Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.084
Filtrar
1.
Talanta ; 281: 126844, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39277931

RESUMO

Self-powered biosensors with high sensitivity have garnered significant interest for their potential applications in the realm of portable sensing. Herein, a self-powered biosensor with a novel signal amplification strategy was developed by integrating target-controlled release of mediator with an enzyme biofuel cell for the ultrasensitive detection of acetamiprid (ACE). Zeolitic imidazolate framework-67 was utilized as both a nanocontainer for capturing the electron mediator 2,2'-azidobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and a precursor for the synthesis of cobalt nanoparticles/nitrogen, sulfur-codoped carbon nanotubes (Co NPs/NS-CNTs), which were employed as the electrode material for constructing both the glucose oxidase-based bioanode and the laccase-based biocathode. The target analyte ACE can specifically bind to its aptamer, leading to the release of ABTS, which cyclically participates in the catalytic reaction of the biocathode, thereby amplifying the electrochemical signal. By leveraging the benefits of ABTS cyclic catalysis and the effective electrocatalysis of bioelectrodes based on Co NPs/NS-CNTs, the self-powered biosensor has a broad detection range of 0.1-1000 fM and a low detection limit of 25 aM toward ACE. The proposed signal amplification approach presents a promising strategy for enhancing sensitivity and enabling portable analysis in applications of food safety, environmental monitoring, and medical diagnostics.


Assuntos
Técnicas Biossensoriais , Eletrodos , Glucose Oxidase , Lacase , Neonicotinoides , Neonicotinoides/análise , Neonicotinoides/química , Técnicas Biossensoriais/métodos , Lacase/química , Lacase/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Nanotubos de Carbono/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Estruturas Metalorgânicas/química , Cobalto/química , Ácidos Sulfônicos/química , Benzotiazóis/química , Zeolitas/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Fontes de Energia Bioelétrica
2.
Talanta ; 281: 126889, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39288583

RESUMO

Although porphyrin modification can improve the peroxidase-like activity of some inorganic nanozymes, it is hardly studied that metal porphyrin self-assembled nanoaggregates as sacrificial templates to turn on the peroxidase-like activity of inorganic nanozymes under light illumination. In this work, cobalt (II) 5,10,15,20-Tetrakis (4-carboxylpheyl)porphyrin (CoTCPP) self-assembled nanoaggregates are firstly used as soft templates to prepare TiO2-based nanozymes with the enhanced peroxidase-like activity. Interestingly, CoTCPP nanoaggregates can be changed into Co oxide nanoparticles dispersed into the nanosphere composites. Furthermore, the peroxidase-like activity of CoTCPP-TiO2 nanospheres can be controlled by light illumination. Comparatively, CoTCPP-TiO2 nanoshperes exhibit the highest peroxidase-like activity of three nanospheres (CoTCPP-TiO2, H2TCPP-TiO2 and TiO2) with similar morphology under the light illumination. Other than the existence of oxygen vacancy, the formation of heterostructure between TiO2 and a small amount of Co3O4 are ascribed to increase the catalytic activity of CoTCPP-TiO2 composites. Thus, a facile and convenient colorimetric sensing platform has been constructed and tuned by light illumination for determining H2O2 and amikacin in a good linear range of 20-100 and 50-100 µM with a limit of detection (LOD) of 3.04 µM and 1.88 µM, respectively. The CoTCPP-TiO2 based colorimetric sensing platform has been validated by measuring the amikacin residue in lake water.


Assuntos
Amicacina , Cobalto , Colorimetria , Luz , Titânio , Colorimetria/métodos , Cobalto/química , Titânio/química , Amicacina/análise , Amicacina/química , Peroxidase/química , Peroxidase/metabolismo , Porfirinas/química , Catálise , Limite de Detecção , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Nanosferas/química
3.
J Environ Sci (China) ; 150: 188-201, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306395

RESUMO

To improve the activity of Co/Al2O3 catalysts in selective catalytic oxidation of ammonia (NH3-SCO), valence state and size of active centers of Al2O3-supported Co catalysts were adjusted by conducting H2 reduction pretreatment. The NH3-SCO activity of the adjusted 2Co/Al2O3 catalyst was substantially improved, outperforming other catalysts with higher Co-loading. Fresh Co/Al2O3 catalysts exhibited multitemperature reduction processes, enabling the control of the valence state of the Co-active centers by adjusting the reduction temperature. Changes in the state of the Co-active centers also led to differences in redox capacity of the catalysts, resulting in different reaction mechanisms for NH3-SCO. However, in situ diffuse reflectance infrared Fourier transform spectra revealed that an excessive O2 activation capacity caused overoxidation of NH3 to NO and NO2. The NH3-SCO activity of the 2Co/Al2O3 catalyst with low redox capacity was successfully increased while controlling and optimizing the N2 selectivity by modulating the active centers via H2 pretreatment, which is a universal method used for enhancing the redox properties of catalysts. Thus, this method has great potential for application in the design of inexpensive and highly active catalysts.


