Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.027
Filtrar
1.
Biochem Biophys Res Commun ; 735: 150809, 2024 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-39406017

RESUMO

This study investigated the dissolution behavior of l-isoleucine and l-serine in an aqueous salt solution (ammonium chloride), examining how variations in temperature and electrolyte concentration affect their solubility. We conducted careful experiments and used mathematical calculations to explore interactions at a molecular level. We observed that the structure of these amino acids and salt concentration in the aqueous medium influence their interactions, which affects dissolution. In the presence of electrolytes, l-isoleucine demonstrated a salting-out effect whereas l-serine showed a salting-in effect. This work examines the solute-solvent interactions of these solutes in aqueous ammonium chloride solutions. l-isoleucine exhibits a nonspontaneous reaction with increasing salt concentrations whereas l-serine shows spontaneous behavior. Gibbs free energy analysis revealed greater stability of l-serine. The pH and conductance measurements showed how these factors influence solution properties. This insight helps us comprehend the nature and behavior of these molecules in different situations, which could be helpful in drug formulation or protein purification in the future.


Assuntos
Cloreto de Amônio , Isoleucina , Serina , Solubilidade , Temperatura , Termodinâmica , Água , Isoleucina/química , Serina/química , Água/química , Cloreto de Amônio/química , Soluções , Concentração de Íons de Hidrogênio , Solventes/química
2.
Appl Environ Microbiol ; 90(10): e0114624, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39287399

RESUMO

In the actual industrial production process, the efficient biosynthesis and secretion of Monascus pigments (MPs) tend to take place under abiotic stresses, which often result in an imbalance of cell homeostasis. The present study aimed to thoroughly describe the changes in lipid profiles in Monascus purpureus by absolute quantitative lipidomics and tandem mass tag-based quantitative proteomics. The results showed that ammonium chloride stress (15 g/L) increased MP production while inhibiting ergosterol biosynthesis, leading to an imbalance in membrane lipid homeostasis in Monascus. In response to the imbalance of lipid homeostasis, the regulation mechanism of phospholipids in Monascus was implemented, including the inhibition of lysophospholipids production, maintenance of the ratio of PC/PE, and improvement of the biosynthesis of phosphatidylglycerol, phosphatidylserine, and cardiolipin with high saturated and long carbon chain fatty acids through the CDP-DG pathway rather than the Kennedy pathway. The inhibition of lysophospholipid biosynthesis was attributed to the upregulated expression of protein and its gene related to lysophospholipase NTE1, while maintenance of the PC/PE ratio was achieved by the upregulated expression of protein and its gene related to CTP: phosphoethanolamine cytidylyltransferase and phosphatidylethanolamine N-methyltransferase in the Kennedy pathway. These findings provide insights into the regulation mechanism of MP biosynthesis from new perspectives.IMPORTANCEMonascus is important in food microbiology as it produces natural colorants known as Monascus pigments (MPs). The industrial production of MPs has been achieved by liquid fermentation, in which the nitrogen source (especially ammonium chloride) is a key nutritional parameter. Previous studies have investigated the regulatory mechanisms of substance and energy metabolism, as well as the cross-protective mechanisms in Monascus in response to ammonium chloride stress. Our research in this work demonstrated that ammonium chloride stress also caused an imbalance of membrane lipid homeostasis in Monascus due to the inhibition of ergosterol biosynthesis. We found that the regulation mechanism of phospholipids in Monascus was implemented, including inhibition of lysophospholipids production, maintenance of the ratio of PC/PE, and improvement of biosynthesis of phosphatidylglycerol, phosphatidylserine, and cardiolipin with high saturated and long carbon chain fatty acids through the CDP-DG pathway. These findings further refine the regulatory mechanisms of MP production and secretion.


Assuntos
Cloreto de Amônio , Monascus , Fosfolipídeos , Pigmentos Biológicos , Monascus/metabolismo , Monascus/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Pigmentos Biológicos/biossíntese , Fosfolipídeos/metabolismo , Fosfolipídeos/biossíntese , Cloreto de Amônio/farmacologia , Cloreto de Amônio/metabolismo , Estresse Fisiológico , Lipidômica
3.
J Appl Microbiol ; 135(10)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39257021

