RESUMO
Rabbit hemorrhagic disease virus 2/genotype GI.2 (RHDV2/GI.2; Caliciviridae, Lagovirus) causes a highly contagious disease with hepatic necrosis and disseminated intravascular coagulation in several Leporidae species. RHDV2 was first detected in European rabbits (Oryctolagus cuniculus) in France in 2010 and has since spread widely. We gather here data on viral detections reported in various countries and affected species, and discuss pathology, genetic differences, and novel diagnostic aspects. RHDV2 has been detected almost globally, with cases reported in Europe, Africa, Oceania, Asia, and North America as of 2023. Since 2020, large scale outbreaks have occurred in the United States and Mexico and, at the same time, cases have been reported for the first time in previously unaffected countries, such as China, Japan, Singapore, and South Africa, among others. Detections have been notified in domestic and wild European rabbits, hares and jackrabbits (Lepus spp.), several species of cottontail and brush rabbits (Sylvilagus spp.), pygmy rabbits (Brachylagus idahoensis), and red rock rabbits (Pronolagus spp.). RHDV2 has also been detected in a few non-lagomorph species. Detection of RHDV2 causing RHD in Sylvilagus spp. and Leporidae species other than those in the genera Oryctolagus and Lepus is very novel. The global spread of this fast-evolving RNA virus into previously unexploited geographic areas increases the likelihood of host range expansion as new species are exposed; animals may also be infected by nonpathogenic caliciviruses that are disseminated by almost all species, and with which genetic recombination may occur.
Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Animais , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Vírus da Doença Hemorrágica de Coelhos/genética , Vírus da Doença Hemorrágica de Coelhos/classificação , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Coelhos/virologia , FilogeniaRESUMO
Rabbit hemorrhagic disease virus 2 (RHDV2) is a highly infectious, often fatal viral disease that affects both domestic and wild lagomorph species. In the United States (U.S.), the virus first was detected in wild lagomorph populations in the southwest in March 2020 and has continued to be detected in native North American lagomorph species over several years. The susceptibility of host species and exact mechanisms of environmental transmission across the U.S. landscape remain poorly understood. Our study aims to increase the understanding of RHDV2 in wild lagomorph populations by providing a history of detection. We present and summarize results from all RHDV2-suspect wild lagomorph morbidity and mortality samples submitted for diagnostic testing in the U.S. from March 2020 to March 2024. Samples were submitted from 916 wild lagomorphs across eight native North American species in 14 western states, of which 313 (34.2%) tested positive by RHDV2 RT-qPCR. Detections of RHDV2 in pygmy rabbits (Brachylagus idahoensis) and riparian brush rabbits (Sylvilagus bachmani riparius) suggest that the risk to threatened and endangered species warrants more attention. Continuing to investigate wild lagomorph morbidity and mortality events and tracking RHDV2 detections over time can help inform on disease epidemiology and wild lagomorph population trends.
Assuntos
Animais Selvagens , Infecções por Caliciviridae , Surtos de Doenças , Vírus da Doença Hemorrágica de Coelhos , Lagomorpha , Animais , Vírus da Doença Hemorrágica de Coelhos/genética , Vírus da Doença Hemorrágica de Coelhos/classificação , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/virologia , Lagomorpha/virologia , Estados Unidos/epidemiologia , Animais Selvagens/virologia , Surtos de Doenças/veterinária , Coelhos/virologiaRESUMO
Hepatitis E virus (HEV), species Paslahepevirus balayani, poses a global public health threat, especially in developing countries, by causing acute enterically transmitted hepatitis. HEV infects various mammalian hosts and belongs to the genus Paslahepevirus in the family Hepeviridae. While swine are recognized as the main hosts of HEV, rabbits, which can also be affected by swine HEV-3 related strains, serve as the primary reservoir for the distinct emerging and zoonotic HEV-3ra subtype. In Portugal, where the European wild rabbit is abundant, their role in HEV epidemiology remains unclear. The primary aim of the present research was to evaluate the circulation and the potential for HEV infection within these species. This study employed a molecular and longitudinal serological approach to investigate HEV in Portuguese rabbits. Among the 205 wild rabbits tested, a seroprevalence of 2.44% (95% CI: 0.80-5.60) was found, with no significant associations with age, sex, localization, or sampling dates. Seropositive animals were found in the south and center regions of the country. HEV RNA was not detected in 120 fecal samples, suggesting a natural, low level, and widespread viral circulation. The study underscores the need for further research to comprehend HEV dynamics in these species, which is crucial for assessing potential transmission risks to humans.
