Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.850
Filtrar
1.
Sci Rep ; 14(1): 15968, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987531

RESUMO

To analyze the mechanism of how interfering with the cytokeratin 19 (CK19) pathway via the ferroptosis pathway affects tumor biological behaviors in the process of oral squamous cell carcinoma (OSCC) development. TCGA was used to analyze the expression of CK19 in pan-cancer and head and neck squamous cell carcinoma (HNSC) and to explore the ferroptosis-related genes related to HNSC. The effect of silencing CK19 on the migration ability of HSC-4 cells was verified by wound healing and migration assay. HSC-4 cells with silencing of CK19 and tumor-bearing nude mouse model were constructed. RT-qPCR, immunofluorescence and western blot were used to analyze the expression of ferroptosis-related genes. CK19 is highly expressed in human OSCC and nude mice. The migration ability of cells in the CK19-silenced group was lower than that of the control group. In vivo and in vitro, CK19 was negatively correlated with the expression of ACSL4 and positively correlated with the expression of GPX4. Compared with the control group, GPX4 expression was down-regulated and ACSL4 expression was up-regulated in the CK19-silenced group. Silencing CK19 also increased intracellular Fe2+ content and MDA content. Silencing CK19 can affect the expression of GPX4 and ACSL4 to regulate ferroptosis and at the same time increase the content of MDA, Fe2+ and ROS levels, thereby activating the regulation of ferroptosis pathway in the development of OSCC.


Assuntos
Coenzima A Ligases , Ferroptose , Regulação Neoplásica da Expressão Gênica , Queratina-19 , Camundongos Nus , Neoplasias Bucais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ferroptose/genética , Animais , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Linhagem Celular Tumoral , Camundongos , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Queratina-19/metabolismo , Queratina-19/genética , Inativação Gênica , Movimento Celular/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia
2.
Biol Direct ; 19(1): 57, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039611

RESUMO

Laryngeal carcinoma (LC) is a common cancer of the respiratory tract. This study aims to investigate the role of RNA-binding motif protein 15 (RBM15) in the cisplatin (DDP) resistance of LC cells. LC-DDP-resistant cells were constructed. RBM15, lysine-specific demethylase 5B (KDM5B), lncRNA Fer-1 like family member 4 (FER1L4), lncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1), glutathione peroxidase 4 (GPX4), and Acyl-CoA synthetase long-chain family (ACSL4) was examined. Cell viability, IC50, and proliferation were assessed after RBM15 downregulation. The enrichment of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and N6-methyladenosine (m6A) on KDM5B was analyzed. KDM5B mRNA stability was measured after actinomycin D treatment. A tumor xenograft assay was conducted to verify the role of RBM15 in LC. Results showed that RBM15 was upregulated in LC and its knockdown decreased IC50, cell viability, proliferation, glutathione, and upregulated iron ion content, ROS, malondialdehyde, ACSL4, and ferroptosis. Mechanistically, RBM15 improved KDM5B stability in an IGF2BP3-dependent manner, resulting in FER1L4 downregulation and GPX4 upregulation. KDM5B increased KCNQ1OT1 and inhibited ACSL4. KDM5B/KCNQ1OT1 overexpression or FER1L4 knockdown promoted DDP resistance in LC by inhibiting ferroptosis. In conclusion, RBM15 promoted KDM5B expression, and KDM5B upregulation inhibited ferroptosis and promoted DDP resistance in LC by downregulating FER1L4 and upregulating GPX4, as well as by upregulating KCNQ1OT1 and inhibiting ACSL4. Silencing RBM15 inhibited tumor growth in vivo.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Ferroptose , Neoplasias Laríngeas , Proteínas de Ligação a RNA , Ferroptose/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Camundongos , Animais , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/metabolismo , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo
3.
FASEB J ; 38(13): e23788, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963329