RESUMO

AIM: Ammonium chloride (NH4Cl) is one of the nitrogen sources for microalgal cultivation. An excessive amounts of NH4Cl are toxic for microalgae. However, combining mixotrophic conditions and excessive quantities of NH4Cl positively affects microalgal biomass and lipid production. In this study, we investigated the impact of NH4Cl on the growth, biomass, and triglyceride (TAG) content of the green microalga Chlamydomonas reinhardtii especially under mixotrophic conditions. METHODS AND RESULTS: Under photoautotrophic conditions (without organic carbon supplementation), adding 25 mM NH4Cl had no significant effect on microalgal growth or TAG content. However, under mixotrophic condition (with acetate supplementation), NH4Cl interfered with microalgal growth while inducing TAG content. To explore these effects further, we conducted a two-step cultivation process and found that NH4Cl reduced microalgal growth, but induced total lipid and TAG content, especially after 4-day cultivation. The photosynthesis performances showed that NH4Cl completely inhibited oxygen evolution on day 4. However, NH4Cl slightly reduced the Fv/Fm ratio indicating that the NH4Cl supplementation directly affects microalgal photosynthesis. To investigate the TAG induction effect by NH4Cl, we compared the protein expression profiles of microalgae grown mixotrophically with and without 25 mM NH4Cl using a proteomics approach. This analysis identified 1782 proteins, with putative acetate uptake transporter GFY5 and acyl-coenzyme A oxidase being overexpressed in the NH4Cl-treated group. CONCLUSION: These findings suggested that NH4Cl supplementation may stimulate acetate utilization and fatty acid synthesis pathways in microalgae cells. Our study indicated that NH4Cl supplementation can induce microalgal biomass and lipid production, particularly when combined with mixotrophic conditions.


Assuntos
Cloreto de Amônio , Biomassa , Chlamydomonas reinhardtii , Fotossíntese , Triglicerídeos , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Triglicerídeos/metabolismo , Cloreto de Amônio/farmacologia , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Nitrogênio/metabolismo
4.
Am J Vet Res ; 85(11)2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39255835

RESUMO

BACKGROUND: Urinary acidification with ammonium chloride (AC) for urolith dissolution is a common treatment for goats with urolithiasis. Studies have reported increased fractional excretion of calcium (FECa) following AC administration, which could increase calcium-based urolithiasis. D,L methionine (MET) may result in similar acidification with less calcium excretion. OBJECTIVE: To compare the effects of orally administered MET and AC on urine and blood pH, FECa, and blood HCO3- concentrations in male goats. METHODS: Prospective, randomized, crossover study. 12 healthy, 5-to-6-month-old Boer-cross wethers were administered 200 mg/kg of AC or MET orally for 14 days with a 7-day washout period between trials. Venous blood and urine samples were collected every 2 days. The effects of treatment and treatment day on urine and blood pH, HCO3-, and FECa were assessed using linear mixed models. RESULTS: Ammonium chloride and MET lowered least squares means (LSM) urine pH on day 6 (LSM, 7.49; 95% CI, 6.44 to 8.54), 8 (LSM, 7.78; 95% CI, 6.73 to 8.83), and 10 (LSM, 7.53; 95% CI, 6.49 to 8.58) when compared to day 0 (LSM, 8.23; 95% CI, 7.18 to 9.28). Some goats' urine indicated acidification (pH < 7.0) in the first phase of the trial; however, for the entire trial, a significant treatment effect was not detected on urine pH, blood pH, blood HCO3- or log10 FECa. CLINICAL RELEVANCE: Ammonium chloride and MET acidified urine of some goats. Dietary cation-anion difference should be considered when treating healthy goats to acidify their urine.


Assuntos
Cloreto de Amônio , Bicarbonatos , Cálcio , Estudos Cross-Over , Cabras , Metionina , Animais , Cabras/urina , Cloreto de Amônio/farmacologia , Cloreto de Amônio/administração & dosagem , Bicarbonatos/sangue , Bicarbonatos/urina , Masculino , Metionina/administração & dosagem , Metionina/farmacologia , Concentração de Íons de Hidrogênio , Cálcio/urina , Cálcio/sangue , Estudos Prospectivos
5.
Microb Biotechnol ; 17(8): e14552, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39163151