Assuntos
Animais Selvagens , Vírus da Hepatite E , Hepatite E , Animais , Coelhos/virologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/isolamento & purificação , Vírus da Hepatite E/classificação , Portugal/epidemiologia , Hepatite E/veterinária , Hepatite E/epidemiologia , Hepatite E/virologia , Estudos Soroepidemiológicos , Animais Selvagens/virologia , Estudos Longitudinais , Feminino , Masculino , Animais Domésticos/virologia , FilogeniaRESUMO
Rabbit haemorrhage disease virus 2 (RHDV2) is a highly pathogenic lagovirus that causes lethal disease in rabbits and hares (lagomorphs). Since its first detection in Europe in 2010, RHDV2 has spread worldwide and has been detected in over 35 countries so far. Here, we provide the first detailed report of the detection and subsequent circulation of RHDV2 in New Zealand. RHDV2 was first detected in New Zealand in 2018, with positive samples retrospectively identified in December 2017. Subsequent time-resolved phylogenetic analysis suggested a single introduction into the North Island between March and November 2016. Genetic analysis identified a GI.3P-GI.2 variant supporting a non-Australian origin for the incursion; however, more accurate identification of the source of the incursion remains challenging due to the wide global distribution of the GI.3P-GI.2 variant. Furthermore, our analysis suggests the spread of the virus between the North and South Islands of New Zealand at least twice, dated to mid-2017 and around 2018. Further phylogenetic analysis also revealed a strong phylogeographic pattern. So far, no recombination events with endemic benign New Zealand rabbit caliciviruses have been identified. This study highlights the need for further research and surveillance to monitor the distribution and diversity of lagoviruses in New Zealand and to detect incursions of novel variants.
Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Filogenia , Nova Zelândia/epidemiologia , Animais , Vírus da Doença Hemorrágica de Coelhos/genética , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Vírus da Doença Hemorrágica de Coelhos/classificação , Coelhos/virologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Filogeografia , Lebres/virologia , Estudos Retrospectivos , Genoma ViralRESUMO
Myxoma virus (MYXV) causes localized cutaneous fibromas in its natural hosts, tapeti and brush rabbits; however, in the European rabbit, MYXV causes the lethal disease myxomatosis. Currently, the molecular mechanisms underlying this increased virulence after cross-species transmission are poorly understood. In this study, we investigated the interaction between MYXV M156 and the host protein kinase R (PKR) to determine their crosstalk with the proinflammatory nuclear factor kappa B (NF-κB) pathway. Our results demonstrated that MYXV M156 inhibits brush rabbit PKR (bPKR) more strongly than European rabbit PKR (ePKR). This moderate ePKR inhibition could be improved by hyperactive M156 mutants. We hypothesized that the moderate inhibition of ePKR by M156 might incompletely suppress the signal transduction pathways modulated by PKR, such as the NF-κB pathway. Therefore, we analyzed NF-κB pathway activation with a luciferase-based promoter assay. The moderate inhibition of ePKR resulted in significantly higher NF-κBdependent reporter activity than complete inhibition of bPKR. We also found a stronger induction of the NF-κB target genes TNFα and IL-6 in ePKR-expressing cells than in bPKR-expressing cells in response to M156 in both transfection and infections assays. Furthermore, a hyperactive M156 mutant did not cause ePKR-dependent NF-κB activation. These observations indicate that M156 is maladapted for ePKR inhibition, only incompletely blocking translation in these hosts, resulting in preferential depletion of shorthalf-life proteins, such as the NF-κB inhibitor IκBα. We speculate that this functional activation of NF-κB induced by the intermediate inhibition of ePKR by M156 may contribute to the increased virulence of MYXV in European rabbits.