RESUMO

Intermittent hypoxia (IH) is an independent risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD). Copper deficiency can disrupt redox homeostasis, iron, and lipid metabolism. Here, we investigated whether hepatic copper deficiency plays a role in IH-associated MAFLD and explored the underlying mechanism(s). Male C57BL/6 mice were fed a western-type diet with adequate copper (CuA) or marginally deficient copper (CuD) and were exposed separately to room air (RA) or IH. Hepatic histology, plasma biomarkers, copper-iron status, and oxidative stress were assessed. An in vitro HepG2 cell lipotoxicity model and proteomic analysis were used to elucidate the specific targets involved. We observed that there were no differences in hepatic phenotypes between CuA-fed and CuD-fed mice under RA. However, in IH exposure, CuD-fed mice showed more pronounced hepatic steatosis, liver injury, and oxidative stress than CuA-fed mice. IH induced copper accumulation in the brain and heart and exacerbated hepatic copper deficiency and secondary iron deposition. In vitro, CuD-treated cells with IH exposure showed elevated levels of lipid accumulation, oxidative stress, and ferroptosis susceptibility. Proteomic analysis identified 360 upregulated and 359 downregulated differentially expressed proteins between CuA and CuD groups under IH; these proteins were mainly enriched in citrate cycle, oxidative phosphorylation, fatty acid metabolism, the peroxisome proliferator-activated receptor (PPAR)α pathway, and ferroptosis. In IH exposure, CuD significantly upregulated the ferroptosis-promoting factor arachidonyl-CoA synthetase long chain family member (ACSL)4. ACSL4 knockdown markedly eliminated CuD-induced ferroptosis and lipid accumulation in IH exposure. In conculsion, IH can lead to reduced hepatic copper reserves and secondary iron deposition, thereby inducing ferroptosis and subsequent MAFLD progression. Insufficient dietary copper may worsen IH-associated MAFLD.


Assuntos
Cobre , Ferroptose , Hipóxia , Camundongos Endogâmicos C57BL , Animais , Cobre/metabolismo , Cobre/deficiência , Masculino , Camundongos , Hipóxia/metabolismo , Humanos , Células Hep G2 , Fígado/metabolismo , Fígado/patologia , Estresse Oxidativo , Metabolismo dos Lipídeos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/etiologia , Ferro/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , PPAR alfa/metabolismo , PPAR alfa/genética
4.
J Ethnopharmacol ; 333: 118456, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38878839

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liver fibrosis is a generic fibrous scarring event resulting from accumulation of extracellular matrix (ECM) proteins, easily progressing to end-stage liver diseases. Tao-Hong-Si-Wu-Tang (THSWT) is a traditional Chinese medicine formula applied in clinics to treat gynecological and chronic liver diseases. However, the role of THSWT on thioacetamide (TAA)-induced hepatic fibrosis and the specific mechanisms remains unclear. AIM OF THE STUDY: To investigate the improving effects of THSWT on TAA-insulted hepatic fibrosis and the underlying mechanisms. MATERIALS AND METHODS: UHPLC-MS/MS was performed to explore the chemical characterization of THSWT. Mice were orally administered with THSWT once daily for 6 weeks along with TAA challenge. Liver function was reflected through serum biomarkers and histopathological staining. RNA sequencing, non-targeted metabolomics and molecular biology experiments were applied to investigate the underlying mechanisms. RESULTS: THSWT profoundly repaired lipid metabolism dysfunction and blocked collagen accumulation both in TAA-stimulated mice and in hepatocytes. Results of RNA sequencing and non-targeted metabolomics revealed that the anti-fibrotic effects of THSWT mostly relied on lipid metabolism repairment by increasing levels of acetyl-CoA, phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine and lysophosphatidylethanolamine, and decreasing relative abundances of acyl-CoA, total cholesterol, diacylglycerol, triacylglycerol and phosphatidylinositol. Mechanically, long-chain acyl-CoA synthetases 4 (ACSL4) was a key profibrotic target both in human and mice by disrupting lipid oxidation and metabolism in hepatic mitochondria. THSWT effectively blocked ACSL4 and promoted mitophagy to reverse above outcomes, which was verified by mitophagy depletion. CONCLUSION: THSWT may be a promising therapeutic option for treating hepatic fibrosis and its complications by modulating lipid metabolism and promoting mitophagy in livers.


Assuntos
Medicamentos de Ervas Chinesas , Metabolismo dos Lipídeos , Cirrose Hepática , Mitofagia , Tioacetamida , Animais , Mitofagia/efeitos dos fármacos , Tioacetamida/toxicidade , Camundongos , Metabolismo dos Lipídeos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Coenzima A Ligases
5.
Nat Commun ; 15(1): 4760, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834654

RESUMO

Older livers are more prone to hepatic ischaemia/reperfusion injury (HIRI), which severely limits their utilization in liver transplantation. The potential mechanism remains unclear. Here, we demonstrate older livers exhibit increased ferroptosis during HIRI. Inhibiting ferroptosis significantly attenuates older HIRI phenotypes. Mass spectrometry reveals that fat mass and obesity-associated gene (FTO) expression is downregulated in older livers, especially during HIRI. Overexpressing FTO improves older HIRI phenotypes by inhibiting ferroptosis. Mechanistically, acyl-CoA synthetase long chain family 4 (ACSL4) and transferrin receptor protein 1 (TFRC), two key positive contributors to ferroptosis, are FTO targets. For ameliorative effect, FTO requires the inhibition of Acsl4 and Tfrc mRNA stability in a m6A-dependent manner. Furthermore, we demonstrate nicotinamide mononucleotide can upregulate FTO demethylase activity, suppressing ferroptosis and decreasing older HIRI. Collectively, these findings reveal an FTO-ACSL4/TFRC regulatory pathway that contributes to the pathogenesis of older HIRI, providing insight into the clinical translation of strategies related to the demethylase activity of FTO to improve graft function after older donor liver transplantation.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Coenzima A Ligases , Ferroptose , Fígado , Receptores da Transferrina , Traumatismo por Reperfusão , Regulação para Cima , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Animais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Ferroptose/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Masculino , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Camundongos Endogâmicos C57BL , Humanos , Transplante de Fígado , Estabilidade de RNA/genética , Antígenos CD
6.
Sci Rep ; 14(1): 12978, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839927