RESUMO

Petroleum-based plastics levy significant environmental and economic costs that can be alleviated with sustainably sourced, biodegradable, and bio-based polymers such as polyhydroxyalkanoates (PHAs). However, industrial-scale production of PHAs faces barriers stemming from insufficient product yields and high costs. To address these challenges, we must look beyond the current suite of microbes for PHA production and investigate non-model organisms with versatile metabolisms. In that vein, we assessed PHA production by the photosynthetic purple non-sulfur bacteria (PNSB) Rhodomicrobium vannielii and Rhodomicrobium udaipurense. We show that both species accumulate PHA across photo-heterotrophic, photo-hydrogenotrophic, photo-ferrotrophic, and photo-electrotrophic growth conditions, with either ammonium chloride (NH4Cl) or dinitrogen gas (N2) as nitrogen sources. Our data indicate that nitrogen source plays a significant role in dictating PHA synthesis, with N2 fixation promoting PHA production during photoheterotrophy and photoelectrotrophy but inhibiting production during photohydrogenotrophy and photoferrotrophy. We observed the highest PHA titres (up to 44.08 mg/L, or 43.61% cell dry weight) when cells were grown photoheterotrophically on sodium butyrate with N2, while production was at its lowest during photoelectrotrophy (as low as 0.04 mg/L, or 0.16% cell dry weight). We also find that photohydrogenotrophically grown cells supplemented with NH4Cl exhibit the highest electron yields - up to 58.89% - while photoheterotrophy demonstrated the lowest (0.27%-1.39%). Finally, we highlight superior electron conversion and PHA production compared to a related PNSB, Rhodopseudomonas palustris TIE-1. This study illustrates the value of studying non-model organisms like Rhodomicrobium for sustainable PHA production and indicates future directions for exploring PNSB metabolisms.


Assuntos
Processos Fototróficos , Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Nitrogênio/metabolismo , Cloreto de Amônio/metabolismo
6.
Water Sci Technol ; 90(4): 1198-1209, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39215732

RESUMO

High concentrations of Na+ and NH4+ in landfill leachate lead to deterioration of bentonite barrier and pose a threat to the environment. This study focused on the pollution interception and permeability characteristics of the bentonite barrier exposed to NaCl and NH4Cl solutions. Based on previous findings, salt solution concentrations were established at 74.80, 37.40, 18.70, and 9.4 mmol/L. The bentonite contents in the mixture were set at 0, 5, 10, and 15%. The results indicate that the samples exhibit better interception of NH4+ compared to Na+. This difference arises from the cation exchange sequence, the size of the hydration radius, and the hydrogen bonding of the two cations. Additionally, the difference in hydration enthalpy between the two cations leads to variations in the swelling of bentonite, resulting in a higher hydraulic conductivity coefficient in NH4Cl solution. This study shows that although bentonite barriers have better interception for NH4+, they exhibit greater hydraulic conductivity in NH4Cl solution, increasing the risk of leachate carrying other contaminants.


Assuntos
Bentonita , Permeabilidade , Cloreto de Sódio , Bentonita/química , Cloreto de Sódio/química , Cloreto de Amônio/química , Cátions , Poluentes Químicos da Água/química
7.
Urolithiasis ; 52(1): 52, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564033

RESUMO

Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.


Assuntos
Cymbopogon , Água Potável , Cálculos Renais , Polietilenoglicóis , Polietilenoimina , Urolitíase , Animais , Ratos , Petroselinum , Cloreto de Amônio , Goma Arábica , Emulsões , Catalase , Magnésio , Nanogéis , Urolitíase/induzido quimicamente , Urolitíase/tratamento farmacológico , Urolitíase/prevenção & controle , Sementes , Antioxidantes/uso terapêutico , Etanol , Glutationa , Oxalatos , Etilenoglicóis , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
8.
Life Sci ; 346: 122633, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615746

RESUMO

AIMS: Systemic administration of ammonium chloride (NH4Cl), an acidifying agent used in human patients and experimental conditions, causes hypothermia in mice, however, the mechanisms of the thermoregulatory response to NH4Cl and whether it develops in other species remained unknown. MAIN METHODS: We studied body temperature (Tb) changes in rats and mice induced by intraperitoneal administration of NH4Cl after blockade of transient receptor potential vanilloid-1 (TRPV1) or ankyrin-1 (TRPA1) channels. KEY FINDINGS: In rats, NH4Cl decreased Tb by 0.4-0.8°C (p < 0.05). The NH4Cl-induced hypothermia also developed in Trpv1 knockout (Trpv1-/-) and wild-type (Trpv1+/+) mice, however, the Tb drop was exaggerated in Trpv1-/- mice compared to Trpv1+/+ controls with maximal decreases of 4.0 vs. 2.1°C, respectively (p < 0.05). Pharmacological blockade of TRPV1 channels with AMG 517 augmented the hypothermic response to NH4Cl in genetically unmodified mice and rats (p < 0.05 for both). In contrast, when NH4Cl was infused to mice genetically lacking the TRPA1 channel, the hypothermic response was significantly attenuated compared to wild-type controls with maximal mean Tb difference of 1.0°C between the genotypes (p = 0.008). Pretreatment of rats with a TRPA1 antagonist (A967079) also attenuated the NH4Cl-induced Tb drop with a maximal difference of 0.7°C between the pretreatment groups (p = 0.003). SIGNIFICANCE: TRPV1 channels limit, whereas TRPA1 channels exaggerate the development of NH4Cl-induced hypothermia in rats and mice, but other mechanisms are also involved. Our results warrant for regular Tb control and careful consideration of NH4Cl treatment in patients with TRPA1 and TRPV1 channel dysfunctions.