Assuntos
Óxido de Alumínio , Amônia , Cobalto , Oxirredução , Amônia/química , Catálise , Óxido de Alumínio/química , Cobalto/química , Modelos Químicos , Poluentes Atmosféricos/química
4.
J Environ Sci (China) ; 147: 617-629, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003076

RESUMO

The manganese-cobalt mixed oxide nanorods were fabricated using a hydrothermal method with different metal precursors (KMnO4 and MnSO4·H2O for MnOx and Co(NO3)2⋅6H2O and CoCl2⋅6H2O for Co3O4). Bamboo-like MnO2⋅Co3O4 (B-MnO2⋅Co3O4 (S)) was derived from repeated hydrothermal treatments with Co3O4@MnO2 and MnSO4⋅H2O, whereas Co3O4@MnO2 nanorods were derived from hydrothermal treatment with Co3O4 nanorods and KMnO4. The study shows that manganese oxide was tetragonal, while the cobalt oxide was found to be cubic in the crystalline arrangement. Mn surface ions were present in multiple oxidation states (e.g., Mn4+ and Mn3+) and surface oxygen deficiencies. The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of B-MnO2⋅Co3O4 (S) > Co3O4@MnO2 > MnO2 > Co3O4, matching the changing trend in activity. Among all the samples, B-MnO2⋅Co3O4 (S) showed the preeminent catalytic performance for the oxidation of toluene (T10% = 187°C, T50% = 276°C, and T90% = 339°C). In addition, the B-MnO2⋅Co3O4 (S) sample also exhibited good H2O-, CO2-, and SO2-resistant performance. The good catalytic performance of B-MnO2⋅Co3O4 (S) is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature. Toluene oxidation over B-MnO2⋅Co3O4 (S) proceeds through the adsorption of O2 and toluene to form O*, OH*, and H2C(C6H5)* species, which then react to produce benzyl alcohol, benzoic acid, and benzaldehyde, ultimately converting to CO2 and H2O. The findings suggest that B-MnO2⋅Co3O4 (S) has promising potential for use as an effective catalyst in practical applications.


Assuntos
Cobalto , Compostos de Manganês , Oxirredução , Óxidos , Tolueno , Óxidos/química , Compostos de Manganês/química , Catálise , Cobalto/química , Tolueno/química , Poluentes Atmosféricos/química
5.
J Environ Sci (China) ; 151: 113-124, 2025 May.
Artigo em Inglês | MEDLINE | ID: mdl-39481925

RESUMO

An efficient catalytic system was developed to remove various organic pollutants by simultaneously using low-level cobalt ions, calcium carbonate micro-particles and peroxymonosulfate (PMS). A simple base-induced precipitation was used to successfully loaded Co-centered reactive sites onto the surface of CaCO3 microparticles. Under optimal conditions at 25 °C, 10 mg/L methylene blue (MB) could be completely degraded within 10 min with 480 µg/L Co2+, 0.4 g/L CaCO3 microparticles (or 0.4 g/L Co@CaCO3) and 0.1 g/L PMS. The MB degradation followed the pseudo first order kinetics with a rate constant of 0.583 min-1, being 8.3, 11.5 and 53.0 times that by using Co-OH (0.07 min-1), Co2+ (0.044 min-1) and CaCO3 (0.011 min-1) as the catalyst, respectively. It was confirmed that there was a synergistic effect in the catalytic activity between Co species and the CaCO3 particles but the major contributor was the highly dispersed Co species. When Co2+-containing simulated electroplating wastewater was used as the Co2+ source, not only the added MB was also completely degraded within 5 min in this catalytic system, but also the coexisting heavy metal ions were substantially removed. The presently developed method was applied to simultaneously treat organic wastewater and heavy metals wastewater. The present method was also successfully used to efficiently degrade other organic pollutants including bisphenol A, sulfamethoxazole, rhodamine B, tetrabromobisphenol A, ofloxacin and benzoic acid. A catalytic mechanism was proposed for the PMS activation by Co@CaCO3. The surface of CaCO3 particles favors the adsorption of Co2+. More importantly, the surface of CaCO3 particles provides plentiful surface -OH and -CO32+, and these surface groups complex with Co2+ to produce more catalytically active species such as surface [CoOH]-, resulting in rapid Co2+/Co3+ cycling and electron transfer. These interactions cause the observed synergistic effect between Co species and CaCO3 particles in PMS activation. Due to good cycle stability, strong anti-interference ability and wide universality, the new method will have broad application prospects.