RESUMO

Diabetic cardiomyopathy is a specific type of cardiomyopathy. In DCM, glucose uptake and utilization are impaired due to insulin deficiency or resistance, and the heart relies more heavily on fatty acid oxidation for energy, resulting in myocardial lipid toxicity-related injury. MARK4 is a member of the AMPK-related kinase family, and improves ischaemic heart failure through microtubule detyrosination. However, the role of MARK4 in cardiac regulation of metabolism is unclear. In this study, after successful establishment of a diabetic cardiomyopathy model induced by streptozotocin and a high-fat diet, MARK4 expression was found to be significantly increased in STZ-induced DCM mice. After AAV9-shMARK4 was administered through the tail vein, decreased expression of MARK4 alleviated diabetic myocardial damage, reduced oxidative stress and apoptosis, and facilitated cardiomyocyte mitochondrial fusion, and promoted myocardial lipid oxidation metabolism. In addition, through the RNA-seq analysis of differentially expressed genes, we found that MARK4 deficiency promoted lipid decomposition and oxidative metabolism by downregulating the expression of ACSL4, thus reducing myocardial lipid accumulation in the STZ-induced DCM model.


Assuntos
Coenzima A Ligases , Cardiomiopatias Diabéticas , Metabolismo dos Lipídeos , Miocárdio , Animais , Masculino , Camundongos , Apoptose , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/etiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estreptozocina
7.
Biomolecules ; 14(6)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38927115

RESUMO

Resveratrol, a phenylpropanoid compound, exhibits diverse pharmacological properties, making it a valuable candidate for health and disease management. However, the demand for resveratrol exceeds the capacity of plant extraction methods, necessitating alternative production strategies. Microbial synthesis offers several advantages over plant-based approaches and presents a promising alternative. Yarrowia lipolytica stands out among microbial hosts due to its safe nature, abundant acetyl-CoA and malonyl-CoA availability, and robust pentose phosphate pathway. This study aimed to engineer Y. lipolytica for resveratrol production. The resveratrol biosynthetic pathway was integrated into Y. lipolytica by adding genes encoding tyrosine ammonia lyase from Rhodotorula glutinis, 4-coumarate CoA ligase from Nicotiana tabacum, and stilbene synthase from Vitis vinifera. This resulted in the production of 14.3 mg/L resveratrol. A combination of endogenous and exogenous malonyl-CoA biosynthetic modules was introduced to enhance malonyl-CoA availability. This included genes encoding acetyl-CoA carboxylase 2 from Arabidopsis thaliana, malonyl-CoA synthase, and a malonate transporter protein from Bradyrhizobium diazoefficiens. These strategies increased resveratrol production to 51.8 mg/L. The further optimization of fermentation conditions and the utilization of sucrose as an effective carbon source in YP media enhanced the resveratrol concentration to 141 mg/L in flask fermentation. By combining these strategies, we achieved a titer of 400 mg/L resveratrol in a controlled fed-batch bioreactor. These findings demonstrate the efficacy of Y. lipolytica as a platform for the de novo production of resveratrol and highlight the importance of metabolic engineering, enhancing malonyl-CoA availability, and media optimization for improved resveratrol production.


Assuntos
Engenharia Metabólica , Resveratrol , Sacarose , Yarrowia , Resveratrol/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Engenharia Metabólica/métodos , Sacarose/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Vitis/microbiologia , Vitis/genética , Vitis/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Malonil Coenzima A/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia , Rhodotorula/genética , Rhodotorula/metabolismo , Fermentação , Arabidopsis/genética , Arabidopsis/metabolismo , Amônia-Liases , Proteínas de Bactérias
8.
Nat Commun ; 15(1): 5115, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879607

RESUMO

Neurofibromatosis Type II (NFII) is a genetic condition caused by loss of the NF2 gene, resulting in activation of the YAP/TAZ pathway and recurrent Schwann cell tumors, as well as meningiomas and ependymomas. Unfortunately, few pharmacological options are available for NFII. Here, we undertake a genome-wide CRISPR/Cas9 screen to search for synthetic-lethal genes that, when inhibited, cause death of NF2 mutant Schwann cells but not NF2 wildtype cells. We identify ACSL3 and G6PD as two synthetic-lethal partners for NF2, both involved in lipid biogenesis and cellular redox. We find that NF2 mutant Schwann cells are more oxidized than control cells, in part due to reduced expression of genes involved in NADPH generation such as ME1. Since G6PD and ME1 redundantly generate cytosolic NADPH, lack of either one is compatible with cell viability, but not down-regulation of both. Since genetic deficiency for G6PD is tolerated in the human population, G6PD could be a good pharmacological target for NFII.