Assuntos
Hipotermia , Canal de Cátion TRPA1 , Canais de Cátion TRPV , Animais , Masculino , Camundongos , Ratos , Cloreto de Amônio/farmacologia , Temperatura Corporal/efeitos dos fármacos , Hipotermia/induzido quimicamente , Hipotermia/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Sprague-Dawley , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética
9.
Sci Total Environ ; 919: 170676, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350567

RESUMO

As one of the most commonly used biocidal cationic surfactants, benzalkonium chlorides (BACs) have been an increasing concern as emerging contaminants. Wastewater has been claimed the main point for BACs to enter into the environment, but to date, it is still largely unknown how the BACs affect the microbes (especially microalgae) in the practical wastewater and how to cost-effectively remove them. In this study, the inhibitory effects of a typical BACs, dodecyl dimethyl benzyl ammonium chloride (DDBAC), on a green microalga Chlorella sp. in oxidation pond wastewater were investigated. The results showed that though a hermetic effect at the first 2 days was observed with the DDBAC at low concentration (<6 mg/L), the algal growth and photosynthesis were significantly inhibited by the DDBAC at all the tested concentrations (3 to 48 mg/L). Fortunately, a new microbial consortium (MC) capable of degrading DDBAC was screened through a gradient domestication method. The MC mainly composed of Wickerhamomyces sp., Purpureocillium sp., and Achromobacter sp., and its maximum removal efficiency and removal rate of DDBAC (48 mg/L) respectively reached 98.1 % and 46.32 mg/L/d. Interestingly, a microbial-microalgal system (MMS) was constructed using the MC and Chlorella sp., and a synergetic effect between the two kinds of microorganisms was proposed: microalga provided oxygen and extracellular polysaccharides as co-metabolic substrates to help the MC to degrade DDBAC, while the MC helped to eliminate the DDBAC-induced inhibition on the alga. Further, by observing the seven kinds of degradation products (mainly including CH5O3P, C6H5CH2-, and C8H11N), two possible chemical pathways of the DDBAC degradation were proposed. In addition, the metagenomic sequencing results showed that the main functional genes of the MMS included antibiotic-resistant genes, ABC transporter genes, quorum sensing genes, two-component regulatory system genes, etc. This study provided some theoretical and application findings for the cost-effective pollution prevention of BACs in wastewater.


Assuntos
Chlorella , Microalgas , Águas Residuárias , Cloreto de Amônio/metabolismo , Consórcios Microbianos , Chlorella/metabolismo , Técnicas de Cocultura , Biomassa
10.
Mar Drugs ; 22(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38248665

RESUMO

The present study focused on the design and preparation of acid-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for a controlled, slow-release of Doxorubicin HCl (DOX.HCl). The BIMIXHAC was crosslinked with sodium tripolyphosphate (TPP) using the ion crosslinking method. The method resulted in nanogels with low polydispersity index, small particle size, and positive zeta potential values, indicating the good stability of the nanogels. Compared to hydroxypropyl trimethyl ammonium chloride chitosan-Doxorubicin HCl-sodium tripolyphosphate (HACC-D-TPP) nanogel, the benzimidazole-chitosan quaternary ammonium salt-Doxorubicin HCl-sodium tripolyphosphate (BIMIXHAC-D-TPP) nanogel show higher drug encapsulation efficiency and loading capacity (BIMIXHAC-D-TPP 93.17 ± 0.27% and 31.17 ± 0.09%), with acid-responsive release profiles and accelerated release in vitro. The hydroxypropyl trimethyl ammonium chloride chitosan-sodium tripolyphosphate (HACC-TPP), and benzimidazole-chitosan quaternary ammonium salt-sodium tripolyphosphate (BIMIXHAC-TPP) nanogels demonstrated favorable antioxidant capability. The assay of cell viability, measured by the MTT assay, revealed that nanogels led to a significant reduction in the cell viability of two cancer cells: the human lung adenocarcinoma epithelial cell line (A549) and the human breast cancer cell line (MCF-7). Furthermore, the BIMIXHAC-D-TPP nanogel was 2.96 times less toxic than DOX.HCl to the mouse fibroblast cell line (L929). It was indicated that the BIMIXHAC-based nanogel with enhanced antioxidant and antitumor activities and acidic-responsive release could serve as a potential nanocarrier.


