Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125689

RESUMO

Our study explores the role of cancer-derived extracellular exosomes (EXs), particularly focusing on collagen alpha-3 (VI; COL6A3), in facilitating tumor dissemination and metastasis in epithelial ovarian cancer (EOC). We found that COL6A3 is expressed in aggressive ES2 derivatives, SKOV3 overexpressing COL6A3 (SKOV3/COL6A3), and mesenchymal-type ovarian carcinoma stromal progenitor cells (MSC-OCSPCs), as well as their EXs, but not in less aggressive SKOV3 cells or ES2 cells with COL6A3 knockdown (ES2/shCOL6A3). High COL6A3 expression correlates with worse overall survival among EOC patients, as evidenced by TCGA and GEO data analysis. In vitro experiments showed that EXs from MSC-OCSPCs or SKOV3/COL6A3 cells significantly enhance invasion ability in ES2 or SKOV3/COL6A3 cells, respectively (both, p <0.001). In contrast, ES2 cells with ES2/shCOL6A3 EXs exhibited reduced invasion ability (p < 0.001). In vivo, the average disseminated tumor numbers in the peritoneal cavity were significantly greater in mice receiving intraperitoneally injected SKOV3/COL6A3 cells than in SKOV3 cells (p < 0.001). Furthermore, mice intravenously (IV) injected with SKOV3/COL6A3 cells and SKOV3/COL6A3-EXs showed increased lung colonization compared to mice injected with SKOV3 cells and PBS (p = 0.007) or SKOV3/COL6A3 cells and PBS (p = 0.039). Knockdown of COL6A3 or treatment with EX inhibitor GW4869 or rapamycin-abolished COL6A3-EXs may suppress the aggressiveness of EOC.


Assuntos
Carcinoma Epitelial do Ovário , Colágeno Tipo VI , Exossomos , Neoplasias Ovarianas , Exossomos/metabolismo , Exossomos/genética , Feminino , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Humanos , Colágeno Tipo VI/metabolismo , Colágeno Tipo VI/genética , Animais , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Camundongos , Linhagem Celular Tumoral , Metástase Neoplásica , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Movimento Celular
2.
Exp Neurol ; 380: 114911, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094767

RESUMO

Collagen VI (Col-VI) is an extracellular matrix protein primarily known for its bridging role in connective tissues that has been suggested to play a neuroprotective role. In the present study we report increased mRNA and protein expression of Col-VI in the hippocampus and cortex at a late stage of epileptogenesis in a post-status epilepticus (SE) model of epilepsy and in brain tissue from patients with epilepsy. We further present a novel finding that exposure of mouse hippocampal slices to Col-VI augments paired-pulse facilitation in Schaffer collateral-CA1 excitatory synapses indicating decreased release probability of glutamate. In line with this finding, lack of Col-VI expression in the knock-out mice show paired-pulse depression in these synapses, suggesting increased release probability of glutamate. In addition, we observed dynamic changes in Col-VI blood plasma levels in rats after Kainate-induced SE, and increased levels of Col-VI mRNA and protein in autopsy or postmortem brain of humans suffering from epilepsy. Thus, our data indicate that elevated levels of ColVI following seizures leads to attenuated glutamatergic transmission, ultimately resulting in less overall network excitability. Presumably, increased Col-VI may act as part of endogenous compensatory mechanism against enhanced excitability during epileptogenic processes in the hippocampus, and could be further investigated as a potential functional biomarker of epileptogenesis, and/or a novel target for therapeutic intervention.


Assuntos
Colágeno Tipo VI , Camundongos Knockout , Convulsões , Transmissão Sináptica , Animais , Camundongos , Transmissão Sináptica/fisiologia , Masculino , Ratos , Convulsões/metabolismo , Convulsões/fisiopatologia , Convulsões/induzido quimicamente , Humanos , Colágeno Tipo VI/metabolismo , Colágeno Tipo VI/genética , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Feminino , Ratos Sprague-Dawley , Potenciais Pós-Sinápticos Excitadores/fisiologia , Modelos Animais de Doenças , Ácido Caínico/toxicidade
4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000224