Assuntos
Sistemas CRISPR-Cas , Coenzima A Ligases , Glucosefosfato Desidrogenase , Neurofibromina 2 , Células de Schwann , Mutações Sintéticas Letais , Células de Schwann/metabolismo , Humanos , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/genética , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Animais , Neurofibromatose 2/metabolismo , Neurofibromatose 2/genética , NADP/metabolismo , Camundongos , Oxirredução
9.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906101

RESUMO

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Assuntos
Gametogênese , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Coenzima A Ligases/metabolismo , Microscopia Crioeletrônica , Citoplasma/metabolismo , Tomografia com Microscopia Eletrônica , Meiose , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporos Fúngicos/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína
10.
Sci Rep ; 14(1): 14095, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890389

RESUMO

Lipid metabolism is an important part of the heart's energy supply. The expression pattern and molecular mechanism of lipid metabolism-related genes (LMRGs) in acute myocardial infarction (AMI) are still unclear, and the link between lipid metabolism and immunity is far from being elucidated. In this study, 23 Common differentially expressed LMRGs were discovered in the AMI-related mRNA microarray datasets GSE61144 and GSE60993. These genes were mainly related to "leukotriene production involved in inflammatory response", "lipoxygenase pathway", "metabolic pathways", and "regulation of lipolysis in adipocytes" pathways. 12 LMRGs (ACSL1, ADCY4, ALOX5, ALOX5AP, CCL5, CEBPB, CEBPD, CREB5, GAB2, PISD, RARRES3, and ZNF467) were significantly differentially expressed in the validation dataset GSE62646 with their AUC > 0.7 except for ALOX5AP (AUC = 0.699). Immune infiltration analysis and Pearson correlation analysis explored the immune characteristics of AMI, as well as the relationship between these identified LMRGs and immune response. Lastly, the up-regulation of ACSL1, ALOX5AP, CEBPB, and GAB2 was confirmed in the mouse AMI model. Taken together, LMRGs ACSL1, ALOX5AP, CEBPB, and GAB2 are significantly upregulated in AMI patients' blood, peripheral blood of AMI mice, myocardial tissue of AMI mice, and therefore might be new potential biomarkers for AMI.


Assuntos
Metabolismo dos Lipídeos , Infarto do Miocárdio , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Metabolismo dos Lipídeos/genética , Humanos , Proteínas Ativadoras de 5-Lipoxigenase/genética , Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Perfilação da Expressão Gênica , Animais , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Regulação da Expressão Gênica , Camundongos , Masculino , Coenzima A Ligases
11.
Redox Biol ; 74: 103194, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852200

RESUMO

Elevated lactate levels are a significant biomarker of sepsis and are positively associated with sepsis-related mortality. Sepsis-associated lung injury (ALI) is a leading cause of poor prognosis in clinical patients. However, the underlying mechanisms of lactate's involvement in sepsis-associated ALI remain unclear. In this study, we demonstrate that lactate regulates N6-methyladenosine (m6A) modification levels by facilitating p300-mediated H3K18la binding to the METTL3 promoter site. The METTL3-mediated m6A modification is enriched in ACSL4, and its mRNA stability is regulated through a YTHDC1-dependent pathway. Furthermore, short-term lactate stimulation upregulates ACSL4, which promotes mitochondria-associated ferroptosis. Inhibition of METTL3 through knockdown or targeted inhibition effectively suppresses septic hyper-lactate-induced ferroptosis in alveolar epithelial cells and mitigates lung injury in septic mice. Our findings suggest that lactate induces ferroptosis via the GPR81/H3K18la/METTL3/ACSL4 axis in alveolar epithelial cells during sepsis-associated ALI. These results reveal a histone lactylation-driven mechanism inducing ferroptosis through METTL3-mediated m6A modification. Targeting METTL3 represents a promising therapeutic strategy for patients with sepsis-associated ALI.