Assuntos
Quitosana , Neoplasias Pulmonares , Polietilenoglicóis , Polietilenoimina , Polifosfatos , Humanos , Animais , Camundongos , Nanogéis , Antioxidantes/farmacologia , Cloreto de Amônio , Benzimidazóis , Doxorrubicina/farmacologia , Compostos de Amônio Quaternário/farmacologia
11.
Microbiol Spectr ; 12(2): e0234623, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38226804

RESUMO

Salmonella enterica is a prominent cause of foodborne disease in the United States. However, the mechanism and route of pathogen transmission that leads to Salmonella infection in commercial processing plants are poorly understood. This study aimed to investigate the effect of mixed-species biofilms on S. enterica survival and persistence under sanitizer stress [Quaternary ammonium compounds (QACs)] by analyzing 78 floor drain samples from a meat processing facility and three S. enterica strains (serovars Cerro, Montevideo, and Typhimurium) isolated from that facility and an unrelated source. The four test groups were as follows: control, QAC treatment, Salmonella addition, and QAC treatment with Salmonella addition. DNAs were extracted, and 16S rRNA gene based on the variable region V4 amplicon sequencing was performed to analyze the relative abundance, core microbiome, and Alpha and Beta diversity using the qiime2 pipeline. At the genus level, the Brochothrix (45.56%), Pseudomonas (38.94%), Carnobacterium (6.18%), Lactococcus (4.68%), Serratia (3.14%), and Staphylococcus (0.82%) were shown to be the most prevalent in all drain samples. The results demonstrate that the relative abundance of different bacterial genera was affected by both QAC treatment and Salmonella addition, with some genera showing increases or decreases in abundance. Notably, the correlation network was constructed to understand the relationships between the different bacteria. Nitrospira had the greatest number of connections in the floor drain environment network, with two negative and eight positive correlations. The results suggest that Nitrospira in the mixed-species biofilm community may play a role in converting ammonium in the QAC sanitizer into nitrites. Thus, Nitrospira could be a potentially important genus in providing sanitizer resistance to pathogen-encompassed mixed-species biofilms.IMPORTANCESalmonella contamination in meat processing facilities can lead to foodborne illness outbreaks. Our study characterized the microbiome dynamics in beef facility drains and their response to Salmonella addition and common sanitizer (QAC). Nitrospira could be an important genus in providing sanitizer resistance to pathogen-encompassed mixed-species biofilms. The results provide insight into the impact of mixed-species biofilms on Salmonella survival and persistence under sanitizer stress in meat processing facilities. The results highlight the need to consider mixed-species biofilm effects when developing targeted interventions to enhance food safety.


Assuntos
Salmonella enterica , Saneamento , Animais , Bovinos , Cloreto de Amônio/farmacologia , RNA Ribossômico 16S , Salmonella/fisiologia , Biofilmes
12.
J Hazard Mater ; 463: 132834, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37918070

RESUMO

Benzalkonium chlorides (BACs) are quaternary ammonium compounds (QUATs) that are used as biocides. The degradation of these compounds in wastewater treatment plants is essential to reduce their spread into the environment and thus prevent the development of QUAT-resistant genes. The biodegradation of two BACs (BAC-12 and BAC-14) was investigated in moving bed biofilm reactors (MBBRs). Degradation half-lives of 12 and 20 h for BAC-12 and - 14, respectively, were detected as well as the formation of 42 metabolites. Two new degradation pathways for the BACs were identified in this study: 1) one involving an ω-oxidation, followed by ß-oxidation and 2) one via an ω-oxidation followed by an α-oxidation that was succeeded by ß-oxidation. Similar metabolites were detected for both BAC-12 and BAC-14. Additional metabolites were detected in the study, that could not be assigned to the above-mentioned pathways, revealing even more metabolic pathways in the MBBR which is probably due to the complexity of the microbial community in the biofilm. Interestingly, both TP194 (Benzyl-(carboxymethyl)-dimethylazanium) and TP208B (Benzyl-(2-carboxyethyl)-dimethylazanium) were identified as end products of the ω/ß-pathway and the α/ß-pathway. TP208B, TP152 and TP250 that were identified in this study, as well as the known BDMA were discovered in the effluent of a wastewater treatment plant.