Assuntos
Interações Hospedeiro-Patógeno , Myxoma virus , Mixomatose Infecciosa , NF-kappa B , Coelhos , eIF-2 Quinase , Animais , Redes e Vias Metabólicas , Myxoma virus/genética , Myxoma virus/patogenicidade , Mixomatose Infecciosa/metabolismo , Mixomatose Infecciosa/virologia , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Coelhos/virologia , eIF-2 Quinase/metabolismoRESUMO
Rabbit hemorrhagic disease (RHD) is caused by a lagovirus mainly affecting European rabbits (Oryctolagus cuniculus), although other European and North American lagomorph species are also susceptible to fatal infection by the new viral variant RHDV2/b. In the present work, direct mechanical transmission of the rabbit hemorrhagic disease virus (RHDV2/b variant) by the hematophagous Diptera Aedes albopictus (Skuse) (Diptera: Culicidae) and the sand fly Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae) was tested. For each species, six and three laboratory rabbits were exposed to bites of dipterous females partially fed on RHDV2/b viral suspension 2 h and 24 h prior to exposure, respectively. The rabbits were then monitored for clinical changes and mortality for 35 d, and seroconversion was assessed by indirect ELISA. No rabbit died or showed clinical signs of disease, and seroconversion was recorded in two rabbits challenged with P. papatasi females fed the viral suspension 2 h prior to exposure. The number of RHDV2/b RNA copies/female was higher in Ae. albopictus than in P. papatasi but the decrease over time of RNA load in Ae. albopictus was greater than that in P. papatasi. The results of this study suggest the inability of Ae. albopictus to serve as a direct mechanical vector of RHDV2/b, but sand flies could play a role in the local transmission of RHD.
Assuntos
Infecções por Caliciviridae/transmissão , Vírus da Doença Hemorrágica de Coelhos , Mosquitos Vetores/virologia , Aedes/virologia , Animais , Infecções por Caliciviridae/patologia , Feminino , Vírus da Doença Hemorrágica de Coelhos/genética , Laboratórios , Mortalidade , Psychodidae/virologia , RNA Viral/análise , Coelhos/virologiaRESUMO
We report pilot studies to evaluate the susceptibility of common domestic livestock (cattle, sheep, goat, alpaca, rabbit, and horse) to intranasal infection with SARS-CoV-2. None of the infected animals shed infectious virus via nasal, oral, or faecal routes, although viral RNA was detected in several animals. Further, neutralizing antibody titres were low or non-existent one month following infection. These results suggest that domestic livestock are unlikely to contribute to SARS-CoV-2 epidemiology.
Assuntos
COVID-19/veterinária , Especificidade de Hospedeiro , Gado/virologia , SARS-CoV-2/patogenicidade , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Camelídeos Americanos/virologia , Bovinos/virologia , Chlorocebus aethiops , Reservatórios de Doenças/virologia , Cabras/virologia , Cavalos/virologia , Especificidade de Hospedeiro/imunologia , Humanos , Cavidade Nasal/virologia , RNA Viral/análise , Coelhos/virologia , Reto/virologia , Sistema Respiratório/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Ovinos/virologia , Especificidade da Espécie , Células Vero , Eliminação de Partículas Virais , Vísceras/virologiaRESUMO
Rabbit Haemorrhagic Disease (RHD) causes high morbidity and mortality in rabbits and hares. Here, we report the first genomic characterization of lagovirus GI.2 virus in domestic rabbits from sub-Saharan Africa. We used an unbiased microbial metagenomic Next Generation Sequencing (mNGS) approach to diagnose the pathogen causing the suspected outbreak of RHD in Ibadan, Nigeria. The liver, spleen, and lung samples of five rabbits from an outbreak in 2 farms were analyzed. The mNGS revealed one full and two partial RHDV2 genomes on both farms. Phylogenetic analysis showed close clustering with RHDV2 lineages from Europe (98.6% similarity with RHDV2 in the Netherlands, and 99.1 to 100% identity with RHDV2 in Germany), suggesting potential importation. Subsequently, all the samples were confirmed by RHDV virus-specific RT-PCR targeting the VP60 gene with the expected band size of 398 bp for the five rabbits sampled. Our findings highlight the need for increased genomic surveillance of RHDV2 to track its origin, understand its diversity and to inform public health policy in Nigeria, and Sub-Saharan Africa.