Assuntos
Carbonato de Cálcio , Cobalto , Peróxidos , Poluentes Químicos da Água , Cobalto/química , Carbonato de Cálcio/química , Poluentes Químicos da Água/química , Peróxidos/química , Catálise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
6.
J Environ Sci (China) ; 151: 714-732, 2025 May.
Artigo em Inglês | MEDLINE | ID: mdl-39481976

RESUMO

It is still a challenge to develop hierarchically nanostructured catalysts with simple approaches to enhance the low-temperature catalytic activity. Herein, a set of mesoporous Co-Cu binary metal oxides with different morphologies were successfully prepared via a facile ammonium bicarbonate precipitation method without any templates or surfactants, which were further applied for catalytic removal of carcinogenic toluene. Among the catalysts with different ratios, the CoCu0.2 composite oxide presented the best performance, where the temperature required for 90% conversion of toluene was only 237°C at the high weight hour space velocity (WHSV) of 240,000 mL/(gcat·hr). Meanwhile, compared to the related Co-Cu composite oxides prepared by using different precipitants (NaOH and H2C2O4), the NH4HCO3-derived CoCu0.2 sample exhibited better catalytic efficiency in toluene oxidation, while the T90 were 22 and 28°C lower than those samples prepared by NaOH and H2C2O4 routes, respectively. Based on various characterizations, it could be deduced that the excellent performance was related to the small crystal size (6.7 nm), large specific surface area (77.0 m2/g), hollow hierarchical nanostructure with abundant high valence Co ions and adsorbed oxygen species. In situ DRIFTS further revealed that the possible reaction pathway for the toluene oxidation over CoCu0.2 catalyst followed the route of absorbed toluene → benzyl alcohol → benzaldehyde → benzoic acid → carbonate → CO2 and H2O. In addition, CoCu0.2 sample could keep stable with long-time operation and occur little inactivation under humid condition (5 vol.% water), which revealed that the NH4HCO3-derived CoCu0.2 nanocatalyst possessed great potential in industrial applications for VOCs abatement.


Assuntos
Cobre , Nanocompostos , Catálise , Nanocompostos/química , Cobre/química , Compostos Orgânicos Voláteis/química , Cobalto/química , Porosidade , Poluentes Atmosféricos/química , Tolueno/química , Temperatura
7.
J Colloid Interface Sci ; 678(Pt C): 1151-1169, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39341146

RESUMO

Hydroxychloroquine sulfate (HCQ) is extensively utilized due to its numerous therapeutic effects. Because of its properties of high solubility, persistence, bioaccumulation, and biotoxicity, HCQ can potentially affect water bodies and human health. In this study, the LaCo0.95Mo0.05O3-CeO2 material was successfully prepared by the sol-gel process, and it was applied to the experiment of degrading HCQ by activating peroxymonosulfate (PMS). The results of characterization analysis showed that LaCo0.95Mo0.05O3-CeO2 material had good stability, and the problem of particle agglomeration had been solved to some extent. Compared with LaCo0.95Mo0.05O3 material, it had a larger specific surface area and more oxygen vacancies, which was helpful to improve the catalytic activity for PMS. Under optimal conditions, the LaCo0.95Mo0.05O3-CeO2/PMS system degraded 95.5 % of HCQ in 10 min. The singlet oxygen, superoxide radicals, and sulfate radicals were the main radicals for HCQ degradation. The addition of Mo6+/Mo4+ and Ce4+/Ce3+ promoted the redox cycle of Co3+/Co2+ and enhanced the degradation rate of HCQ. Based on density functional theory and experimental analysis, three HCQ degradation pathways were proposed. The analysis of T.E.S.T software showed that the toxicity of HCQ was obviously reduced after degradation. The LaCo0.95Mo0.05O3-CeO2/PMS system displayed excellent reusability and the ability to remove pollutants in a wide range of real-world aqueous environments, with the ability to treat a wide range of pharmaceutical wastewater. In summary, this study provides some ideas for developing heterogeneous catalysts for advanced oxidation systems and provide an efficient, simple, and low-cost method for treating pharmaceutical wastewater that has good practical application potential.