Assuntos
Compostos de Benzalcônio , Biofilmes , Compostos de Benzalcônio/metabolismo , Cloreto de Amônio , Reatores Biológicos
13.
Poult Sci ; 102(12): 103093, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783192

RESUMO

Ammonia poses a significant challenge in the contemporary intensive breeding industry, resulting in substantial economic losses. Despite this, there is a dearth of research investigating efficacious strategies to prevent ammonia poisoning in poultry. Consequently, the objective of this study was to investigate the molecular mechanisms through which Luteolin (Lut) safeguards mitochondria and restores equilibrium to energy metabolism disorders, thereby shielding chicken spleen lymphocytes from the detrimental effects of ammonia poisoning. Chicken spleen lymphocytes were categorized into 3 distinct groups: the control group, the ammonia group (with the addition of 1 mmol/L of ammonium chloride), and the Lut group (with the treatment of 0.5 µg/mL of Lut for 12 h followed by the addition of 1 mmol/L of ammonium chloride). These groups were then cultured for a duration of 24 h. To investigate the potential protective effect of Lut on lymphocytes exposed to ammonia, various techniques were employed, including CCK-8 analysis, ultrastructural observation, reagent kit methodology, fluorescence microscopy, and quantitative real-time PCR (qRT-PCR). The findings indicate that Lut has the potential to mitigate the morphological damage of mitochondria caused by ammonia poisoning. Additionally, it can counteract the decline in mitochondrial membrane potential, ATP content, and ATPase activities (specifically Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca/Mg2+-ATPase) following exposure to ammonia in lymphocytes. Lut also has the ability to regulate the expression of genes involved in mitochondrial fusion (Opa1, Mfn1, and Mfn2) and division (Drp1 and Mff) in spleen lymphocytes after ammonia exposure. This regulation leads to a balanced energy metabolism (HK1, HK2, LDHA, LDHB, PFK, PK, SDHB, and ACO2) and provides protection against ammonia poisoning.


Assuntos
Galinhas , Baço , Animais , Baço/metabolismo , Galinhas/metabolismo , Amônia/metabolismo , Luteolina/metabolismo , Luteolina/farmacologia , Cloreto de Amônio/metabolismo , Cloreto de Amônio/farmacologia , Metabolismo Energético , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Mitocôndrias/metabolismo , Linfócitos/metabolismo
14.
Nat Commun ; 14(1): 6194, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798269

RESUMO

Ammonium (NH4+), a breakdown product of amino acids that can be toxic at high levels, is detected by taste systems of organisms ranging from C. elegans to humans and has been used for decades in vertebrate taste research. Here we report that OTOP1, a proton-selective ion channel expressed in sour (Type III) taste receptor cells (TRCs), functions as sensor for ammonium chloride (NH4Cl). Extracellular NH4Cl evoked large dose-dependent inward currents in HEK-293 cells expressing murine OTOP1 (mOTOP1), human OTOP1 and other species variants of OTOP1, that correlated with its ability to alkalinize the cell cytosol. Mutation of a conserved intracellular arginine residue (R292) in the mOTOP1 tm 6-tm 7 linker specifically decreased responses to NH4Cl relative to acid stimuli. Taste responses to NH4Cl measured from isolated Type III TRCs, or gustatory nerves were strongly attenuated or eliminated in an Otop1-/- mouse strain. Behavioral aversion of mice to NH4Cl, reduced in Skn-1a-/- mice lacking Type II TRCs, was entirely abolished in a double knockout with Otop1. These data together reveal an unexpected role for the proton channel OTOP1 in mediating a major component of the taste of NH4Cl and a previously undescribed channel activation mechanism.