Assuntos
Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/virologia , Vírus da Doença Hemorrágica de Coelhos/genética , Coelhos/virologia , Animais , Feminino , Genoma Viral , Masculino , Metagenômica , Nigéria , FilogeniaRESUMO
BACKGROUND: Rabbit haemorrhagic disease virus Lagovirus europaeus/GI.1d variant (GI.1d/RHDV) was identified in 1990 in France, and until the emergence of the new genotype GI.2, it was the main variant circulating in the country. The early stages of RHDV infection have been described in a few studies of rabbits experimentally infected with earlier strains, but no information was given on the minimum infective dose. We report the genomic and phenotypic characterisation of a GI.1d/RHDV strain collected in 2000 in France (GI.1d/00-21). RESULTS: We performed in vivo assays in rabbits to study virus replication kinetics in several tissues at the early stage of infection, and to estimate the minimum infective dose. Four tested doses, negligible (10- 1 viral genome copies), low (104), high (107) and very high (1011) were quantified using a method combining density gradient centrifugation of the viral particles and an RT-qPCR technique developed to quantify genomic RNA (gRNA). The GI.1d/00-21 genome showed the same genomic organisation as other lagoviruses; however, a substitution in the 5' untranslated region and a change in the potential p23/2C-like helicase cleavage site were observed. We showed that the liver of one of the two rabbits inoculated via the oral route was infected at 16 h post-infection and all tissues at 39 h post-infection. GI.1d/00-21 induced classical RHD signs (depression) and lesions (haemorrhage and splenomegaly). Although infective dose estimation should be interpreted with caution, the minimum infective dose that infected an inoculated rabbit was lower or equal to 104 gRNA copies, whereas between 104 and 107 gRNA copies were required to also induce mortality. CONCLUSIONS: These results provide a better understanding of GI.1d/RHDV infection in rabbits. The genome analysis showed a newly observed mutation in the 5' untranslated region of a lagovirus, whose role remains unknown. The phenotypic analysis showed that the pathogenicity of GI.1d/00-21 and the replication kinetics in infected organs were close to those reported for the original GI.1 strains, and could not alone explain the observed selective advantage of the GI.1d strains. Determining the minimum dose of viral particles required to cause mortality in rabbits is an important input for in vivo studies.
Assuntos
Infecções por Caliciviridae/veterinária , Variação Genética , Genoma Viral , Vírus da Doença Hemorrágica de Coelhos/genética , Coelhos/virologia , Replicação Viral , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , França/epidemiologia , Filogenia , RNA Viral/genéticaRESUMO
Rabbit hemorrhagic disease virus 2 (RHDV2) causes an often-fatal disease of rabbits that has resulted in outbreaks in rabbitries in Europe, Africa, Australia, and Asia. RHD has historically been characterized as a foreign animal disease in the United States. In July 2019, RHDV2 was detected in rabbits on Orcas Island along the northwestern coast of Washington (WA) State following reports of deaths in multiple feral and domestic rabbits. We document and highlight here the unique clinical presentation and gross and histologic lesions observed in this recent WA outbreak. Affected rabbits died without premonitory signs or displayed hyporexia and/or lethargy for ≤1 d prior to death. The most consistent pathologic finding was random, multifocal hepatocellular necrosis, often with concurrent multifocal-to-diffuse splenic necrosis. The lack of significant clinical signs in conjunction with the random distribution of hepatic necrosis in the WA outbreak contrasts with previous reports of RHDV2 disease progression.