Assuntos
Cério , Cobalto , Hidroxicloroquina , Peróxidos , Cério/química , Cobalto/química , Peróxidos/química , Hidroxicloroquina/química , Hidroxicloroquina/farmacologia , Óxidos/química , Tamanho da Partícula , Propriedades de Superfície , Catálise
8.
J Colloid Interface Sci ; 678(Pt B): 266-276, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245017

RESUMO

The residual carbaryl in crops can cause serious damage to the human kidney and nervous system after entering the human body, which may be metabolized to 1-naphthol (1-NAP) and excreted through urine. 1-NAP is often used as the biomarker for carbaryl exposure, so the intake or leakage of carbaryl can be monitored by detecting the concentration of 1-NAP. Herein, Co, N, P ternary co-doped carbon dots (CoNP-CDs) derived from vitamin B12 were synthesized by a facile hydrothermal method. CoNP-CDs exhibited oxidase-like activity and excellent peroxidase-like activity, which was attributed to the Fenton-like reaction of Co2+/Co3+ and the presence of pyrrole N and P elements, which together provided multiple active sites for chromogenic substrates. Due to the dual enzyme-like activity of CoNP-CDs, hydroxyl radicals (OH) and superoxide radicals (O2-) were generated during the catalytic process, which could rapidly oxidize colorless 3,3',5,5'-tetramethyl benzidine (TMB) to blue oxidation products (oxTMB). The α-carbon in 1-NAP can be attacked by OH, and the catalytic oxidation process of TMB can be inhibited by the consumption of OH, so that the blue color of the solution became lighter. Based on this principle, a smartphone-assisted colorimetric sensing platform was constructed for the detection of 1-NAP, and which resulted in a linear range of 1.07-37.3 µM and a visual detection limit of 0.68 µM. Moreover, the colorimetric sensing system showed satisfactory recoveries in the detection of human urine samples. The colorimetric sensing system owned the advantages of fast response, strong selectivity and simple operation, and provided a potential strategy for the on-site detection of 1-NAP.


Assuntos
Carbono , Colorimetria , Naftóis , Pontos Quânticos , Humanos , Colorimetria/métodos , Naftóis/química , Naftóis/urina , Carbono/química , Pontos Quânticos/química , Limite de Detecção , Cobalto/química , Tamanho da Partícula , Propriedades de Superfície
9.
J Colloid Interface Sci ; 678(Pt B): 313-324, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245021

RESUMO

The water pollution caused by the abuse of antibiotics has significant harmful effects on the environment and human health. The photo-Fenton process is currently the most effective method for removing antibiotics from water, but it encounters challenges such as inadequate response to visible light, low yield and utilization of photogenerated electrons, and slow electron transport. In this study, spin state regulation was introduced into the photo-Fenton process, and the spin state of Co3+ was regulated through Ce displacement doping. The intermediate-spin state Ce-LaCoO3 could degrade 91.6 % of tetracycline within 120 min in the photo-Fenton system, which is 15.2 % higher than that of low-spin state LaCoO3. The improved degradation effect is attributed to the reasons that Ce-LaCoO3 in the intermediate-spin state have lower band gap, better charge transfer ability, and stronger adsorption capacity of H2O2, which can accelerate the redox cycle of Co2+/Co3+ and promote the generation of ·OH. This study presents a unique strategy for synthesizing efficient photo-Fenton materials to treat antibiotic wastewater effectively.


Assuntos
Antibacterianos , Peróxido de Hidrogênio , Ferro , Tetraciclina , Tetraciclina/química , Peróxido de Hidrogênio/química , Ferro/química , Antibacterianos/química , Antibacterianos/farmacologia , Processos Fotoquímicos , Cobalto/química , Poluentes Químicos da Água/química , Luz , Elétrons , Óxidos/química , Estrutura Molecular , Propriedades de Superfície , Tamanho da Partícula
10.
J Colloid Interface Sci ; 678(Pt A): 30-41, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39180846

RESUMO

The overuse of antibiotics has caused the emergence of drug-resistant bacteria and even superbugs, which makes it imperative to develop promising antibiotic-free alternatives. Herein, a multimodal antibacterial nanoplatform of two dimensional/two dimensional (2D/2D) mesoporous Co3O4/BiOCl nanocomposite is constructed, which possesses the effect of "kill three birds with one stone": (1) the use of mesoporous Co3O4 can enlarge the surface area of the nanocomposite and promote the adsorption of bacteria; (2) Co3O4 displays remarkable full-spectrum absorption and photo-induced self-heating effect, which can raise the temperature of Co3O4/BiOCl and help to kill bacteria; (3) the p-type Co3O4 and n-type BiOCl form a p-n heterojunction, which promotes the separation of photoelectrons and holes, thus producing more reactive oxygen species (ROS) for killing bacteria. The synergism of mesoporous structure, photothermal effect and photocatalytic ROS makes the developed Co3O4/BiOCl a promising antibacterial material, which shows outstanding antibacterial activity with an inhibition rate of nearly 100 % against Escherichia coli (E. coli) within 8 min. This work provides inspiration for designing multimodal synergistic nanoplatform for antibacterial applications.


