucosa and play important roles in host defense against infection and inflammatory diseases. Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide (NAD+)- dependent deacetylase and has been shown to control intestinal epithelial cell differentiation and survival. However, the role of SIRT6 in ILC3s remains unknown. Methods: To investigate the role of SIRT6 in gut ILC3s, we generated SIRT6 conditional knockout mice by crossing Rorccre and Sirt6flox/flox mice. Cell number and cytokine production was examined using flow cytometry. Citrobacter rodentium infection and dextran sodium sulfate-induced colitis models were used to determine the role of SIRT6 in gut defense. RT-qPCR, flow cytometry and immunohistochemistry were used to assess the intestinal inflammatory responses. Results: Here we show that SIRT6 inhibits IL-22 expression in intestinal ILC3s in a cell-intrinsic manner. Deletion of SIRT6 in ILC3s does not affect the cell numbers of total ILC3s and subsets, but results in increased IL-22 production. Furthermore, ablation of SIRT6 in ILC3s protects mice against Citrobacter rodentium infection and dextran sodium sulfate-induced colitis. Our results suggest that SIRT6 may play a role in ILC3 function by regulating gut immune responses against bacterial infection and inflammation. Discussion: Our finding provided insight into the relation of epigenetic regulators with IL-22 production and supplied a new perspective for a potential strategy against inflammatory bowel disease.
Assuntos
Citrobacter rodentium , Colite , Infecções por Enterobacteriaceae , Imunidade Inata , Interleucina 22 , Interleucinas , Linfócitos , Camundongos Knockout , Sirtuínas , Animais , Camundongos , Linfócitos/imunologia , Linfócitos/metabolismo , Interleucinas/metabolismo , Interleucinas/imunologia , Interleucinas/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Colite/imunologia , Colite/induzido quimicamente , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Sulfato de Dextrana , Modelos Animais de DoençasRESUMO
Enteric pathogens navigate distinct regional microenvironments within the intestine that cue important adaptive behaviors. We investigated the response of Citrobacter rodentium, a model of human pathogenic Escherichia coli infection in mice, to regional gastrointestinal pH. We found that small intestinal pH (4.4-4.8) triggered virulence gene expression and altered cell morphology, supporting initial intestinal attachment, while higher pH, representative of C. rodentium's replicative niches further along the murine intestine, supported pathogen growth. Gastric pH, a key barrier to intestinal colonization, caused significant accumulation of intra-bacterial reactive oxygen species (ROS), inhibiting growth of C. rodentium and related human pathogens. Within-host adaptation increased gastric acid survival, which may be due to a robust acid tolerance response (ATR) induced at colonic pH. However, the intestinal environment changes throughout the course of infection. We found that murine gastric pH decreases postinfection, corresponding to increased serum gastrin levels and altered host expression of acid secretion-related genes. Similar responses following Salmonella infection may indicate a protective host response to limit further pathogen ingestion. Together, we highlight interlinked bacterial and host adaptive pH responses as an important component of host-pathogen coevolution.
Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Interações Hospedeiro-Patógeno , Animais , Concentração de Íons de Hidrogênio , Citrobacter rodentium/patogenicidade , Citrobacter rodentium/fisiologia , Camundongos , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Camundongos Endogâmicos C57BL , Adaptação Fisiológica , Feminino , Espécies Reativas de Oxigênio/metabolismo , Intestinos/microbiologia , Humanos , Virulência , Escherichia coli/metabolismo , Escherichia coli/fisiologiaRESUMO
How group 3 innate lymphoid cells (ILC3s) regulate mucosal protection in the presence of T cells remains poorly understood. Here, we examined ILC3 function in intestinal immunity using ILC3-deficient mice that maintain endogenous T cells, T helper 17 (TH17) cells, and secondary lymphoid organs. ILC3s were dispensable for generation of TH17 and TH22 cell responses to commensal and pathogenic bacteria, and absence of ILC3s did not affect IL-22 production by CD4 T cells before or during infection. However, despite the presence of IL-22-producing T cells, ILC3s and ILC3-derived IL-22 were required for maintaining homeostatic functions of the intestinal epithelium. T cell-sufficient, ILC3-deficient mice were capable of pathogen clearance and survived infection with a low dose of Citrobacter rodentium. However, ILC3s promoted pathogen tolerance at early time points of infection by activating tissue-protective immune pathways. Consequently, ILC3s were indispensable for survival after high-dose infection. Our results demonstrate a context-dependent role for ILC3s in immune-sufficient animals and provide a blueprint for uncoupling of ILC3 and TH17 cell functions.
Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Imunidade Inata , Mucosa Intestinal , Linfócitos , Camundongos Endogâmicos C57BL , Animais , Imunidade Inata/imunologia , Camundongos , Linfócitos/imunologia , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos Knockout , Interleucina 22 , Imunidade nas Mucosas/imunologia , Células Th17/imunologiaRESUMO
The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C. rodentium infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.
Assuntos
Glutationa , Interleucina 22 , Interleucinas , Mitocôndrias , Células Th17 , Animais , Interleucinas/metabolismo , Mitocôndrias/metabolismo , Glutationa/metabolismo , Células Th17/metabolismo , Células Th17/imunologia , Camundongos , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Citrobacter rodentium , Intestinos/patologia , Intestinos/imunologia , Inflamação/metabolismo , Inflamação/patologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/patologia , Camundongos Knockout , Serina-Treonina Quinases TOR/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologiaRESUMO
Egg white protein ovomucin and its hydrolysates were previously reported to exhibit anti-inflammatory and anti-adhesive activities. However, their potential to regulate pathogen colonization and disease severity has not been fully characterized. To investigate the effects of ovomucin (OVM) and its hydrolysates including ovomucin-Protex 26L (OP) and -pepsin/pancreatin (OPP) on host resistance to pathogen infection, a well-documented colitis model in mice for attaching and effacing E. coli pathogens, Citrobacter rodentium, was used in the current study. C57Bl/6J female mice were fed on a basal diet supplemented with OVM or its hydrolysates for 3 weeks prior to the C. rodentium challenge, with the dietary treatments continued for seven days. Body weight was not affected throughout the experimental period. OP supplementation resulted in lower (P < 0.05) pathogen loads at 7 dpi. Attenuated colitis severity was observed in mice that received OVM and OP, as indicated by reduced colonic pathological scores and pro-inflammatory responses compared with the infected control group. In contrast, OPP consumption resulted in enhanced C. rodentium colonization and disease severity. Notably, reduced microbial diversity indices of the gut microbiota were observed in the OPP-supplemented mice compared with the OVM- and OP-supplemented groups. This study showed the potential of OVM and OP to alleviate the severity of colitis induced by infection while also suggesting the opposite outcome of OPP in mitigating enteric infection.
Assuntos
Citrobacter rodentium , Colite , Infecções por Enterobacteriaceae , Camundongos Endogâmicos C57BL , Ovomucina , Animais , Camundongos , Feminino , Colite/induzido quimicamente , Colite/microbiologia , Infecções por Enterobacteriaceae/microbiologia , Microbioma Gastrointestinal , Modelos Animais de Doenças , Colo/microbiologia , Colo/patologia , Colo/metabolismo , Hidrolisados de Proteína/farmacologiaRESUMO
Parkinson's disease (PD) is a prevalent neurodegenerative disorder with indistinct etiology and ill-defined pathophysiology. Intestinal inflammation involved in the pathogenesis of PD, but the underlying mechanism is not fully understood. Citrobacter rodentium (C.R) is a gram-negative bacterium that can be used to induce human inflammatory bowel disease in mice. Here, we investigated whether the proinflammatory effects caused by C.R infection initiate PD-like injury and/or exacerbate PD pathology and extensively studied the underlying mechanism. Mice were gavaged once with C.R and monitored for several pathological features at 9 days post infection. The results showed that C.R delivery in mice induced IBD-like symptoms, including significant weight loss, increased fecal water content, an impaired intestinal barrier, intestinal hyperpermeability and inflammation, and intestinal microbiota disturbances. Notably, C.R infection modified dopamine (DA) metabolism in the brains of both male and female mice. Subsequently, a single high dose of MPTP or normal saline was administered at 6 days post infection. At 3 days after MPTP administration, the feces were collected for 16 S rRNA analysis, and PD-like phenotypes and mechanisms were systemically analyzed. Compared with C.R or MPTP injection alone, the injection of C.R and MPTP combined worsened behavioral performance. Moreover, such combination triggered more severe dopaminergic degeneration and glial cell overactivation in the nigrostriatal pathway of mice. Mechanistically, the combination of C.R and MPTP increased the expression of TLR4 and NF-κB p65 in the colon and striatum and upregulated proinflammatory cytokine expression. Therefore, C.R infection-induced intestinal inflammation can impair dopamine metabolism and exacerbate PD pathological processes.