Assuntos
Papilas Gustativas , Paladar , Animais , Humanos , Camundongos , Cloreto de Amônio/metabolismo , Células HEK293 , Prótons , Paladar/fisiologia , Papilas Gustativas/fisiologia
15.
Bioresour Technol ; 388: 129784, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37739187

RESUMO

The purpose of this work was to determine the effect of the addition of NH4Cl to oat straw on the evolved gases, kinetic triplet, and thermodynamic parameters of the pyrolysis process at 873 K. A complementary approach allowed to assess the effects of the pyrolysis of chlorine- and nitrogen-enriched biomass. The thermal analysis of biomass was performed for four heating rates (5, 10, 20, and 30 K/min). The doping of NH4Cl in the straw favoured i) carbonisation of the chars, ii) formation of C-N bonds, iii) reduction of evolved CH4 and CO2, and iv) an increase in the mean values of the effective activation energy and all thermodynamic parameters. A group of reactions that best fit the experimental data of the pyrolysis process was selected. It was necessary to use unspecified mechanisms to describe the reaction model, particularly for samples enriched with NH4Cl.


Assuntos
Avena , Gases , Cloreto de Amônio , Pirólise , Termogravimetria , Termodinâmica , Cinética , Biomassa , Cloretos
16.
Appl Microbiol Biotechnol ; 107(23): 7313-7330, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741936

RESUMO

As lipogenic yeasts are becoming increasingly harnessed as biofactories of oleochemicals, the availability of efficient protocols for the determination and optimization of lipid titers in these organisms is necessary. In this study, we optimized a quick, reliable, and high-throughput Nile red-based lipid fluorometry protocol adapted for oleaginous yeasts and validated it using different approaches, the most important of which is using gas chromatography coupled to flame ionization detection and mass spectrometry. This protocol was applied in the optimization of the concentrations of ammonium chloride and glycerol for attaining highest lipid titers in Rhodotorula toruloides NRRL Y-6987 and Yarrowia lipolytica W29 using response surface central composite design (CCD). Results of this optimization showed that the optimal concentration of ammonium chloride and glycerol is 4 and 123 g/L achieving a C/N ratio of 57 for R. toruloides, whereas for Y. lipolytica, concentrations are 4 and 139 g/L with a C/N ratio of 61 for Y. lipolytica. Outside the C/N of 33 to 74 and 45 to 75, respectively, for R. toruloides and Y. lipolytica, lipid productions decrease by more than 10%. The developed regression models and response surface plots show the importance of the careful selection of C/N ratio to attain maximal lipid production. KEY POINTS: • Nile red (NR)-based lipid fluorometry is efficient, rapid, cheap, high-throughput. • NR-based lipid fluorometry can be well used for large-scale experiments like DoE. • Optimal molar C/N ratio for maximum lipid production in lipogenic yeasts is ~60.


Assuntos
Lipídeos , Yarrowia , Glicerol , Cloreto de Amônio , Biomassa , Cromatografia Gasosa-Espectrometria de Massas , Leveduras/química
17.
Carbohydr Polym ; 321: 121293, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739502

RESUMO

Fruit rotting at the postharvest stage severely limits their marketing supply chains and shelf-life. Thus, developing a green and cost-effective approach to extend the shelf-life of perishable foods is highly desired. In this study, inspired by the mussel-adhesion strategy, a multifunctional fruit coating material has been developed using a quaternized catechol-functionalized chitosan (CQ-CS) grafted with 2, 3-epoxypropyl trimethyl ammonium chloride and 3, 4-dihydroxy benzaldehyde. The as-prepared CQ-CS coating exhibited excellent mechanical properties, universal surface adhesion abilities, antimicrobial and antioxidant capacities without any potential toxicity effects. Using strawberry and banana as model fruits, we showed that the CQ-CS coating could effectively maintain the fruit's firmness and color, decrease the weight loss rate, and prevent microbial growth, thus finally extending their shelf- life when compared to uncoated samples, indicating the universal application of the as-prepared CQ-CS coating. These findings demonstrated that this novel conformal coating of CQ-CS has great potential for fruit preservation in the food industry.