RESUMO

Pericytes are a distinct type of cells interacting with endothelial cells in blood vessels and contributing to endothelial barrier integrity. Furthermore, pericytes show mesenchymal stem cell properties. Muscle-derived pericytes can demonstrate both angiogenic and myogenic capabilities. It is well known that regenerative abilities and muscle stem cell potential decline during aging, leading to sarcopenia. Therefore, this study aimed to investigate the potential of pericytes in supporting muscle differentiation and angiogenesis in elderly individuals and in patients affected by Ullrich congenital muscular dystrophy or by Bethlem myopathy, two inherited conditions caused by mutations in collagen VI genes and sharing similarities with the progressive skeletal muscle changes observed during aging. The study characterized pericytes from different age groups and from individuals with collagen VI deficiency by mass spectrometry-based proteomic and bioinformatic analyses. The findings revealed that aged pericytes display metabolic changes comparable to those seen in aging skeletal muscle, as well as a decline in their stem potential, reduced protein synthesis, and alterations in focal adhesion and contractility, pointing to a decrease in their ability to form blood vessels. Strikingly, pericytes from young patients with collagen VI deficiency showed similar characteristics to aged pericytes, but were found to still handle oxidative stress effectively together with an enhanced angiogenic capacity.


Assuntos
Colágeno Tipo VI , Pericitos , Proteoma , Humanos , Pericitos/metabolismo , Colágeno Tipo VI/metabolismo , Colágeno Tipo VI/genética , Proteoma/metabolismo , Células Cultivadas , Adulto , Pessoa de Meia-Idade , Idoso , Envelhecimento/metabolismo , Proteômica/métodos , Masculino , Feminino , Estresse Oxidativo , Diferenciação Celular
5.
CNS Neurosci Ther ; 30(6): e14802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887185

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most aggressive primary brain malignancy. Novel therapeutic modalities like tumor electric field therapy (TEFT) have shown promise, but underlying mechanisms remain unclear. The extracellular matrix (ECM) is implicated in GBM progression, warranting investigation into TEFT-ECM interplay. METHODS: T98G cells were treated with TEFT (200 kHz, 2.2 V/m) for 72 h. Collagen type VI alpha 1 (COL6A1) was identified as hub gene via comprehensive bioinformatic analysis based on RNA sequencing (RNA-seq) and public glioma datasets. TEFT intervention models were established using T98G and Ln229 cell lines. Pre-TEFT and post-TEFT GBM tissues were collected for further validation. Focal adhesion pathway activity was assessed by western blot. Functional partners of COL6A1 were identified and validated by co-localization and survival analysis. RESULTS: TEFT altered ECM-related gene expression in T98G cells, including the hub gene COL6A1. COL6A1 was upregulated in GBM and associated with poor prognosis. Muti-database GBM single-cell analysis revealed high-COL6A1 expression predominantly in malignant cell subpopulations. Differential expression and functional enrichment analyses suggested COL6A1 might be involved in ECM organization and focal adhesion. Western blot (WB), immunofluorescence (IF), and co-immunoprecipitation (Co-IP) experiments revealed that TEFT significantly inhibited expression of COL6A1, hindering its interaction with ITGA5, consequently suppressing the FAK/Paxillin/AKT pathway activity. These results suggested that TEFT might exert its antitumor effects by downregulating COL6A1 and thereby inhibiting the activity of the focal adhesion pathway. CONCLUSION: TEFT could remodel the ECM of GBM cells by downregulating COL6A1 expression and inhibiting focal adhesion pathway. COL6A1 could interact with ITGA5 and activate the focal adhesion pathway, suggesting that it might be a potential therapeutic target mediating the antitumor effects of TEFT.