Assuntos
Antibacterianos , Cobalto , Escherichia coli , Testes de Sensibilidade Microbiana , Nanocompostos , Óxidos , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Espécies Reativas de Oxigênio/metabolismo , Escherichia coli/efeitos dos fármacos , Porosidade , Óxidos/química , Óxidos/farmacologia , Cobalto/química , Cobalto/farmacologia , Catálise , Bismuto/química , Bismuto/farmacologia , Processos Fotoquímicos , Propriedades de Superfície , Tamanho da Partícula
11.
J Environ Sci (China) ; 148: 198-209, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095157

RESUMO

Norfloxacin is widely used owing to its strong bactericidal effect on Gram-negative bacteria. However, the residual norfloxacin in the environment can be biomagnified via food chain and may damage the human liver and delay the bone development of minors. Present work described a reliable and sensitive smartphone colorimetric sensing system based on cobalt-doped Fe3O4 magnetic nanoparticles (Co-Fe3O4 MNPs) for the visual detection of norfloxacin. Compared with Fe3O4, Co-Fe3O4 MNPs earned more remarkably peroxidase-like activity and TMB (colorless) was rapidly oxidized to oxTMB (blue) with the presence of H2O2. Interestingly, the addition of low concentration of norfloxacin can accelerate the color reaction process of TMB, and blue deepening of the solution can be observed with the naked eye. However, after adding high concentration of norfloxacin, the activity of nanozyme was inhibited, resulting in the gradual fading of the solution. Based on this principle, a colorimetric sensor integrated with smartphone RGB mode was established. The visual sensor exhibited good linearity for norfloxacin monitoring in the range of 0.13-2.51 µmol/L and 17.5-100 µmol/L. The limit of visual detection was 0.08 µmol/L. In the actual water sample analysis, the spiked recoveries of norfloxacin were over the range of 95.7%-104.7 %. These results demonstrated that the visual sensor was a convenient and fast method for the efficient and accurate detection of norfloxacin in water, which may have broad application prospect.


Assuntos
Cobalto , Colorimetria , Norfloxacino , Smartphone , Poluentes Químicos da Água , Norfloxacino/análise , Colorimetria/métodos , Cobalto/análise , Cobalto/química , Poluentes Químicos da Água/análise , Antibacterianos/análise , Peroxidase , Limite de Detecção
12.
J Environ Sci (China) ; 148: 529-540, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095186

RESUMO

Monolithic catalysts with excellent O3 catalytic decomposition performance were prepared by in situ loading of Co-doped KMn8O16 on the surface of nickel foam. The triple-layer structure with Co-doped KMn8O16/Ni6MnO8/Ni foam was grown spontaneously on the surface of nickel foam by tuning the molar ratio of KMnO4 to Co(NO3)2·6H2O precursors. Importantly, the formed Ni6MnO8 structure between KMn8O16 and nickel foam during in situ synthesis process effectively protected nickel foam from further etching, which significantly enhanced the reaction stability of catalyst. The optimum amount of Co doping in KMn8O16 was available when the molar ratio of Mn to Co species in the precursor solution was 2:1. And the Mn2Co1 catalyst had abundant oxygen vacancies and excellent hydrophobicity, thus creating outstanding O3 decomposition activity. The O3 conversion under dry conditions and relative humidity of 65%, 90% over a period of 5 hr was 100%, 94% and 80% with the space velocity of 28,000 hr-1, respectively. The in situ constructed Co-doped KMn8O16/Ni foam catalyst showed the advantages of low price and gradual applicability of the preparation process, which provided an opportunity for the design of monolithic catalyst for O3 catalytic decomposition.