Assuntos
Citrobacter rodentium , Dopamina , Infecções por Enterobacteriaceae , Camundongos Endogâmicos C57BL , Animais , Camundongos , Dopamina/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/patologia , Masculino , Feminino , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/microbiologia , Microbioma Gastrointestinal/fisiologiaRESUMO
Histone demethylase JMJD2D (also known as KDM4D) can specifically demethylate H3K9me2/3 to activate its target gene expression. Our previous study has demonstrated that JMJD2D can protect intestine from dextran sulfate sodium (DSS)-induced colitis by activating Hedgehog signaling; however, its involvement in host defense against enteric attaching and effacing bacterial infection remains unclear. The present study was aimed to investigate the role of JMJD2D in host defense against enteric bacteria and its underlying mechanisms. The enteric pathogen Citrobacter rodentium (C. rodentium) model was used to mimic clinical colonic infection. The responses of wild-type and JMJD2D-/- mice to oral infection of C. rodentium were investigated. Bone marrow chimeric mice were infected with C. rodentium. JMJD2D expression was knocked down in CMT93 cells by using small hairpin RNAs, and Western blot and real-time PCR assays were performed in these cells. The relationship between JMJD2D and STAT3 was studied by co-immunoprecipitation and chromatin immunoprecipitation. JMJD2D was significantly up-regulated in colonic epithelial cells of mice in response to Citrobacter rodentium infection. JMJD2D-/- mice displayed an impaired clearance of C. rodentium, more body weight loss, and more severe colonic tissue pathology compared with wild-type mice. JMJD2D-/- mice exhibited an impaired expression of IL-17F in the colonic epithelial cells, which restricts C. rodentium infection by inducing the expression of antimicrobial peptides. Accordingly, JMJD2D-/- mice showed a decreased expression of ß-defensin-1, ß-defensin-3, and ß-defensin-4 in the colonic epithelial cells. Mechanistically, JMJD2D activated STAT3 signaling by inducing STAT3 phosphorylation and cooperated with STAT3 to induce IL-17F expression by interacting with STAT3 and been recruited to the IL-17F promoter to demethylate H3K9me3. Our study demonstrates that JMJD2D contributes to host defense against enteric bacteria through up-regulating IL-17F to induce ß-defensin expression.