Assuntos
Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/classificação , Coelhos/virologia , Animais , Surtos de Doenças/veterinária , Noroeste dos Estados Unidos/epidemiologiaRESUMO
An outbreak of rabbit hemorrhagic disease virus 2 (RHDV2)-associated disease occurred in the southwestern United States following its first detection in New Mexico in March 2020. The disease spread throughout several states and was diagnosed for the first time in California on May 11, 2020, in a black-tailed jackrabbit (Lepus californicus). The following day, the California Department of Food and Agriculture (CDFA) issued an order banning the entrance into California of several lagomorph species and their products from any state in which the disease had been detected in the last 12 mo. RHDV2 is a threat to wild lagomorph species in California, including the endangered riparian brush rabbit (Sylvilagus bachmani riparius). Therefore, the California Department of Fish and Wildlife (CDFW) started tracking any mortality event in wild lagomorph populations. As of August 9, 2020, RHDV2 had been detected in wild and domestic lagomorphs of several counties in southern California that were submitted to the California Animal Health and Food Safety laboratory system by the CDFA or the CDFW. These positive cases included 2 additional black-tailed jackrabbits and 3 desert cottontail rabbits (Sylvilagus audubonii). In addition, the infection spilled over to domestic populations, whereby it was confirmed on July 10, 2020, in a domestic rabbit (Oryctolagus cuniculus).
Assuntos
Infecções por Caliciviridae/veterinária , Surtos de Doenças/veterinária , Vírus da Doença Hemorrágica de Coelhos , Coelhos/virologia , Animais , Animais Selvagens , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Lebres/virologia , Sudoeste dos Estados Unidos/epidemiologiaRESUMO
The aim of this study was the molecular epidemiology of independently introduced RHDV2 strains in Poland. The nucleotide sequences of RHDV2 diagnosed in domestic rabbits in 2018 in the voivodeships of Swietokrzyskie (strain PIN), Malopolskie (strain LIB) and Mazowieckie (strain WAK), and RHDVa from 2015 (strain F77-3) recognized in wild rabbits in Kujawsko-Pomorskie voivodeship were compared to the genome sequences of the first native RHDV2 strains from 2016-2017. The reference sequences available in public databases, the representative for a classical RHDV (G1-G5 genogroups), RHDVa (G6), non-pathogenic caliciviruses (RCV, GI.3 and GI.4) as well as original and recombinant RHDV2 isolates were included for this analysis. Nucleotide sequence similarity among the most distanced RHDV2 strains isolated in Poland in 2018 was from 92.3% to 98.2% in the genome sequence encoding ORF1, ORF2 and 3'UTR, between 94.8-98.7% in the VP60 gene and between 91.3-98.1% in non-structural proteins (NSP) region. The diversity between three RHDV2 and RHDVa from 2015 was up to 16.3% in the VP60 region. Similarities are shown for the VP60 tree within the RHDV2 group, however, the nucleotide analysis of NSP region revealed the differences between older and new native RHDV2 strains. The Polish RHDV2 isolates from 2016-2017 clustered together with RHDV G1/RHDV2 recombinants, first identified in the Iberian Peninsula in 2012, while all strains from 2018 are close to the original RHDV2. The F77-3 strain clustered to well supported RHDVa (G6) genetic group, together with other Polish and European RHDVa isolates. Based on the results of phylogenetic characterization of RHDV2 strains detected in Poland between 2016-2018 and the chronology of their emergence it can be concluded that RHDV2 strains of 2018 and RHDV2 strains of 2016-2017 were introduced independently thus confirming their different origin and simultaneous pathway of spreading.
Assuntos
Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/genética , Coelhos/virologia , Animais , Antígenos Virais/genética , Antígenos Virais/isolamento & purificação , Caliciviridae/genética , Infecções por Caliciviridae/epidemiologia , Genoma Viral , Genótipo , Vírus da Doença Hemorrágica de Coelhos/classificação , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Epidemiologia Molecular , Filogenia , Polônia/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteínas Estruturais Virais/genéticaRESUMO
Myxoma virus (MYXV) causes morbidity and mortality in European wild rabbits (Oryctolagus cuniculus) worldwide, and recently in Iberian hares (Lepus granatensis) in Spain. We aimed to assess the presence of MYXV-specific DNA in ixodid ticks collected from both hosts. A total of 417 ticks harvested from 30 wild lagomorphs, including wild rabbits and Iberian hares were collected from southern Spain. Enzyme-linked immunosorbent assay and PCR-sequencing were used to detect virus exposure and presence, respectively. Antibodies to MYXV were detected in 68% (17/25) of wild rabbits and in 67% (2/3) of Iberian hares. We detected MYXV DNA in 50.7% of pools of two different tick species (nymphs and adults of Rhipicephalus pusillus, and nymphs of Hyalomma lusitanicum) parasitizing rabbits and hares. The obtained partial sequence of the viral major envelope protein gene showed a mutation (G383A) within the MYXV_gp026 locus between the rabbit strain and Iberian hare strain (recently isolated in tissues of infected hares from Spain). However, in our study, the viral DNA presence was detected for the first time using tick DNA as the PCR-template, but the possible role of ticks as vectors of MYXV still needs to be elucidated.