Assuntos
Neoplasias Encefálicas , Colágeno Tipo VI , Terapia por Estimulação Elétrica , Glioblastoma , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Terapia por Estimulação Elétrica/métodos , Linhagem Celular Tumoral , Animais , Camundongos Nus , Camundongos
6.
Front Immunol ; 15: 1309447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855105

RESUMO

Introduction: Lupus nephritis (LN), a severe complication of systemic lupus erythematosus (SLE), presents significant challenges in patient management and treatment outcomes. The identification of novel LN-related biomarkers and therapeutic targets is critical to enhancing treatment outcomes and prognosis for patients. Methods: In this study, we analyzed single-cell expression data from LN (n=21) and healthy controls (n=3). A total of 143 differentially expressed genes were identified between the LN and control groups. Then, proteomics analysis of LN patients (n=9) and control (SLE patients without LN, n=11) revealed 55 differentially expressed genes among patients with LN and control group. We further utilizes protein-protein interaction network and functional enrichment analyses to elucidate the pivotal role of COL6A3 in key signaling pathways. Its diagnostic value is evaluate through its correlation with disease progression and renal function metrics, as well as Receiver Operating Characteristic Curve (ROC) analysis. Additionally, immunohistochemistry and qPCR experiments were performed to validate the expression of COL6A3 in LN. Results: By comparison of single-cell and proteomics data, we discovered that COL6A3 is significantly upregulated, highlighting it as a critical biomarker of LN. Our findings emphasize the substantial involvement of COL6A3 in the pathogenesis of LN, particularly noting its expression in mesangial cells. Through comprehensive protein-protein interaction network and functional enrichment analyses, we uncovered the pivotal role of COL6A3 in key signaling pathways including integrin-mediated signaling pathways, collagen-activated signaling pathways, and ECM-receptor interaction, suggesting potential therapeutic targets. The diagnostic utility is confirmed by its correlation with disease progression and renal function metrics of the glomerular filtration rate. ROC analysis further validates the diagnostic value of COL6A3, with the area under the ROC values of 0.879 in the in-house cohort, and 0.802 and 0.915 in tubular and glomerular external cohort samples, respectively. Furthermore, immunohistochemistry and qPCR experiments were consistent with those obtained from the single-cell RNA sequencing and proteomics studies. Discussion: These results proved that COL6A3 is a promising biomarker and therapeutic target, advancing personalized medicine strategies for LN.


Assuntos
Biomarcadores , Colágeno Tipo VI , Nefrite Lúpica , Proteômica , Análise de Célula Única , Humanos , Nefrite Lúpica/genética , Nefrite Lúpica/metabolismo , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Proteômica/métodos , Feminino , Adulto , Masculino , Transcriptoma , Mapas de Interação de Proteínas , Perfilação da Expressão Gênica
7.
J Cell Physiol ; 239(8): e31326, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38860406

RESUMO

Recent studies have shed light on disrupted collagen signaling in Gliomas, yet the regulatory landscape remains largely unexplored. This study enquired into the role of polycomb repressive complex-2 (PRC2)-mediated H3K27me3 modification, a key epigenetic factor in glioma. Using in-house data, we identified miRNAs downregulated in glioblastoma (GBM) with the potential to regulate Collagen VI family genes. Notably, miR-3189 emerged as a prime PRC2 target. Its expression was significantly downregulated in Indian GBM patients as well as other glioma cohorts. Mechanistic insights, involving Luciferase assays, mutagenesis, and Western blot analysis, confirmed direct targeting of Collagen VI member COL6A2 by miR-3189-3p. Functional assays demonstrated that miR-3189-3p restrained GBM malignancy by inhibiting proliferation, migration, and epithelial-mesenchymal transition (EMT). Conversely, COL6A2 overexpressed in GBM patients, countered miR-3189, and promoted the malignant phenotype. Gene set enrichment analysis highlighted EMT enrichment in GBM patients with elevated COL6A2 expression, carrying prognostic implications. This study uncovers intricate interactions between two epigenetic regulators-H3K27me3 and miR-3189-working synergistically to modulate Collagen VI gene; thus, influencing the malignancy of GBM. Targeting this H3K27me3|miR-3189-3p|COL6A2 axis presents a potential therapeutic avenue against GBM.