Assuntos
Citrobacter rodentium , Colo , Infecções por Enterobacteriaceae , Interleucina-17 , Histona Desmetilases com o Domínio Jumonji , Camundongos Knockout , Regulação para Cima , beta-Defensinas , Animais , Camundongos , beta-Defensinas/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/imunologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Interleucina-17/metabolismo , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Camundongos Endogâmicos C57BL , Colite/metabolismo , Colite/microbiologia , Fator de Transcrição STAT3/metabolismoRESUMO
Citrobacter rodentium models infection with enteropathogenic Escherichia coli and ulcerative colitis (UC). While C57BL/6 (C57) mice recover, C3H/HeN (C3H) mice succumb to infection, partially due to increased colonic neutrophil elastase activity, also seen in UC patients; however, the underlying cause was unknown. Here, we found that bone marrow, blood, and colonic C57 neutrophils expressed (CD)11bHi and reached the infected colonic lumen, where they underwent productive NETosis. In contrast, while the number of C3H neutrophils increased in the bone marrow, blood, and colon, they remained CD11bLo and got trapped in the submucosa, away from C. rodentium, where they underwent harmful NETosis. CD11bLo neutrophils in C3H mice infected with CRi9, which triggers expression of neutrophil chemoattractants, reached the colonization site, resulting in host survival. UC patient neutrophils also displayed decreased levels of the activation/differentiation markers CD16/CXCR4. These results, suggesting that neutrophil malfunction contributes to exacerbated colitis, provide insight for future therapeutic prospects.
Assuntos
Citrobacter rodentium , Modelos Animais de Doenças , Infecções por Enterobacteriaceae , Camundongos Endogâmicos C57BL , Neutrófilos , Animais , Camundongos , Neutrófilos/imunologia , Humanos , Infecções por Enterobacteriaceae/imunologia , Suscetibilidade a Doenças , Colite Ulcerativa/imunologia , Antígeno CD11b/metabolismo , Receptores de IgG/metabolismo , Receptores de IgG/genética , Camundongos Endogâmicos C3H , Colo/imunologia , Colo/patologia , Movimento Celular , Colite/imunologia , Feminino , Masculino , Doenças do Sistema Imunitário , Transtornos Leucocíticos , Receptores CXCR4RESUMO
The erosion of the colonic mucus layer by a dietary fiber-deprived gut microbiota results in heightened susceptibility to an attaching and effacing pathogen, Citrobacter rodentium. Nevertheless, the questions of whether and how specific mucolytic bacteria aid in the increased pathogen susceptibility remain unexplored. Here, we leverage a functionally characterized, 14-member synthetic human microbiota in gnotobiotic mice to deduce which bacteria and functions are responsible for the pathogen susceptibility. Using strain dropouts of mucolytic bacteria from the community, we show that Akkermansia muciniphila renders the host more vulnerable to the mucosal pathogen during fiber deprivation. However, the presence of A. muciniphila reduces pathogen load on a fiber-sufficient diet, highlighting the context-dependent beneficial effects of this mucin specialist. The enhanced pathogen susceptibility is not owing to altered host immune or pathogen responses, but is driven by a combination of increased mucus penetrability and altered activities of A. muciniphila and other community members. Our study provides novel insights into the mechanisms of how discrete functional responses of the same mucolytic bacterium either resist or enhance enteric pathogen susceptibility.
Assuntos
Akkermansia , Citrobacter rodentium , Microbioma Gastrointestinal , Animais , Camundongos , Citrobacter rodentium/patogenicidade , Humanos , Suscetibilidade a Doenças , Fibras na Dieta/metabolismo , Vida Livre de Germes , Dieta , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Verrucomicrobia/genética , Infecções por Enterobacteriaceae/microbiologia , Colo/microbiologia , Camundongos Endogâmicos C57BLRESUMO
Virulence and metabolism are often interlinked to control the expression of essential colonisation factors in response to host-associated signals. Here, we identified an uncharacterised transporter of the dietary monosaccharide Ê-arabinose that is widely encoded by the zoonotic pathogen enterohaemorrhagic Escherichia coli (EHEC), required for full competitive fitness in the mouse gut and highly expressed during human infection. Discovery of this transporter suggested that EHEC strains have an enhanced ability to scavenge Ê-arabinose and therefore prompted us to investigate the impact of this nutrient on pathogenesis. Accordingly, we discovered that Ê-arabinose enhances expression of the EHEC type 3 secretion system, increasing its ability to colonise host cells, and that the underlying mechanism is dependent on products of its catabolism rather than the sensing of Ê-arabinose as a signal. Furthermore, using the murine pathogen Citrobacter rodentium, we show that Ê-arabinose metabolism provides a fitness benefit during infection via virulence factor regulation, as opposed to supporting pathogen growth. Finally, we show that this mechanism is not restricted to Ê-arabinose and extends to other pentose sugars with a similar metabolic fate. This work highlights the importance integrating central metabolism with virulence regulation in order to maximise competitive fitness of enteric pathogens within the host-niche.