Assuntos
Lebres/virologia , Myxoma virus/genética , Mixomatose Infecciosa/virologia , Coelhos/virologia , Substituição de Aminoácidos , Animais , Animais Selvagens , Anticorpos Antivirais/sangue , DNA Viral/isolamento & purificação , Feminino , Masculino , Myxoma virus/isolamento & purificação , Mixomatose Infecciosa/epidemiologia , Mixomatose Infecciosa/transmissão , Filogenia , Espanha/epidemiologia , Carrapatos/virologia , Proteínas do Envelope ViralRESUMO
Transmission of severe acute respiratory coronavirus-2 (SARS-CoV-2) between livestock and humans is a potential public health concern. We demonstrate the susceptibility of rabbits to SARS-CoV-2, which excrete infectious virus from the nose and throat upon experimental inoculation. Therefore, investigations on the presence of SARS-CoV-2 in farmed rabbits should be considered.
Assuntos
COVID-19/transmissão , Coelhos/virologia , SARS-CoV-2/isolamento & purificação , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , COVID-19/etiologia , COVID-19/veterinária , Suscetibilidade a Doenças/veterinária , Feminino , Células HEK293 , Humanos , Eliminação de Partículas ViraisRESUMO
In late 2018, an epidemic myxomatosis outbreak emerged on the Iberian Peninsula leading to high mortality in Iberian hare populations. A recombinant Myxoma virus (strains MYXV-Tol and ha-MYXV) was rapidly identified, harbouring a 2.8 kbp insertion containing evolved duplicates of M060L, M061L, M064L, and M065L genes from myxoma virus (MYXV) or other Poxviruses. Since 2017, 1616 rabbits and 125 hares were tested by a qPCR directed to M000.5L/R gene, conserved in MYXV and MYXV-Tol/ha-MYXV strains. A subset of the positive samples (20%) from both species was tested for the insert with MYXV being detected in rabbits and the recombinant MYXV in hares. Recently, three wild rabbits were found dead South of mainland Portugal, showing skin oedema and pulmonary lesions that tested positive for the 2.8 kbp insert. Sequencing analysis showed 100% similarity with the insert sequences described in Iberian hares from Spain. Viral particles were observed in the lungs and eyelids of rabbits by electron microscopy, and isolation in RK13 cells attested virus infectivity. Despite that the analysis of complete genomes may predict the recombinant MYXV strains' ability to infect rabbit, routine analyses showed species segregation for the circulation of MYXV and recombinant MYXV in wild rabbit and in Iberian hares, respectively. This study demonstrates, however, that recombinant MYXV can effectively infect and cause myxomatosis in wild rabbits and domestic rabbits, raising serious concerns for the future of the Iberian wild leporids while emphasises the need for the continuous monitoring of MYXV and recombinant MYXV in both species.
Assuntos
Genoma Viral , Lebres/virologia , Myxoma virus/genética , Myxoma virus/isolamento & purificação , Coelhos/virologia , Animais , Feminino , Masculino , Mixomatose Infecciosa/patologia , Mixomatose Infecciosa/virologia , Portugal , EspanhaRESUMO
Here, we investigated the fecal, oral, blood, and skin virome of 10 laboratory rabbits using a viral metagenomic method. In the oral samples, we detected a novel polyomavirus (RabPyV), and phylogenetic analysis based on the large T antigen, VP1 and VP2 regions indicated that the novel strain might have undergone a recombination event. Recombination analysis based on related genomes confirmed that RabPyV is a multiple recombinant between rodent-like and avian-like polyomaviruses. In fecal samples, three partial or complete genome sequences of viruses belonging to the families Picobirnaviridae, Parvoviridae, Microviridae and Coronaviridae were characterized, and phylogenetic trees were constructed based on the predicted amino acid sequences of viral proteins. This study increases the amount of genetic information on viruses present in laboratory rabbits.