Assuntos
Quitosana , Filmes Comestíveis , Frutas , Cloreto de Amônio , Antioxidantes/farmacologia
18.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762468

RESUMO

Supercapacitors, with high energy density, rapid charge-discharge capabilities, and long cycling ability, have gained favor among many researchers. However, the universality of high-performance carbon-based electrodes is often constrained by their complex fabrication methods. In this study, the common industrial materials, zinc gluconate and ammonium chloride, are uniformly mixed and subjected to a one-step carbonization strategy to prepare three-dimensional hierarchical porous carbon materials with high specific surface area and suitable nitrogen doping. The results show that a specific capacitance of 221 F g-1 is achieved at a current density of 1 A g-1. The assembled symmetrical supercapacitor achieves a high energy density of 17 Wh kg-1, and after 50,000 cycles at a current density of 50 A g-1, it retains 82% of its initial capacitance. Moreover, the operating voltage window of the symmetrical device can be easily expanded to 2.5 V when using Et4NBF4 as the electrolyte, resulting in a maximum energy density of up to 153 Wh kg-1, and retaining 85.03% of the initial specific capacitance after 10,000 cycles. This method, using common industrial materials as raw materials, provides ideas for the simple preparation of high-performance carbon materials and also provides a promising method for the large-scale production of highly porous carbons.


Assuntos
Carbono , Gluconatos , Porosidade , Cloreto de Amônio
19.
PLoS One ; 18(9): e0291649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37713420

RESUMO

Bone disease is highly prevalent in patients with chronic kidney disease (CKD), leading to an increased risk of bone fractures. This is due in part to metabolic acid-induced bone dissolution. Bisphosphonates (BPPs) are a potential treatment for inhibiting bone dissolution; however, there are limited studies observing the use of BPPs on acidotic patients. We aimed to determine efficacy of BPPs on maintaining bone health and pH regulation in acid-exposed mice. Using a diet-induced murine model of metabolic acidosis, we examined bone structure, composition, and mechanics as well as blood gases for three groups: control, acidosis, and acidosis + bisphosphonates (acidosis+BPP). Acidosis was induced for 14 days and alendronate was administered every 3 days for the acidosis+BPP group. The administration of BPP had little to no effect on bone structure, mechanics, and composition of the acidosis bones. However, administration of BPP did cause the mice to develop more severe acidosis than the acidosis only group. Overall, we discovered that BPPs may exacerbate acidosis symptoms by inhibiting the release of buffering ions from bone. Therefore, we propose that BPP administration should be carefully considered for those with CKD and that alkali supplementation could help minimize acidifying effects.


Assuntos
Acidose , Osteólise , Insuficiência Renal Crônica , Animais , Camundongos , Alendronato/efeitos adversos , Cloreto de Amônio , Difosfonatos/efeitos adversos , Acidose/induzido quimicamente
20.
PLoS One ; 18(9): e0291243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37703250

RESUMO

Nitrogen use efficiency is an important index in ruminants and can be indirectly evaluated through the N isotopic discrimination between the animal and its diet (Δ15Nanimal-diet). The concentration and source of N may determine both the extent of the N isotopic discrimination in bacteria and N use efficiency. We hypothesised that the uptake and release of ammonia by rumen bacteria will affect the natural 15N enrichment of the bacterial biomass over their substrates (Δ15Nbacteria-substrate) and thereby further impacting Δ15Nanimal-diet. To test this hypothesis, two independent in vitro experiments were conducted using two contrasting N sources (organic vs inorganic) at different levels either in pure rumen bacteria culture incubations (Experiment #1) or in mixed rumen cultures (Experiment #2). In Experiment #1, tryptone casein or ammonium chloride were tested at low (1 mM N) and high (11.5 mM N) concentrations on three rumen bacterial strains (Fibrobacter succinogenes, Eubacterium limosum and Xylanibacter ruminicola) incubated in triplicate in anaerobic batch monocultures during 48h. In Experiment #2 mixed rumen cultures were incubated during 120 h with peptone or ammonium chloride at five different levels of N (1.5, 3, 4.5, 6 and 12-mM). In experiment #1, Δ15Nbacteria-substrate was lowest when the ammonia-consumer bacterium Fibrobacter succinogenes was grown on ammonium chloride, and highest when the proteolytic bacterial strain Xylanibacter ruminicola was grown on tryptone. In experiment #2, Δ15Nbacteria-substrate was lower with inorganic (ammonium chloride) vs organic (peptone) N source. A strong negative correlation between Δ15Nbacteria-substrate and Rikenellaceae_RC9_gut_group, a potential fibrolytic rumen bacterium, was detected. Together, our results showed that Δ15Nbacteria-substrate may change according to the balance between synthesis of microbial protein from ammonia versus non-ammonia N sources and confirm the key role of rumen bacteria as modulators of Δ15Nanimal-diet.


Assuntos
Peptonas , Rúmen , Animais , Isótopos de Nitrogênio , Cloreto de Amônio , Bactérias , Nitrogênio , Amônia , Bacteroides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...