Assuntos
Arabinose , Citrobacter rodentium , Escherichia coli Êntero-Hemorrágica , Arabinose/metabolismo , Animais , Camundongos , Citrobacter rodentium/patogenicidade , Citrobacter rodentium/metabolismo , Citrobacter rodentium/genética , Humanos , Virulência , Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Êntero-Hemorrágica/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Infecções por Enterobacteriaceae/microbiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/genética , Infecções por Escherichia coli/microbiologia , FemininoRESUMO
Mucosal vaccination presents a promising complement to parenteral vaccination. Bacterium-like particles (BLPs), peptidoglycan structures prepared from lactic acid bacteria, are explored as potential nasal vaccine adjuvants for respiratory infections. To date, studies on BLP-adjuvanted nasal vaccines against intestinal infections have remained limited. In this study, we demonstrated the efficacy of intranasal BLP-adjuvanted vaccination in controlling intestinal infections using the Citrobacter rodentium (C. rodentium) model in C57BL/6 mice. Intranasal vaccination of Intimin, an adhesin critical for intimate bacterial adhesion to colonic epithelial cells, combined with BLP (BLP+I) elicited robust Intimin-specific intestinal secretory IgA production, reduced bacterial load in feces and almost completely inhibited colonic hyperplasia, a characteristic symptom of C. rodentium infection in mice. Conversely, parenteral vaccination with Alhydrogel-adjuvanted Intimin failed to induce intestinal Intimin-specific IgA production, resulting in poor protection against C. rodentium infection. This underscores the pivotal role of mucosal IgA responses elicited by intranasal immunization in its protective efficacy. As this study did not delineate the precise protective mechanism conferred by BLP+I intranasal immunization against C. rodentium infection, further elucidation of the mechanisms underlying intranasal BLP+I immunization is required.
Assuntos
Administração Intranasal , Vacinas Bacterianas , Citrobacter rodentium , Infecções por Enterobacteriaceae , Camundongos Endogâmicos C57BL , Animais , Camundongos , Citrobacter rodentium/imunologia , Citrobacter rodentium/patogenicidade , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/sangue , Feminino , Adjuvantes Imunológicos/administração & dosagem , Adesinas Bacterianas/imunologia , Adjuvantes de Vacinas/administração & dosagem , Imunidade nas Mucosas , Imunoglobulina A Secretora/imunologia , Imunoglobulina A/imunologia , Modelos Animais de Doenças , Enteropatias/prevenção & controle , Enteropatias/imunologiaRESUMO
The mouse pathogen Citrobacter rodentium is utilized as a model organism for studying infections caused by the human pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) and to elucidate mechanisms of mucosal immunity. In response to C. rodentium infection, innate lymphoid cells and T cells secrete interleukin (IL)-22, a cytokine that promotes mucosal barrier function. IL-22 plays a pivotal role in enabling mice to survive and recover from C. rodentium infection, although the exact mechanisms involved remain incompletely understood. Here, we investigated whether particular components of the host response downstream of IL-22 contribute to the cytokine's protective effects during C. rodentium infection. In line with previous research, mice lacking the IL-22 gene (Il22-/- mice) were highly susceptible to C. rodentium infection. To elucidate the role of specific antimicrobial proteins modulated by IL-22, we infected the following knockout mice: S100A9-/- (calprotectin), Lcn2-/- (lipocalin-2), Reg3b-/- (Reg3ß), Reg3g-/- (Reg3γ), and C3-/- (C3). All knockout mice tested displayed a considerable level of resistance to C. rodentium infection, and none phenocopied the lethality observed in Il22-/- mice. By investigating another arm of the IL-22 response, we observed that C. rodentium-infected Il22-/- mice exhibited an overall decrease in gene expression related to intestinal barrier integrity as well as significantly elevated colonic inflammation, gut permeability, and pathogen levels in the spleen. Taken together, these results indicate that host resistance to lethal C. rodentium infection may depend on multiple antimicrobial responses acting in concert, or that other IL-22-regulated processes, such as tissue repair and maintenance of epithelial integrity, play crucial roles in host defense to attaching and effacing pathogens.
Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Interleucina 22 , Animais , Camundongos , Citrobacter rodentium/imunologia , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Interleucina 22/genética , Interleucina 22/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/imunologiaRESUMO
Conventional dendritic cells (cDC) play key roles in immune induction, but what drives their heterogeneity and functional specialization is still ill-defined. Here we show that cDC-specific deletion of the transcriptional repressor Bcl6 in mice alters the phenotype and transcriptome of cDC1 and cDC2, while their lineage identity is preserved. Bcl6-deficient cDC1 are diminished in the periphery but maintain their ability to cross-present antigen to CD8+ T cells, confirming general maintenance of this subset. Surprisingly, the absence of Bcl6 in cDC causes a complete loss of Notch2-dependent cDC2 in the spleen and intestinal lamina propria. DC-targeted Bcl6-deficient mice induced fewer T follicular helper cells despite a profound impact on T follicular regulatory cells in response to immunization and mounted diminished Th17 immunity to Citrobacter rodentium in the colon. Our findings establish Bcl6 as an essential transcription factor for subsets of cDC and add to our understanding of the transcriptional landscape underlying cDC heterogeneity.
Assuntos
Citrobacter rodentium , Células Dendríticas , Proteínas Proto-Oncogênicas c-bcl-6 , Células Th17 , Animais , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Camundongos , Citrobacter rodentium/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Linfócitos T CD8-Positivos/imunologia , Deleção de Genes , Baço/imunologia , Baço/citologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismoRESUMO
Colonization resistance, conferred by the host's microbiota through both direct and indirect protective actions, serves to protect the host from enteric infections. Here, we identified the specific members of the gut microbiota that impact gastrointestinal colonization by Citrobacter rodentium, a murine pathogen causing colonic crypt hyperplasia. The gut colonization levels of C. rodentium in C57BL/6 mice varied among breeding facilities, probably due to differences in microbiota composition. A comprehensive analysis of the microbiota revealed that specific members of the microbiota may influence gut colonization by C. rodentium, thus providing a potential link between the two.
Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Microbioma Gastrointestinal , Trato Gastrointestinal , Camundongos Endogâmicos C57BL , Animais , Citrobacter rodentium/patogenicidade , Citrobacter rodentium/fisiologia , Infecções por Enterobacteriaceae/microbiologia , Camundongos , Trato Gastrointestinal/microbiologia , Colo/microbiologia , Colo/patologia , Fezes/microbiologia , RNA Ribossômico 16S/genéticaRESUMO
Interleukin 22 (IL-22) has a non-redundant role in immune defence of the intestinal barrier1-3. T cells, but not innate lymphoid cells, have an indispensable role in sustaining the IL-22 signalling that is required for the protection of colonic crypts against invasion during infection by the enteropathogen Citrobacter rodentium4 (Cr). However, the intestinal epithelial cell (IEC) subsets targeted by T cell-derived IL-22, and how T cell-derived IL-22 sustains activation in IECs, remain undefined. Here we identify a subset of absorptive IECs in the mid-distal colon that are specifically targeted by Cr and are differentially responsive to IL-22 signalling. Major histocompatibility complex class II (MHCII) expression by these colonocytes was required to elicit sustained IL-22 signalling from Cr-specific T cells, which was required to restrain Cr invasion. Our findings explain the basis for the regionalization of the host response to Cr and demonstrate that epithelial cells must elicit MHCII-dependent help from IL-22-producing T cells to orchestrate immune protection in the intestine.