Assuntos
Metagenoma , Polyomavirus/isolamento & purificação , Coelhos/virologia , Proteínas Virais/genética , Vírus/classificação , Animais , Animais de Laboratório/virologia , Sangue/virologia , Fezes/virologia , Genoma Viral , Boca/virologia , Filogenia , Pele/virologia , Vírus/isolamento & purificação , Sequenciamento Completo do GenomaRESUMO
Rabbit haemorrhagic disease is a viral disease that emerged in the 1980s and causes high mortality and morbidity in the European rabbit (Oryctolagus cuniculus). In 2010, a new genotype of the rabbit haemorrhagic disease virus emerged and replaced the former circulating Lagovirus europaeus/GI.1 strains. Several recombination events have been reported for the new genotype Lagovirus europaeus/GI.2, with pathogenic (variants GI.1a and GI.1b) and benign (genotype GI.4) strains that served as donors for the non-structural part while GI.2 composed the structural part; another recombination event has also been described at the p16/p23 junction involving GI.4 strains. In this study, we analysed new complete coding sequences of four benign GI.3 strains and four GI.2 strains. Phylogenetic and recombination detection analyses revealed that the first GI.2 strains, considered as non-recombinant, resulted from a recombination event between GI.3 and GI.2, with GI.3 as the major donor for the non-structural part and GI.2 for the structural part. Our results indicate that recombination contributed to the emergence, persistence and dissemination of GI.2 as a pathogenic form and that all described GI.2 strains so far are the product of recombination. This highlights the need to study full-genomic sequences of lagoviruses to understand their emergence and evolution.
Assuntos
Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/genética , Filogenia , Recombinação Genética , Animais , Infecções por Caliciviridae/virologia , Capsídeo , França , Genoma Viral , Genótipo , Funções Verossimilhança , Coelhos/virologiaRESUMO
A model to predict the relative levels of respiratory and fecal-oral transmission potentials of coronaviruses (CoVs) by measuring the percentage of protein intrinsic disorder (PID) of the M (Membrane) and N (Nucleoprotein) proteins in their outer and inner shells, respectively, was built before the MERS-CoV outbreak. With MPID = 8.6% and NPID = 50.2%, the 2003 SARS-CoV falls into group B, which consists of CoVs with intermediate levels of both fecal-oral and respiratory transmission potentials. Further validation of the model came with MERS-CoV (MPID = 9%, NPID = 44%) and SARS-CoV-2 (MPID = 5.5%, NPID = 48%) falling into the groups C and B, respectively. Group C contains CoVs with higher fecal-oral but lower respiratory transmission potentials. Unlike SARS-CoV, SARS-CoV-2 with MPID = 5.5% has one of the hardest outer shells among CoVs. Because the hard shell is able to resist the antimicrobial enzymes in body fluids, the infected person is able to shed large quantities of viral particles via saliva and mucus, which could account for the higher contagiousness of SARS-COV-2. Further searches have found that high rigidity of the outer shell is characteristic for the CoVs of burrowing animals, such as rabbits (MPID = 5.6%) and pangolins (MPID = 5-6%), which are in contact with the buried feces. A closer inspection of pangolin-CoVs from 2017 to 2019 reveals that pangolins provided a unique window of opportunity for the entry of an attenuated SARS-CoV-2 precursor into the human population in 2017 or earlier, with the subsequent slow and silent spread as a mild cold that followed by its mutations into the current more virulent form. Evidence of this lies in both the genetic proximity of the pangolin-CoVs to SARS-CoV-2 (â¼90%) and differences in N disorder. A 2017 pangolin-CoV strain shows evidence of higher levels of attenuation and higher fecal-oral transmission associated with lower human infectivity via having lower NPID (44.8%). Our shell disorder model predicts this to be a SARS-CoV-2 vaccine strain, as lower inner shell disorder is associated with the lesser virulence in a variety of viruses.