Assuntos
Coenzima A Ligases , Ferroptose , Metiltransferases , Sepse , Metiltransferases/metabolismo , Metiltransferases/genética , Animais , Sepse/metabolismo , Sepse/complicações , Camundongos , Humanos , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Lesão Pulmonar/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Lesão Pulmonar/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/genética , Masculino , Modelos Animais de Doenças , Ácido Láctico/metabolismo
12.
Eur J Pharmacol ; 977: 176710, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843947

RESUMO

OBJECTIVE: Tetramethylpyrazine (TMP) has been demonstrated to alleviate neuronal ferroptosis following spinal cord injury (SCI), thereby promoting neural repair. However, the precise underlying mechanisms remain elusive. METHODS: The SCI model was established using a modified version of Allen's method. TMP (40, 80, 120, and 160 mg/kg) and ras-selective lethal 3 (RSL3) (5 mg/kg) were administered intraperitoneally once daily for 7 days. HE and Nissl staining were employed to examine histomorphology and neurons, respectively. Perls staining was used to identify the distribution of iron. A transmission electron microscope was used to observe the microcosmic morphology of mitochondria. Immunofluorescence staining and Western blot were used to analyze neuronal nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP) surrounding injury sites. Additionally, glutathione peroxidase 4 (GPX4)/NeuN + cells and acyl-CoA synthetase long-chain family member 4 (ACSL4)/NeuN + cells were observed. RT-qPCR was conducted to examine the mRNA expression levels of GPX4 and ACSL4. ELISA were used to quantify the concentrations of GPX4, reactive oxygen species (ROS), L-glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and tissue iron. RESULTS: TMP had an inhibitory effect on the concentrations of tissue iron, ROS, GSH, MDA, and SOD. TMP improved the microcosmic morphology of mitochondria and increased GPX4 level while decreasing that of ACSL4. TMP reduced lesion sizes, enhanced neuronal survival, and inhibited glial scar formation. However, the effect of TMP can be effectively reversed by RSL3. CONCLUSION: TMP alleviates neuronal ferroptosis by regulating the GPX4/ACSL4 axis, thereby protecting the remaining neurons surrounding injury sites and reducing glial scar formation.


Assuntos
Coenzima A Ligases , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Pirazinas , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Ferroptose/efeitos dos fármacos , Animais , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Recuperação de Função Fisiológica/efeitos dos fármacos , Masculino , Modelos Animais de Doenças , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
13.
Neurochem Res ; 49(8): 2131-2147, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38822984

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) develops in 30-70% of hospitalized patients with sepsis. In intensive care units (ICUs), propofol is often administered to ensure an appropriate level of sedation in mechanically ventilated patients. Ferroptosis is a newly identified mode of cellular death characterized by the peroxidation of membrane lipids and excessive iron. This study was conducted to explore the interplay between propofol, sepsis, and ferroptosis. METHODS: An acute systemic inflammatory model was constructed via the intraperitoneal administration of lipopolysaccharide (LPS). Nissl and Fluoro-Jade C (FJC) staining were employed to display neuronal damage and degeneration. Western blotting and immunofluorescence (IF) staining of Bax and Bcl-2 were used to confirm the neural apoptosis. QPCR of cytokines and DHE staining were used to indicate neuroinflammation. To validate ferroptosis, we assessed the content of malondialdehyde (MDA), GSH, and tissue iron, accompanied by transcription level of CHAC1, PTGS2 and GPX4. Additionally, we examined the content of acyl-CoA synthetase long-chain family member 4 (ACSL4), xCT (SLC7A11, solute carrier family 7 member 11), and glutathione peroxidase 4 (GPX4). The IF staining of Iba1-labeled microglia and GFAP-marked astrocytes were used to measure the gliosis. Erastin was pre-pretreated to confirm the anti-ferroptotic capability of propofol. ML385 was preconditioned to explore the role of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in propofol-repressed ferroptosis. RESULTS: Propofol dose-dependently inhibited the decrease of Nissl-positive neurons and the increase of FJC-stained neurons in septic hippocampus and cortex. Neural cytokines, oxidative stress, apoptosis and gliosis were reduced by propofol. Propofol repressed the level of MDA, iron, CHAC1, PTGS2, ACLS4 and restored the content of GSH, GPX4, xCT, Nrf2 and HO-1, thus inhibiting sepsis-induced ferroptosis. All protections from propofol could be reversed by eratsin and ML385 pretreatment. CONCLUSION: Propofol protected against sepsis-induced brain damage, neuroinflammation, neuronal apoptosis and gliosis through the activation of the Nrf2/HO-1 axis to combat ferroptosis.