Assuntos
Movimento Celular , Proliferação de Células , Colágeno Tipo VI , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Glioblastoma , MicroRNAs , Complexo Repressor Polycomb 2 , Humanos , Transição Epitelial-Mesenquimal/genética , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Epigênese Genética/genética
8.
Matrix Biol ; 132: 1-9, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38871093

RESUMO

Fibrosis, driven by fibroblast activities, is an important contributor to morbidity and mortality in most chronic diseases. Endotrophin, a signaling molecule derived from processing of type VI collagen by highly activated fibroblasts, is involved in fibrotic tissue remodeling. Circulating levels of endotrophin have been associated with an increased risk of mortality in multiple chronic diseases. We conducted a systematic literature review collecting evidence from original papers published between 2012 and January 2023 that reported associations between circulating endotrophin (PROC6) and mortality. Cohorts with data available to the study authors were included in an Individual Patient Data (IPD) meta-analysis that evaluated the association of PROC6 with mortality (PROSPERO registration number: CRD42023340215) after adjustment for age, sex and BMI, where available. In the IPD meta-analysis including sixteen cohorts of patients with different non-communicable chronic diseases (NCCDs) (N = 15,205) the estimated summary hazard ratio for 3-years all-cause mortality was 2.10 (95 % CI 1.75-2.52) for a 2-fold increase in PROC6, with some heterogeneity observed between the studies (I2=70 %). This meta-analysis is the first study documenting that fibroblast activities, as quantified by circulating endotrophin, are independently associated with mortality across a broad range of NCCDs. This indicates that, irrespective of disease, interstitial tissue remodeling, and consequently fibroblast activities, has a central role in adverse clinical outcomes, and should be considered with urgency from drug developers as a target to treat.


Assuntos
Biomarcadores , Humanos , Doença Crônica , Biomarcadores/sangue , Colágeno Tipo VI/sangue , Colágeno Tipo VI/metabolismo , Colágeno Tipo VI/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Fragmentos de Peptídeos
9.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L304-L318, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38915286

RESUMO

Extracellular matrix (ECM) remodeling has been implicated in the irreversible obstruction of airways and destruction of alveolar tissue in chronic obstructive pulmonary disease (COPD). Studies investigating differences in the lung ECM in COPD have mainly focused on some collagens and elastin, leaving an array of ECM components unexplored. We investigated the differences in the ECM landscape comparing severe-early onset (SEO)-COPD and moderate COPD to control lung tissue for collagen type I α chain 1 (COL1A1), collagen type VI α chain 1 (COL6A1); collagen type VI α chain 2 (COL6A2), collagen type XIV α chain 1 (COL14A1), fibulin 2 and 5 (FBLN2 and FBLN5), latent transforming growth factor ß binding protein 4 (LTBP4), lumican (LUM), versican (VCAN), decorin (DCN), and elastin (ELN) using image analysis and statistical modeling. Percentage area and/or mean intensity of expression of LUM in the parenchyma, and COL1A1, FBLN2, LTBP4, DCN, and VCAN in the airway walls, was proportionally lower in COPD compared to controls. Lowered levels of most ECM proteins were associated with decreasing forced expiratory volume in 1 s (FEV1) measurements, indicating a relationship with disease severity. Furthermore, we identified six unique ECM signatures where LUM and COL6A1 in parenchyma and COL1A1, FBLN5, DCN, and VCAN in airway walls appear essential in reflecting the presence and severity of COPD. These signatures emphasize the need to examine groups of proteins to represent an overall difference in the ECM landscape in COPD that are more likely to be related to functional effects than individual proteins. Our study revealed differences in the lung ECM landscape between control and COPD and between SEO and moderate COPD signifying distinct pathological processes in the different subgroups.NEW & NOTEWORTHY Our study identified chronic obstructive pulmonary disease (COPD)-associated differences in the lung extracellular matrix (ECM) composition. We highlight the compartmental differences in the ECM landscape in different subtypes of COPD. The most prominent differences were observed for severe-early onset COPD. Moreover, we identified unique ECM signatures that describe airway walls and parenchyma providing insight into the intertwined nature and complexity of ECM changes in COPD that together drive ECM remodeling and may contribute to disease pathogenesis.