Assuntos
Citrobacter rodentium , Colo , Células Epiteliais , Mucosa Intestinal , Linfócitos T , Animais , Feminino , Masculino , Camundongos , Citrobacter rodentium/imunologia , Colo/citologia , Colo/imunologia , Colo/microbiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Interleucina 22/imunologia , Interleucina 22/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/citologia , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.
Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Glicólise , Proteínas HMGB , Imunidade Inata , Linfócitos , Camundongos Knockout , Animais , Camundongos , Adaptação Fisiológica/imunologia , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Hexoquinase/metabolismo , Hexoquinase/genética , Interleucina-17/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Transativadores/metabolismo , Transativadores/genética , Proteínas HMGB/genética , Proteínas HMGB/imunologia , Proteínas HMGB/metabolismoRESUMO
Interleukin 22 (IL-22) promotes intestinal barrier integrity, stimulating epithelial cells to enact defense mechanisms against enteric infections, including the production of antimicrobial peptides. IL-22 binding protein (IL-22BP) is a soluble decoy encoded by the Il22ra2 gene that decreases IL-22 bioavailability, attenuating IL-22 signaling. The impact of IL-22BP on gut microbiota composition and functioning is poorly understood. We found that Il22ra2-/- mice are better protected against Clostridioides difficile and Citrobacter rodentium infections. This protection relied on IL-22-induced antimicrobial mechanisms before the infection occurred, rather than during the infection itself. Indeed, the gut microbiota of Il22ra2-/- mice mitigated infection of wild-type (WT) mice when transferred via cohousing or by cecal microbiota transplantation. Indicator species analysis of WT and Il22ra2-/- mice with and without cohousing disclosed that IL22BP deficiency yields a gut bacterial composition distinct from that of WT mice. Manipulation of dietary fiber content, measurements of intestinal short-chain fatty acids and oral treatment with acetate disclosed that resistance to C. difficile infection is related to increased production of acetate by Il22ra2-/--associated microbiota. Together, these findings suggest that IL-22BP represents a potential therapeutic target for those at risk for or with already manifest infection with this and perhaps other enteropathogens.
Assuntos
Citrobacter rodentium , Clostridioides difficile , Infecções por Enterobacteriaceae , Microbioma Gastrointestinal , Interleucina 22 , Camundongos Knockout , Animais , Camundongos , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/prevenção & controle , Receptores de Interleucina/metabolismo , Receptores de Interleucina/genética , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/prevenção & controleRESUMO
IL-21/IL-21R signaling dysregulation is linked to multiple chronic intestinal inflammatory disorders in humans and animal models of human diseases. In addition to its critical requirement for the generation and development of germinal center B cells, IL-21/IL-21R signaling can also regulate the effector functions of a variety of T-cell subsets. The antibody-mediated abrogation of IL-21/IL-21R signaling led to the impaired expression of IFN-γ by mucosal CD4+ T cells from human subjects with colitis, suggesting an IL-21/IL-21R-triggered positive feedback loop of the TH1 immune response in the colon. Despite recent advances in our understanding of the mechanisms underpinning the regulation of proinflammatory immune responses by the IL-21/IL-21R signaling axis, it remains unclear how this pathway or its downstream molecules contribute to inflammation during bacterial-induced colitis. This study found that IL-21 enhances the surface expression of IL-12Rß2, but not IL-12Rß1, in CD4+ T cells, leading to TH1 differentiation and stability. Consistently, these findings also point to an indispensable role of the IL-12Rß2 signaling axis in promoting proinflammatory immune responses during Citrobacter rodentium-induced colitis. Genetic deletion of the IL-12Rß2 signaling pathway led to the attenuation of C. rodentium-induced colitis in vivo. The genetic deletion of the IL-12Rß2 signaling pathway did not alter the host's ability to respond adequately to C. rodentium infection or the ability of Il12rb2-/- mice to express antigen-specific cytokines (IFN-γ, IL-17A). IL-21 is a pleiotropic cytokine exerting a wide range of immunomodulatory functions in multiple tissues, and its direct targeting may result in undesirable off-target consequences. These findings highlight the possibility for targeted manipulations of signaling cascades downstream of main regulators of proinflammatory responses to control invading pathogens while preserving the integrity of host immune responses. A better understanding of the novel mechanisms by which IL-21/IL-21R signaling regulates bacterial-induced colitis will provide insights into the development of new therapeutic and preventive strategies to harness IL-21/IL-21R signaling or its downstream molecules to treat infectious colitis.