Assuntos
Ferroptose , Fator 2 Relacionado a NF-E2 , Propofol , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Propofol/farmacologia , Propofol/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Lipopolissacarídeos , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/prevenção & controle , Heme Oxigenase-1/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Proteínas de Membrana/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/tratamento farmacológico , Coenzima A Ligases , Sistema y+ de Transporte de Aminoácidos
14.
Plant Cell Rep ; 43(7): 179, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913159

RESUMO

KEY MESSAGE: DzMYB2 functions as an MYB activator, while DzMYB3 acts as an MYB repressor. They bind to promoters, interact with DzbHLH1, and influence phenolic contents, revealing their roles in phenylpropanoid regulation in durian pulps. Durian fruit has a high nutritional value attributed to its enriched bioactive compounds, including phenolics, carotenoids, and vitamins. While various transcription factors (TFs) regulate phenylpropanoid biosynthesis, MYB (v-myb avian myeloblastosis viral oncogene homolog) TFs have emerged as pivotal players in regulating key genes within this pathway. This study aimed to identify additional candidate MYB TFs from the transcriptome database of the Monthong cultivar at five developmental/postharvest ripening stages. Candidate transcriptional activators were discerned among MYBs upregulated during the ripe stage based on the positive correlation observed between flavonoid biosynthetic genes and flavonoid contents in ripe durian pulps. Conversely, MYBs downregulated during the ripe stage were considered candidate repressors. This study focused on a candidate MYB activator (DzMYB2) and a candidate MYB repressor (DzMYB3) for functional characterization. LC-MS/MS analysis using Nicotiana benthamiana leaves transiently expressing DzMYB2 revealed increased phenolic compound contents compared with those in leaves expressing green fluorescence protein controls, while those transiently expressing DzMYB3 showed decreased phenolic compound contents. Furthermore, it was demonstrated that DzMYB2 controls phenylpropanoid biosynthesis in durian by regulating the promoters of various biosynthetic genes, including phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR). Meanwhile, DzMYB3 regulates the promoters of PAL, 4-coumaroyl-CoA ligase (4CL), CHS, and CHI, resulting in the activation and repression of gene expression. Moreover, it was discovered that DzMYB2 and DzMYB3 could bind to another TF, DzbHLH1, in the regulation of flavonoid biosynthesis. These findings enhance our understanding of the pivotal role of MYB proteins in regulating the phenylpropanoid pathway in durian pulps.


Assuntos
Flavonoides , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Flavonoides/metabolismo , Flavonoides/biossíntese , Aciltransferases/genética , Aciltransferases/metabolismo , Propanóis/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Fenóis/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo
15.
Ecotoxicol Environ Saf ; 280: 116553, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850699

RESUMO

The incidence of nonalcoholic steatohepatitis (NASH) is related with perfluorooctane sulfonate (PFOS), yet the mechanism remains ill-defined. Mounting evidence suggests that ferroptosis plays a crucial role in the initiation of NASH. In this study, we used mice and human hepatocytes L-02 to investigate the role of ferroptosis in PFOS-induced NASH and the effect and molecular mechanism of PFOS on liver ferroptosis. We found here that PFOS caused NASH in mice, and lipid accumulation and inflammatory response in the L-02 cells. PFOS induced hepatic ferroptosis in vivo and in vitro, as evidenced by the decrease in glutathione peroxidase 4 (GPX4), and the increases in cytosolic iron, acyl-CoA synthetase long-chain family member 4 (ACSL4) and lipid peroxidation. In the PFOS-treated cells, the increases in the inflammatory factors and lipid contents were reversed by ferroptosis inhibitor. PFOS-induced ferroptosis was relieved by autophagy inhibitor. The expression of mitochondrial calcium uniporter (MCU) was accelerated by PFOS, leading to subsequent mitochondrial calcium accumulation, and inhibiting autophagy reversed the increase in MCU. Inhibiting mitochondrial calcium reversed the variations in GPX4 and cytosolic iron, without influencing the change in ACSL4, induced by PFOS. MCU interacted with ACSL4 and the siRNA against MCU reversed the changes in ACSL4,GPX4 and cytosolic iron systemically. This study put forward the involvement of hepatic ferroptosis in PFOS-induced NASH and identified MCU as the mediator of the autophagy-dependent ferroptosis.