Assuntos
Decorina , Elastina , Proteínas da Matriz Extracelular , Matriz Extracelular , Pulmão , Doença Pulmonar Obstrutiva Crônica , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Pulmão/metabolismo , Pulmão/patologia , Feminino , Proteínas da Matriz Extracelular/metabolismo , Elastina/metabolismo , Decorina/metabolismo , Idoso , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Versicanas/metabolismo , Proteínas de Ligação a TGF-beta Latente/metabolismo , Proteínas de Ligação a TGF-beta Latente/genética , Lumicana/metabolismo , Colágeno Tipo I/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Índice de Gravidade de Doença , Colágeno Tipo VI/metabolismo
11.
Sci Rep ; 14(1): 11753, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783078

RESUMO

Exploring the mechanism of breast cancer metastasis and searching for new drug therapeutic targets are still the focuses of current research. RNA-binding proteins (RBPs) may affect breast cancer metastasis by regulating alternative splicing (AS) during epithelial-mesenchymal transition (EMT). We hypothesised that during EMT development in breast cancer cells, the expression level of RBPs and the gene AS pattern in the cell were significantly changed on a genome-wide scale. Using GEO database, this study identified differentially expressed RBPs and differential AS events at different stages of EMT in breast cancer cells. By establishing the correlation network of differential RBPs and differential AS events, we found that RBM47, PCBP3, FRG1, SRP72, RBMS3 and other RBPs may regulate the AS of ITGA6, ADGRE5, TNC, COL6A3 and other cell adhesion genes. By further analysing above EMT-related RBPs and AS in breast cancer tissues in TCGA, it was found that the expression levels of ADAT2, C2orf15, SRP72, PAICS, RBMS3, APOBEC3G, NOA1, ACO1 and the AS of TNC and COL6A3 were significantly correlated with the prognosis of breast cancer patients. The expression levels of all 8 RBPs were significantly different in breast cancer tissues without metastasis compared with normal breast tissues. Conclusively, eight RBPs such as RBMS3 and AS of TNC and COL6A3 could be used as predictors of breast cancer prognosis. These findings need to be further explored as possible targets for breast cancer treatment.


Assuntos
Processamento Alternativo , Neoplasias da Mama , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Feminino , Linhagem Celular Tumoral , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Perfilação da Expressão Gênica
12.
J Clin Invest ; 134(11)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652549

RESUMO

CD8+ T cell dysfunction impedes antitumor immunity in solid cancers, but the underlying mechanisms are diverse and poorly understood. Extracellular matrix (ECM) composition has been linked to impaired T cell migration and enhanced tumor progression; however, impacts of individual ECM molecules on T cell function in the tumor microenvironment (TME) are only beginning to be elucidated. Upstream regulators of aberrant ECM deposition and organization in solid tumors are equally ill-defined. Therefore, we investigated how ECM composition modulates CD8+ T cell function in undifferentiated pleomorphic sarcoma (UPS), an immunologically active desmoplastic tumor. Using an autochthonous murine model of UPS and data from multiple human patient cohorts, we discovered a multifaceted mechanism wherein the transcriptional coactivator YAP1 promotes collagen VI (COLVI) deposition in the UPS TME. In turn, COLVI induces CD8+ T cell dysfunction and immune evasion by remodeling fibrillar collagen and inhibiting T cell autophagic flux. Unexpectedly, collagen I (COLI) opposed COLVI in this setting, promoting CD8+ T cell function and acting as a tumor suppressor. Thus, CD8+ T cell responses in sarcoma depend on oncogene-mediated ECM composition and remodeling.


Assuntos
Linfócitos T CD8-Positivos , Matriz Extracelular , Sarcoma , Microambiente Tumoral , Proteínas de Sinalização YAP , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Animais , Microambiente Tumoral/imunologia , Camundongos , Proteínas de Sinalização YAP/imunologia , Proteínas de Sinalização YAP/genética , Humanos , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Sarcoma/imunologia , Sarcoma/patologia , Sarcoma/genética , Sarcoma/metabolismo , Colágeno Tipo VI/genética , Colágeno Tipo VI/imunologia , Colágeno Tipo VI/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/imunologia , Oncogenes , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/imunologia
13.
Physiol Rep ; 12(8): e16015, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38653581