Assuntos
Linfócitos T CD4-Positivos , Citrobacter rodentium , Colite , Interleucinas , Transdução de Sinais , Animais , Colite/imunologia , Colite/patologia , Interleucinas/metabolismo , Interleucinas/imunologia , Camundongos , Citrobacter rodentium/imunologia , Humanos , Linfócitos T CD4-Positivos/imunologia , Interleucina-12/metabolismo , Interleucina-12/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-21/metabolismo , Receptores de Interleucina-21/genética , Células Th1/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/patologia , Interferon gama/metabolismo , Interferon gama/imunologia , Subunidade beta 2 de Receptor de Interleucina-12/metabolismo , Subunidade beta 2 de Receptor de Interleucina-12/genéticaRESUMO
Enterohemorrhagic Escherichia coli causes watery to bloody diarrhea, which may progress to hemorrhagic colitis and hemolytic-uremic syndrome. While early studies suggested that antibiotic treatment may worsen the pathology of an enterohemorrhagic Escherichia coli (EHEC) infection, recent work has shown that certain non-Shiga toxin-inducing antibiotics avert disease progression. Unfortunately, both intestinal bacterial infections and antibiotic treatment are associated with dysbiosis. This can alleviate colonization resistance, facilitate secondary infections, and potentially lead to more severe illness. To address the consequences in the context of an EHEC infection, we used the established mouse infection model organism Citrobacter rodentium Ïstx2dact and monitored changes in fecal microbiota composition during infection and antibiotic treatment. C. rodentium Ïstx2dact infection resulted in minor changes compared to antibiotic treatment. The infection caused clear alterations in the microbial community, leading mainly to a reduction of Muribaculaceae and a transient increase in Enterobacteriaceae distinct from Citrobacter. Antibiotic treatments of the infection resulted in marked and distinct variations in microbiota composition, diversity, and dispersion. Enrofloxacin and trimethoprim/sulfamethoxazole, which did not prevent Shiga toxin-mediated organ damage, had the least disruptive effects on the intestinal microbiota, while kanamycin and tetracycline, which rapidly cleared the infection without causing organ damage, caused a severe reduction in diversity. Kanamycin treatment resulted in the depletion of all but Bacteroidetes genera, whereas tetracycline effects on Clostridia were less severe. Together, these data highlight the need to address the impact of individual antibiotics in the clinical care of life-threatening infections and consider microbiota-regenerating therapies.IMPORTANCEUnderstanding the impact of antibiotic treatment on EHEC infections is crucial for appropriate clinical care. While discouraged by early studies, recent findings suggest certain antibiotics can impede disease progression. Here, we investigated the impact of individual antibiotics on the fecal microbiota in the context of an established EHEC mouse model using C. rodentium Ïstx2dact. The infection caused significant variations in the microbiota, leading to a transient increase in Enterobacteriaceae distinct from Citrobacter. However, these effects were minor compared to those observed for antibiotic treatments. Indeed, antibiotics that most efficiently cleared the infection also had the most detrimental effect on the fecal microbiota, causing a substantial reduction in microbial diversity. Conversely, antibiotics showing adverse effects or incomplete bacterial clearance had a reduced impact on microbiota composition and diversity. Taken together, our findings emphasize the delicate balance required to weigh the harmful effects of infection and antibiosis in treatment.