Assuntos
Ácidos Alcanossulfônicos , Autofagia , Cálcio , Coenzima A Ligases , Ferroptose , Fluorocarbonos , Hepatopatia Gordurosa não Alcoólica , Ferroptose/efeitos dos fármacos , Fluorocarbonos/toxicidade , Animais , Ácidos Alcanossulfônicos/toxicidade , Camundongos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/patologia , Autofagia/efeitos dos fármacos , Coenzima A Ligases/metabolismo , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular , Hepatócitos/efeitos dos fármacos
16.
Crit Rev Eukaryot Gene Expr ; 34(5): 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38842200

RESUMO

SIAH2 function as an oncogene in various cancer. However, the roles of SIAH2 in hepatocellular carcinoma (HCC) are still unknown. This study aimed to investigate the roles of SIAH2 in HCC. Immunohistochemistry was used determine SIAH2 and ACSL4 expression in clinical samples. RT-qPCR was used to determine mRNA expression. Western blot assay was applied for determining protein expression. Ubiquitination assay was conducted for determining ubiquitination of ACSL4. Xenograft experiment was applied for determining tumor growth. Flow cytometry was applied to determine the functions of CD4+ and CD8+ T cells. SIAH2 expression was overexpressed in HCC tumors. High levels of SIAH2 predicted poor outcomes. However, SIAH2 knockdown promoted the proliferation of CD8+ T cells as well as promoted the ferroptosis of tumor cells, inhibiting tumor growth in HCC. ACSL4 is required for CD8+ T cell-mediated ferroptosis of HCC cells. However, SIAH2 induced ubiquitination of ACSL4 and inhibited its expression. SIAH2 specific inhibitor menadione promoted the immune checkpoint blockade. Taken together, SIAH2-mediated inactivation of CD8+ T cells inhibits the ferroptosis of HCC via mediating ubiquitination of ACSL4. Therefore, targeting SIAH2 may be a promising strategy for HCC.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Coenzima A Ligases , Neoplasias Hepáticas , Ubiquitina-Proteína Ligases , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Animais , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Linhagem Celular Tumoral , Ubiquitinação , Masculino , Feminino , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
17.
BMC Plant Biol ; 24(1): 481, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816698

RESUMO

BACKGROUND: LACS (long-chain acyl-CoA synthetase) genes are widespread in organisms and have multiple functions in plants, especially in lipid metabolism. However, the origin and evolutionary dynamics of the LACS gene family remain largely unknown. RESULTS: Here, we identified 1785 LACS genes in the genomes of 166 diverse plant species and identified the clades (I, II, III, IV, V, VI) of six clades for the LACS gene family of green plants through phylogenetic analysis. Based on the evolutionary history of plant lineages, we found differences in the origins of different clades, with Clade IV originating from chlorophytes and representing the origin of LACS genes in green plants. The structural characteristics of different clades indicate that clade IV is relatively independent, while the relationships between clades (I, II, III) and clades (V, VI) are closer. Dispersed duplication (DSD) and transposed duplication (TRD) are the main forces driving the evolution of plant LACS genes. Network clustering analysis further grouped all LACS genes into six main clusters, with genes within each cluster showing significant co-linearity. Ka/Ks results suggest that LACS family genes underwent purifying selection during evolution. We analyzed the phylogenetic relationships and characteristics of six clades of the LACS gene family to explain the origin, evolutionary history, and phylogenetic relationships of different clades and proposed a hypothetical evolutionary model for the LACS family of genes in plants. CONCLUSIONS: Our research provides genome-wide insights into the evolutionary history of the LACS gene family in green plants. These insights lay an important foundation for comprehensive functional characterization in future research.


Assuntos
Coenzima A Ligases , Evolução Molecular , Família Multigênica , Filogenia , Plantas , Coenzima A Ligases/genética , Plantas/genética , Plantas/classificação , Proteínas de Plantas/genética , Genes de Plantas , Genoma de Planta , Duplicação Gênica
18.
Cell Metab ; 36(7): 1598-1618.e11, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38772364

RESUMO

Circadian disruption predicts poor cancer prognosis, yet how circadian disruption is sensed in sleep-deficiency (SD)-enhanced tumorigenesis remains obscure. Here, we show fatty acid oxidation (FAO) as a circadian sensor relaying from clock disruption to oncogenic metabolic signal in SD-enhanced lung tumorigenesis. Both unbiased transcriptomic and metabolomic analyses reveal that FAO senses SD-induced circadian disruption, as illustrated by continuously increased palmitoyl-coenzyme A (PA-CoA) catalyzed by long-chain fatty acyl-CoA synthetase 1 (ACSL1). Mechanistically, SD-dysregulated CLOCK hypertransactivates ACSL1 to produce PA-CoA, which facilitates CLOCK-Cys194 S-palmitoylation in a ZDHHC5-dependent manner. This positive transcription-palmitoylation feedback loop prevents ubiquitin-proteasomal degradation of CLOCK, causing FAO-sensed circadian disruption to maintain SD-enhanced cancer stemness. Intriguingly, timed ß-endorphin resets rhythmic Clock and Acsl1 expression to alleviate SD-enhanced tumorigenesis. Sleep quality and serum ß-endorphin are negatively associated with both cancer development and CLOCK/ACSL1 expression in patients with cancer, suggesting dawn-supplemented ß-endorphin as a potential chronotherapeutic strategy for SD-related cancer.