Assuntos
Compostos de Manganês , Níquel , Óxidos , Ozônio , Óxidos/química , Níquel/química , Compostos de Manganês/química , Ozônio/química , Catálise , Umidade , Cobalto/química , Modelos Químicos , Poluentes Atmosféricos/química
13.
J Environ Sci (China) ; 149: 164-176, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181631

RESUMO

Cerium and cobalt loaded Co-Ce/TiO2 catalyst prepared by impregnation method was investigated for photothermal catalytic toluene oxidation. Based on catalyst characterizations (XPS, EPR and H2-TPR), redox cycle between Co and TiO2 (Co2+ + Ti4+ ↔ Co3+ + Ti3+) results in the formation of Co3+, Ti3+ and oxygen vacancies, which play important roles in toluene catalytic oxidation reaction. The introduction of Ce brings in the dual redox cycles (Co2+ + Ti4+ ↔ Co3+ + Ti3+, Co2+ + Ce4+ ↔ Co3+ + Ce3+), further promoting the elevation of reaction sites amount. Under full spectrum irradiation with light intensity of 580 mW/cm2, Co-Ce/TiO2 catalyst achieved 96% of toluene conversion and 73% of CO2 yield, obviously higher than Co/P25 and Co/TiO2. Co-Ce/TiO2 efficiently maintains 10-hour stability test under water vapor conditions and exhibits better photothermal catalytic performance than counterparts under different wavelengths illumination. Photothermal catalytic reaction displays improved activities compared with thermal catalysis, which is attributed to the promotional effect of light including photocatalysis and light activation of reactive oxygen species.


Assuntos
Cério , Cobalto , Oxirredução , Titânio , Tolueno , Titânio/química , Cobalto/química , Catálise , Tolueno/química , Cério/química , Modelos Químicos , Processos Fotoquímicos
14.
J Environ Sci (China) ; 149: 598-615, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181671

RESUMO

Catalytic hydrogenation of CO2 to ethanol is a promising solution to address the greenhouse gas (GHG) emissions, but many current catalysts face efficiency and cost challenges. Cobalt based catalysts are frequently examined due to their abundance, cost-efficiency, and effectiveness in the reaction, where managing the Co0 to Coδ+ ratio is essential. In this study, we adjusted support nature (Al2O3, MgO-MgAl2O4, and MgO) and reduction conditions to optimize this balance of Co0 to Coδ+ sites on the catalyst surface, enhancing ethanol production. The selectivity of ethanol reached 17.9% in a continuous flow fixed bed micro-reactor over 20 mol% Co@MgO-MgAl2O4 (CoMgAl) catalyst at 270 °C and 3.0 MPa, when reduced at 400 °C for 8 h. Characterisation results coupled with activity analysis confirmed that mild reduction condition (400 °C, 10% H2 balance N2, 8 h) with intermediate metal support interaction favoured the generation of partially reduced Co sites (Coδ+ and Co0 sites in single atom) over MgO-MgAl2O4 surface, which promoted ethanol synthesis by coupling of dissociative (CHx*)/non-dissociative (CHxO*) intermediates, as confirmed by density functional theory analysis. Additionally, the CoMgAl, affordably prepared through the coprecipitation method, offers a potential alternative for CO2 hydrogenation to yield valuable chemicals.


Assuntos
Dióxido de Carbono , Cobalto , Etanol , Dióxido de Carbono/química , Etanol/química , Hidrogenação , Cobalto/química , Catálise , Nanopartículas/química , Modelos Químicos
15.
Mikrochim Acta ; 191(11): 682, 2024 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-39432153

RESUMO

Cobalt-doped Prussian blue composite nanocubes (Co-PB NCs) were synthesized, which can quickly convert O2 to O2•- and 1O2. Due to the presence of cobalt and iron transition metal redox electron pairs, Co-PB NCs with high oxidase mimetic activity can rapidly oxidize the substrate 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue products (ox-TMB) without the assistance of unstable H2O2. Using ascorbic acid-2-phosphate trisodium salt (AAP) as a substrate, it can be converted to reduced ascorbic acid (AA) under acid phosphatase (ACP) hydrolysis, resulting in suppression of TMB oxidation. Therefore, an enzyme cascade signal amplification strategy for rapid colorimetric detection of AA/ACP was developed based on the high-efficiency oxidase-like activity of Co-PB NCs combined with the hydrolysis effect of ACP. The color changes at low concentrations of AA and ACP could be observed by the naked eye, and the detection limits of AA and ACP were 1.67 µM and 0.0266 U/L, respectively. The developed colorimetric method was applied to the determination of AA in beverages and ACP in human serum, and the RSDs were less than 3%, showing good reproducibility. This work provides a promising strategy for the use of metal-doped Prussian blue composite material for the construction of rapid colorimetric sensing platforms that avoid the use of unstable hydrogen peroxide.