Assuntos
Betacoronavirus/química , Infecções por Coronavirus , Eutérios/virologia , Proteínas Intrinsicamente Desordenadas , Proteínas do Nucleocapsídeo , Pandemias , Pneumonia Viral , Animais , COVID-19 , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Pandemias/veterinária , Fosfoproteínas , Pneumonia Viral/transmissão , Pneumonia Viral/veterinária , Pneumonia Viral/virologia , Coelhos/virologia , SARS-CoV-2 , Proteínas ViraisRESUMO
In recent decades, cases of autochthonous hepatitis E (HE) have sharply increased in European countries where foodborne transmission is considered the main route of HE virus (HEV) transmission. Although rabbits are considered the main reservoir of the zoonotic HEV-3ra subtype, information on the role of wild lagomorphs in the epidemiology of HEV remains scarce. The aim of this study therefore was to assess the circulation of HEV in European wild rabbits (Oryctolagus cuniculus) and Iberian hares (Lepus granatensis), the most important lagomorph species in Spanish Mediterranean ecosystems. Liver samples from 372 wild rabbits and 78 Iberian hares were analysed using a broad-spectrum RT-PCR that detects HEV genotypes 1-8. None of the 450 lagomorphs tested were positive for HEV infection. To the best of our knowledge, this is the first study to assess HEV circulation in wild rabbits in Spain and the first to evaluate HEV infection in Iberian hares. Our results indicate absence of HEV circulation in wild rabbits and Iberian hares in southern Spain during the study period, which suggests that the risk of transmission of HEV from wild lagomorphs to other species, including humans, is low.
Assuntos
Reservatórios de Doenças/virologia , Lebres/virologia , Vírus da Hepatite E/isolamento & purificação , Hepatite E/epidemiologia , Coelhos/virologia , Animais , Estudos Transversais , Ecossistema , Europa (Continente) , Feminino , Geografia , Hepatite E/transmissão , Hepatite E/virologia , Vírus da Hepatite E/genética , Humanos , Fígado/virologia , Masculino , RNA Viral/análise , Espanha/epidemiologia , ZoonosesRESUMO
Viral haemorrhagic disease (VHD) and colibacillosis are common diseases in rabbits that cause economic losses worldwide. The effect of colibacillosis on the immune response of vaccinated rabbits against rabbit haemorrhagic disease virus (RHDV) was studied. Four groups (G1-G4) were included. G1 was the negative control group; G2 was the RHDV vaccine group; G3 was the E. coli-infected group; and G4 was the E. coli-infectedâ¯+â¯RHDV vaccine group. The E. coli infection and RHDV vaccination were simultaneously performed, with another previous infection, 3 days before vaccination. At 28 days post-vaccination (PV), the rabbits (G2-G4) were challenged intramuscularly with 0.5â¯ml of RHDV at a dose of 103 50% median lethal dose (LD50)/rabbit. The rabbits were observed for clinical signs, body weight gain and mortality rates. Tissue, blood, serum, and faecal samples and rectal swabs were collected at 3, 5, 7, 14, 21 and 28 days PV. Significant clinical signs and mortality and a decrease in BW were observed in the infectedâ¯+â¯RHDV vaccine group. On the 3rd day post-infection (PI), compared with all the other groups, the vaccinated group (G2) had significantly upregulated hepatic tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels; however, the infectedâ¯+â¯RHDV vaccine group had significantly higher intestinal levels of TNF-α and IL-6 than the other groups. Furthermore, E. coli infection in vaccinated rabbits led to immunosuppression, as shown by significant decreases (Pâ¯<â¯0.05) in heterophil phagocytic activity, the CD4+/CD8+ ratio, and HI antibody responses to RHDV and a significant increase in the heterophil to lymphocyte (H/L) ratio. In conclusion, colibacillosis leads to immunosuppression involving a shift in the equilibrium of cytokines and reduced weight gain and mortality in vaccinated rabbits and could be a contributing factor in RHDV vaccination failure in rabbit farming.