Assuntos
Carcinogênese , Ritmo Circadiano , Coenzima A Ligases , Ácidos Graxos , Oxirredução , Ácidos Graxos/metabolismo , Humanos , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Camundongos , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Privação do Sono/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética
19.
BMC Plant Biol ; 24(1): 392, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735932

RESUMO

BACKGROUND: Long-chain acyl-coenzyme A synthetase (LACS) is a type of acylating enzyme with AMP-binding, playing an important role in the growth, development, and stress response processes of plants. RESULTS: The research team identified different numbers of LACS in four cotton species (Gossypium hirsutum, Gossypium barbadense, Gossypium raimondii, and Gossypium arboreum). By analyzing the structure and evolutionary characteristics of the LACS, the GhLACS were divided into six subgroups, and a chromosome distribution map of the family members was drawn, providing a basis for further research classification and positioning. Promoter cis-acting element analysis showed that most GhLACS contain plant hormones (GA, MeJA) or non-biological stress-related cis-elements. The expression patterns of GhLACS under salt stress treatment were analyzed, and the results showed that GhLACS may significantly participate in salt stress response through different mechanisms. The research team selected 12 GhLACSs responsive to salt stress for tissue expression analysis and found that these genes are expressed in different tissues. CONCLUSIONS: There is a certain diversity of LACS among different cotton species. Analysis of promoter cis-acting elements suggests that GhLACS may be involved in regulating plant growth, development and stress response processes. GhLACS25 was selected for in-depth study, which confirmed its significant role in salt stress response through virus-induced gene silencing (VIGS) and induced expression in yeast cells.


Assuntos
Gossypium , Proteínas de Plantas , Estresse Salino , Gossypium/genética , Gossypium/fisiologia , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Família Multigênica , Filogenia , Regiões Promotoras Genéticas/genética , Genoma de Planta , Genes de Plantas
20.
Phytomedicine ; 130: 155701, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38788392

RESUMO

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) refers to brain tissue injury caused by the temporary interruption of cerebral blood flow ischemia followed by the restoration of reperfusion, which is the main cause of post-stroke brain injury. A traditional Chinese herbal preparation called Tongqiao Huoxue Decoction (TQHX) has shown promise in reducing CIRI in rats. However, the mechanism of this herbal preparation for CIRI remains unclear. PURPOSE: This study aimed to evaluate the therapeutic effect of TQHX extract on rats with CIRI and to further explore the underlying mechanisms. METHODS: The active ingredients of TQHX extract were quantified by the high-performance liquid chromatography (HPLC) condition. We conducted thorough investigations to assess the effects of TQHX on CIRI and ferroptosis using oxygen-glucose deprivation/reperfusion (OGD/R)-treated PC12 cells as an in vitro model and transient middle cerebral artery occlusion (tMCAO) animals as an in vivo model. The neurological score assessment was performed to evaluate the neuroprotective effects of TQHX extract on tMCAO rats. Using histologic methods to study the extent of cerebral infarction, blood-brain barrier, and rat brain tissue. We examined the impact of TQHX on ferroptosis-related markers of Fe2+, superoxide dismutase (SOD), reactive oxygen species (ROS), and malondialdehyde (MDA) in the brain tissue. In addition, the expression of key proteins and markers of ferroptosis, as well as key factors associated with Acyl-CoA synthetase long-chain family member 4 (ACSL4) were detected by Western blot and quantitative real-time PCR (RT-qPCR). RESULTS: TQHX extract could decrease the Longa score and extent of cerebral infarction of tMCAO rats, which exerted the function of neuroprotection. Additionally, TQHX treatment efficiently decreased levels of MDA and ROS while increasing the expression of SOD and ferroptosis-related proteins including ferritin heavy chain 1 (FTH1) and glutathione peroxidase 4 (GPX4) at the transcription and translation level. Meanwhile, TQHX provided strong protection against oxidative stress and ferritin accumulation by increasing the ubiquitination and degradation of ACSL4. The injection of OE-ACSL4 reversed the effects of TQHX on neuroprotection and ferroptosis inhibition in PC12 cells. The injection of shACSL4 reversely validate the crucial role of ACSL4 in CIRI rat treatment. CONCLUSION: This work shows that TQHX promotes the ubiquitination-mediated degradation of ACSL4, which improves oxidative stress and inhibits the beginning of ferroptosis in cells. TQHX provides a possible path for additional research in CIRI therapies, advancing translational investigations.


Assuntos
Coenzima A Ligases , Medicamentos de Ervas Chinesas , Ferroptose , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Masculino , Ratos , Isquemia Encefálica/tratamento farmacológico , Coenzima A Ligases/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Ferroptose/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...