Assuntos
Fosfatase Ácida , Ácido Ascórbico , Cobalto , Colorimetria , Ferrocianetos , Limite de Detecção , Colorimetria/métodos , Ácido Ascórbico/química , Ácido Ascórbico/sangue , Ácido Ascórbico/análise , Ácido Ascórbico/análogos & derivados , Ferrocianetos/química , Humanos , Fosfatase Ácida/sangue , Fosfatase Ácida/análise , Fosfatase Ácida/química , Cobalto/química , Benzidinas/química , Peróxido de Hidrogênio/química , Oxirredução , Sucos de Frutas e Vegetais/análise
16.
Mikrochim Acta ; 191(11): 688, 2024 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-39436464

RESUMO

A novel voltammetric sensor designed for dopamine (DA) detection is presented utilizing a combination of zeolitic imidazolate framework (ZIF-67) derived cobalt and nitrogen-doped carbon on reduced graphene oxide (Co-N-C/rGO). ZIF-67 cubic crystals were synthesized in situ and deposited onto the graphene oxide (GO) surface through room-temperature reactions. High-temperature calcination resulted in partially collapsed cubic and spherical carbon, while simultaneously reducing GO to rGO. A molecular imprinting resorcinol polymer (MIP) membrane was also in situ applied to the Co-N-C/rGO/glassy carbon electrode (GCE) via electropolymerization. Analyses using cyclic voltammetry, electrochemical impedance, and pulse voltammetry reveal that the modified MIP/Co-N-C/rGO/GCE electrodes show improved electroconductivity and notable electrochemical reactivity towards dopamine. After optimizing detection parameters, the sensor demonstrates a wide linear detection range of 0.01-0.5 and 0.5-100 µmol/L, with a limit of detection (LOD) of 3.33 nmol/L (S/N = 3). Additionally, the sensor displays strong robustness, including excellent selectivity, significant resistance to interference, and long-term stability. It also shows satisfactory recovery in detecting spiked real samples.


Assuntos
Cobalto , Dopamina , Técnicas Eletroquímicas , Eletrodos , Grafite , Imidazóis , Limite de Detecção , Zeolitas , Grafite/química , Dopamina/análise , Dopamina/química , Zeolitas/química , Cobalto/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Imidazóis/química , Impressão Molecular , Carbono/química , Nitrogênio/química , Polímeros Molecularmente Impressos/química , Estruturas Metalorgânicas/química , Oxirredução
17.
PLoS One ; 19(10): e0307055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39383192

RESUMO

Magnetic Co0.5Mn0.5Fe2O4 nanoparticles were successfully prepared via the combustion and calcination process, with an average particle diameter of 31.5 nm and a saturation magnetization of 25.25 emu·g-1, they were employed to adsorbe Congo red (CR) from wastewater, the Pseudo-second-order kinetic and Freundlich isotherm were consistent with the adsorption data, indicating that their adsorption was a multilayer chemisorption process, the thermodynamic investigation showed that the adsorption was a favored exothermic process. The ionic strength of Cl- in CR solution had no obvious effect on the adsorption efficiency of Co0.5Mn0.5Fe2O4 nanoparticles, and the maximum adsorbance was 58.3 mg·g-1 at pH 2, decreasing as the pH of the CR solutions increased from 2 to 12. The ion leaching experiment and XRD demonstrated that Co0.5Mn0.5Fe2O4 nanoparticles had excellent stability, and the relative removal rate was 93.85% of the first time after 7 cycles. Cyclic voltammetry and electrochemical impedance spectroscopy demonstrated that CR was adsorbed onto Co0.5Mn0.5Fe2O4 nanoparticles, and the electrical conductivity of Co0.5Mn0.5Fe2O4 nanoparticles decreased after adsorption of CR. Magnetic Co0.5Mn0.5Fe2O4 nanoparticles displayed a promising application in wastewater treatment.


Assuntos
Cobalto , Vermelho Congo , Compostos Férricos , Compostos de Manganês , Termodinâmica , Adsorção , Cinética , Cobalto/química , Compostos Férricos/química , Vermelho Congo/química , Compostos de Manganês/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Águas Residuárias/química , Purificação da Água/métodos , Nanopartículas/química , Concentração Osmolar , Técnicas Eletroquímicas/métodos
18.
Artigo em Chinês | MEDLINE | ID: mdl-39394709