RESUMO

Adaptation of humans to challenging environmental conditions, such as extreme temperature, malnutrition, or hypoxia, is an interesting phenomenon for both basic and applied research. Identification of the genetic factors contributing to human adaptation to these conditions enhances our understanding of the underlying molecular and physiological mechanisms. In our study, we analyzed the exomes of 22 high altitude mountaineers to uncover genetic variants contributing to hypoxic adaptation. To our surprise, we identified two putative loss-of-function variants, rs1385101139 in RTEL1 and rs1002726737 in COL6A1 in two extremely high altitude (personal record of more than 8500 m) professional climbers. Both variants can be interpreted as pathogenic according to medical geneticists' guidelines, and are linked to inherited conditions involving respiratory failure (late-onset pulmonary fibrosis and severe Ullrich muscular dystrophy for rs1385101139 and rs1002726737, respectively). Our results suggest that a loss of gene function may act as an important factor of human adaptation, which is corroborated by previous reports in other human subjects.


Assuntos
Altitude , Colágeno Tipo VI , Insuficiência Respiratória , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença da Altitude/genética , Colágeno Tipo VI/genética , Sequenciamento do Exoma/métodos , Montanhismo , Insuficiência Respiratória/genética
14.
Mamm Genome ; 35(2): 122-134, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38523187

RESUMO

Pruritus is a common irritating sensation that provokes the desire to scratch. Environmental and genetic factors contribute to the onset of pruritus. Moreover, itch can become a major burden when it becomes chronic. Interestingly, the rare Collagen VI alpha 5 (COL6A5) gene variant p.Glu2272* has been identified in two families and an independent patient with chronic neuropathic itch. These patients showed reduced COL6A5 expression in skin and normal skin morphology. However, little progress has been made until now toward understanding the relationships between this mutation and chronic itch. Therefore, we developed the first mouse model that recapitulates COL6A5-p.Glu2272* mutation using the CRISPR-Cas technology and characterized this new mouse model. The mutant mRNA, measured by RT-ddPCR, was expressed at normal levels in dorsal root ganglia and was decreased in skin. The functional exploration showed effects of the mutation with some sex dysmorphology. Mutant mice had increased skin permeability. Elevated spontaneous scratching and grooming was detected in male and female mutants, with increased anxiety-like behavior in female mutants. These results suggest that the COL6A5-p.Glu2272* mutation found in patients contributes to chronic itch and induces in mice additional behavioral changes. The COL6A5-p.Glu2272* mouse model could elucidate the pathophysiological mechanisms underlying COL6A5 role in itch and help identify potential new therapeutic targets.


Assuntos
Colágeno Tipo VI , Modelos Animais de Doenças , Mutação , Prurido , Animais , Camundongos , Prurido/genética , Prurido/patologia , Feminino , Masculino , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Pele/patologia , Pele/metabolismo , Doença Crônica , Humanos , Sistemas CRISPR-Cas
15.
Cells ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474342

RESUMO

The pericellular matrix (PCM) is a specialized extracellular matrix that surrounds cells. Interactions with the PCM enable the cells to sense and respond to mechanical signals, triggering a proper adaptive response. Collagen VI is a component of muscle and tendon PCM. Mutations in collagen VI genes cause a distinctive group of inherited skeletal muscle diseases, and Ullrich congenital muscular dystrophy (UCMD) is the most severe form. In addition to muscle weakness, UCMD patients show structural and functional changes of the tendon PCM. In this study, we investigated whether PCM alterations due to collagen VI mutations affect the response of tendon fibroblasts to mechanical stimulation. By taking advantage of human tendon cultures obtained from unaffected donors and from UCMD patients, we analyzed the morphological and functional properties of cellular mechanosensors. We found that the length of the primary cilia of UCMD cells was longer than that of controls. Unlike controls, in UCMD cells, both cilia prevalence and length were not recovered after mechanical stimulation. Accordingly, under the same experimental conditions, the activation of the Hedgehog signaling pathway, which is related to cilia activity, was impaired in UCMD cells. Finally, UCMD tendon cells exposed to mechanical stimuli showed altered focal adhesions, as well as impaired activation of Akt, ERK1/2, p38MAPK, and mechanoresponsive genes downstream of YAP. By exploring the response to mechanical stimulation, for the first time, our findings uncover novel unreported mechanistic aspects of the physiopathology of UCMD-derived tendon fibroblasts and point at a role for collagen VI in the modulation of mechanotransduction in tendons.


Assuntos
Colágeno Tipo VI , Mecanotransdução Celular , Distrofias Musculares , Esclerose , Humanos , Colágeno Tipo VI/genética , Proteínas Hedgehog/metabolismo , Tendões/metabolismo , Fibroblastos/metabolismo
16.
Cancer Res ; 84(7): 977-993, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335278

RESUMO

Intratumoral hypoxia correlates with metastasis and poor survival in patients with sarcoma. Using an impedance sensing assay and a zebrafish intravital microinjection model, we demonstrated here that the hypoxia-inducible collagen-modifying enzyme lysyl hydroxylase PLOD2 and its substrate collagen type VI (COLVI) weaken the lung endothelial barrier and promote transendothelial migration. Mechanistically, hypoxia-induced PLOD2 in sarcoma cells modified COLVI, which was then secreted into the vasculature. Upon reaching the apical surface of lung endothelial cells, modified COLVI from tumor cells activated integrin ß1 (ITGß1). Furthermore, activated ITGß1 colocalized with Kindlin2, initiating their interaction with F-actin and prompting its polymerization. Polymerized F-actin disrupted endothelial adherens junctions and induced barrier dysfunction. Consistently, modified and secreted COLVI was required for the late stages of lung metastasis in vivo. Analysis of patient gene expression and survival data from The Cancer Genome Atlas (TCGA) revealed an association between the expression of both PLOD2 and COLVI and patient survival. Furthermore, high levels of COLVI were detected in surgically resected sarcoma metastases from patient lungs and in the blood of tumor-bearing mice. Together, these data identify a mechanism of sarcoma lung metastasis, revealing opportunities for therapeutic intervention. SIGNIFICANCE: Collagen type VI modified by hypoxia-induced PLOD2 is secreted by sarcoma cells and binds to integrin ß1 on endothelial cells to induce barrier dysfunction, which promotes sarcoma vascular dissemination and metastasis.


Assuntos
Neoplasias Pulmonares , Sarcoma , Humanos , Animais , Camundongos , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Células Endoteliais/metabolismo , Peixe-Zebra/metabolismo , Actinas , Integrina beta1 , Hipóxia , Sarcoma/metabolismo , Pulmão/patologia
17.
Mol Biol Rep ; 51(1): 206, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270688

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) have been widely recognized as a highly promising option for cell-based tissue engineering therapy targeting osteoporosis. However, the osteogenic differentiation of BMSCs is impeded by the limited viability and diminished capacity for bone formation within the osteoporotic microenvironment. METHODS: In this study, the COL6A3 gene was confirmed through an extensive analysis of the preceding single-cell sequencing database. The generation of an inflammatory microenvironment resembling osteoporotic cell transplantation was achieved by employing lipopolysaccharide (LPS). A lentivirus targeting the COL6A3 gene was constructed, and a Western blotting assay was used to measure the marker proteins of osteogenesis, adipogenesis, and mitophagy. Immunofluorescence was utilized to observe the colocalization of mitochondria and lysosomes. The apoptosis rate of each group was evaluated using the TUNEL assay, and the mitochondrial membrane potential was assessed using JC-1 staining. RESULTS: This investigation discovered that the impaired differentiation capacity and decreased viability of BMSCs within the inflammatory microenvironment were markedly ameliorated upon overexpression of the specific COL6A3 gene. Moreover, the administration of COL6A3 gene overexpression successfully mitigated the inhibitory impacts of LPS on mitophagy and the expression of inflammatory mediators, specifically inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in BMSCs. To clarify the underlying mechanism, the role of mitophagy during the differentiation of COL6A3 gene-modified BMSCs in the inflammatory microenvironment was evaluated using the mitophagy inhibitor Mdivi-1. CONCLUSIONS: In the context of lipopolysaccharide (LPS) stimulation, COL6A3 enhances the differentiation of BMSCs into osteogenic and adipogenic lineages through the promotion of mitophagy and the maintenance of mitochondrial health. Our findings may provide a novel therapeutic approach utilizing stem cells in the treatment of osteoporosis.