RESUMO

Objective: To establish a method for the simultaneous determination of 22 elements, including beryllium, vanadium, chromium, manganese, iron, calcium, magnesium, barium, cobalt, cadmium, copper, zinc, arsenic, selenium, titanium, strontium, nickel, molybdenum, tin, antimony, thallium and lead, in whole blood by inductively coupled plasma mass spectrometry (ICP-MS) . Methods: In September 2023, the analysis conditions were determined by optimizing the detection mode of the instrument, the pretreatment mode and the dilution factor of the samples, etc. Whole blood samples were diluted with a mixture of 0.1% nitric acid and 0.05% triton X-100, and centrifuged at 2000 r/min by high-speed centrifuge for 2 min. The supernatant was taken into inductively coupled plasma mass spectrometer to determine the content of 22 elements, and the detection limit and precision of the method were analyzed. Results: The 22 elements had a good linear relationship in their respective measurement ranges (r=0.9991-0.9999), the detection limit ranged from 0.003 µg/L to 0.012 mg/L. The intra-batch precision ranged from 0.5% to 7.2%, the inter-batch precision ranged from 0.4% to 9.4%, and the average recoveries ranged from 80.6% to 114.9%. Conclusion: ICP-MS method has a good effect on the determination of 22 elements in whole blood. The method is fast and simple, and can be used for clinical detection of multiple elements in whole blood.


Assuntos
Espectrometria de Massas , Espectrometria de Massas/métodos , Humanos , Berílio/sangue , Cromo/sangue , Manganês/sangue , Manganês/análise , Cádmio/sangue , Limite de Detecção , Ferro/sangue , Arsênio/sangue , Arsênio/análise , Magnésio/sangue , Vanádio/sangue , Vanádio/análise , Selênio/sangue , Cobre/sangue , Oligoelementos/sangue , Oligoelementos/análise , Cálcio/sangue , Cobalto/sangue , Cobalto/análise , Zinco/sangue , Chumbo/sangue
19.
Langmuir ; 40(41): 21618-21628, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39361808

RESUMO

Antibiotics are essential for treating illnesses, but abuse has resulted in serious consequences. Rapid and precise detection of antibiotic residues, such as sulfamethazine (SFZ), in water and biological samples is critical for public health and environmental safety. To address this challenge, we have introduced a pioneering electrochemical sensor incorporating a nanocomposite of perovskite-structured praseodymium cobaltite (PrCoO3) integrated with carbon nanofibers (CNFs) on a glassy carbon electrode (GCE|CNF/PrCoO3). We synthesized the CNF/PrCoO3 nanocomposite using ultrasonic fabrication and confirmed its formation with advanced techniques. GCE|CNF/PrCoO3 offer superior SFZ detection with a 2.889 nM/L limit and high selectivity, due to PrCoO3's electrocatalytic properties and CNF's enhanced conductivity. We validated the sensor's effectiveness in detecting SFZ in various real-water samples, demonstrating its repeatability, reproducibility, and stability. This confirms its reliability for environmental monitoring. The study highlights the potential of perovskite-carbon composites and paves the way for developing cost-effective sensors for pharmaceutical contaminants.


Assuntos
Carbono , Nanofibras , Sulfametazina , Nanofibras/química , Carbono/química , Sulfametazina/análise , Técnicas Eletroquímicas/métodos , Eletrodos , Cobalto/química , Poluentes Químicos da Água/análise
20.
Sci Rep ; 14(1): 24240, 2024 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-39414878

RESUMO

Selective and sensitive sarcosine detection is crucial due to its recent endorsement as a prostate cancer (PCa) biomarker in clinical diagnosis. The reduced graphene oxide-cobalt nickel tungsten boron oxides (CoNiWBO/rGO) nanocomposite is developed as a non-enzymatic electrochemical sensor for sarcosine detection in PCa patients' serum. CoNiWBO/rGO is synthesized by the chemical reduction method via a one-pot reduction method followed by calcination at 500 °C under a nitrogen environment for 2 h and characterized by UV-Vis, XRD, TGA, and SEM. CoNiWBO/rGO is then deposited on a glassy carbon electrode, and sarcosine sensing parameters are optimized, including concentration and pH. This non-enzymatic sensor is employed to directly determine sarcosine in serum samples. Differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV) are employed to monitor the electrochemical behavior where sarcosine binding leads to oxidation. Chronoamperometric studies show the stability of the developed sensor. The results demonstrate a wide linear range from 0.1 to 50 µM and low limits of detection, i.e., 0.04 µM and 0.07 µM using DPV and LSV respectivel. Moreover, the calculated recovery of sarcosine in human serum of prostate cancer patients is 78-96%. The developed electrochemical sensor for sarcosine detection can have potential applications in clinical diagnosis.


Assuntos
Técnicas Eletroquímicas , Grafite , Nanocompostos , Níquel , Neoplasias da Próstata , Sarcosina , Humanos , Sarcosina/sangue , Masculino , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Nanocompostos/química , Grafite/química , Técnicas Eletroquímicas/métodos , Níquel/sangue , Níquel/química , Tungstênio/química , Cobalto/sangue , Óxidos/química , Biomarcadores Tumorais/sangue , Limite de Detecção , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...