Assuntos
Colágeno Tipo VI , Células-Tronco Mesenquimais , Osteoporose , Lipopolissacarídeos/farmacologia , Mitofagia/genética , Osteogênese/genética
18.
Arthritis Res Ther ; 26(1): 3, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167226

RESUMO

OBJECTIVES: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation in multiple articular joints, causing pain, joint damage, and loss of joint function. Despite the successful development of disease-modifying therapies, the heterogeneity of RA means that a significant proportion of patients respond poorly to treatment. This highlights the need for personalized medicine and predictive biomarkers to optimize treatment efficacy, safety, and cost. This study aimed to explore the relationship between type VI collagen (Col VI) remodeling and clinical response to anti-IL-6 receptor treatment. METHODS: Type VI collagen degradation was quantified using the C6M biomarker, a fragment of type VI collagen degraded by MMPs. Longitudinal differences in average biomarker levels between placebo and treatment groups were estimated using linear mixed models. The predictive capacity of the marker based on change from baseline to 4 weeks was analyzed using logistic regression. RESULTS: Both 4 mg and 8 mg doses of Tocilizumab (TCZ) reduced serum C6M concentrations compared to the placebo. Furthermore, C6M levels were more reduced in patients responding to treatment compared to early non-responders. A lower early reduction in C6M was associated with reduced odds of ACR treatment response and lowered disease activity. CONCLUSION: These findings suggest that quantifying type VI collagen turnover may aid in identifying patients less likely to respond to treatment, indicating a new path towards optimizing patient care. Further studies are needed to validate these findings and explore the underlying mechanisms driving the observed relationships.


Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Colágeno Tipo VI , Artrite Reumatoide/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Resultado do Tratamento , Biomarcadores , Antirreumáticos/uso terapêutico
20.
Medicine (Baltimore) ; 102(49): e36398, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065855

RESUMO

RATIONALE: Mutations in the gene encoding type VI collagen cause Bethlem myopathy (MIM 158810) and Ullrich congenital muscular dystrophy (MIM 254090); 2 diseases previously recognized as completely independent, and have been increasingly recognized. However, collagen-related myopathy caused by intron variation in the COL6 gene is rarely reported in China. Ullrich congenital muscular dystrophy is an autosomal recessive disorder that leads to severe muscle weakness with early onset. Thus, children may never walk independently, with proximal joint contractures and significant hyperelastic distal joints, and have early respiratory failure. Therefore, timely diagnosis and treatment are important. We report a spontaneous mutation in the COL6A2 gene causing Ullrich congenital muscular dystrophy type 1 in a pediatric patient. PATIENT CONCERNS: A boy aged 4 years was unable to walk independently, could sit alone for a short time, and his motor development was delayed and had regressed after 1 year of age. He had a high palatal arch and a through palm with localized transverse lines running laterally from the palm. Electromyography showed an impaired neurogenic source, and whole-exon gene sequencing revealed a spontaneous heterozygous mutation in the COL6A2 gene (c.955-2A>G), which was determined to be a pathogenic mutation according to the American Guidelines of the College of Medical Genetics. DIAGNOSES: This child has a delayed motor development, high osprey arch and a through palm with localized transverse lines running laterally from the palm, and regression of motor development after the age of 1 year. Whole exon examination showed spontaneous mutation of the COL6A2 gene; thus, the child was diagnosed with UCMD type 1. INTERVENTIONS: At present, there is no special treatment for this disease, and treatment is mainly symptomatic and supportive. The child underwent home massage, rehabilitation training, oral folic acid tablets, vitamins and coenzyme Q10. OUTCOMES: During the subsequent follow-up period, the patient can now sit alone for a short period of time. LESSONS: We report a case of spontaneous mutation in the COL6A2 gene causing Ullrich congenital muscular dystrophy type 1 in a pediatric patient, expanding the phenotypic spectrum of the disease and enriching the human gene pool.


Assuntos
Contratura , Doenças Musculares , Distrofias Musculares , Masculino , Humanos , Criança , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Doenças Musculares/genética , Mutação , Colágeno Tipo VI/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...