Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.457
Filtrar
1.
J Ovarian Res ; 17(1): 148, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020390

RESUMO

Vitamin D3 plays a crucial role in female reproduction. As research progresses, the mechanisms of action of vitamin D3 on follicular development have been widely discussed. Firstly, key enzymes involved in the synthesis and metabolism of vitamin D3 have been discovered in the ovary, suggesting that vitamin D3 can be synthesized and metabolized locally within the ovary. Additionally, the detection of vitamin D3 receptors (VDR) in follicles suggests that vitamin D3 may exert its effects by binding specifically to these receptors during follicular development. Further research indicates that vitamin D3 promotes follicular growth by enhancing the development of granulosa cells (GCs) and oocytes. Currently, the mechanism of action of vitamin D3 in follicular development is becoming increasingly clear. Vitamin D3 promotes oocyte development by regulating molecules involved in meiotic arrest in oocytes. It also enhances granulosa cell proliferation by stimulating steroid hormone synthesis and cell cycle regulation. Additionally, vitamin D3 exerts anti-inflammatory effects by reducing oxidative stress and advanced glycation end-products (AGEs), mitigating the detrimental effects of inflammation on follicular development. These functions of vitamin D3 have clinical applications, such as in treating polycystic ovary syndrome (PCOS), improving female fertility, and enhancing outcomes in in vitro fertilization (IVF). This review summarizes the research progress on the role and mechanisms of vitamin D3 in follicular development and briefly summarizes its clinical applications.


Assuntos
Colecalciferol , Folículo Ovariano , Humanos , Feminino , Colecalciferol/metabolismo , Folículo Ovariano/metabolismo , Animais , Oócitos/metabolismo , Células da Granulosa/metabolismo , Receptores de Calcitriol/metabolismo
2.
Adv Protein Chem Struct Biol ; 142: 99-130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39059995

RESUMO

Vitamin D3 is a fat-soluble secosteroid predominantly synthesized in the skin or delivered with a diet. Nevertheless, recently it is considered more as a hormone than a vitamin due to its pleiotropic function within the organism ensured by widely distributed vitamin D receptors and metabolic enzymes. Besides the main role in calcium and phosphorus homeostasis, vitamin D3 was shown to regulate many cellular and metabolic processes in normal and cancerous tissues within the immune system, the cardiovascular system, the respiratory system and the endocrine system. The ovary is an important extraskeletal tissue of vitamin D3 action and local metabolism, indicating its role in the regulation of ovarian functions upon physiological and pathological conditions. This chapter reviews firstly the updated information about vitamin D3 metabolism and triggered intracellular pathways. Furthermore, the basic information about ovarian physiology and several aspects of vitamin D3 effects within the ovary are presented. Finally, the special attention is paid into possible mechanism of vitamin D3 action within ovarian pathologies such as premature ovarian failure, polycystic ovary syndrome, and ovarian cancer, considering its clinical application as alternative therapy.


Assuntos
Colecalciferol , Ovário , Humanos , Feminino , Colecalciferol/metabolismo , Ovário/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Animais , Receptores de Calcitriol/metabolismo , Síndrome do Ovário Policístico/metabolismo
3.
Sci Rep ; 14(1): 16997, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043847

RESUMO

Vitamin D3 is clinically used for the treatment of vitamin D3 deficiency or osteoporosis, partially because of its role in regulating phosphate (Pi) and calcium (Ca2+) homeostasis. The renal sodium-phosphate cotransporter 2a (Npt2a) plays an important role in Pi homeostasis; however, the role of vitamin D3 in hypophosphatemia has never been investigated. We administered vehicle or vitamin D3 to wild-type (WT) mice or hypophosphatemic Npt2a-/- mice. In contrast to WT mice, vitamin D3 treatment increased plasma Pi levels in Npt2a-/- mice, despite similar levels of reduced parathyroid hormone and increased fibroblast growth factor 23. Plasma Ca2+ was increased ~ twofold in both genotypes. Whereas WT mice were able to increase urinary Pi and Ca2+/creatinine ratios, in Npt2a-/- mice, Pi/creatinine was unchanged and Ca2+/creatinine drastically decreased, coinciding with the highest kidney Ca2+ content, highest plasma creatinine, and greatest amount of nephrocalcinosis. In Npt2a-/- mice, vitamin D3 treatment completely diminished Npt2c abundance, so that mice resembled Npt2a/c double knockout mice. Abundance of intestinal Npt2b and claudin-3 (tight junctions protein) were reduced in Npt2a-/- only, the latter might facilitate the increase in plasma Pi in Npt2a-/- mice. Npt2a might function as regulator between renal Ca2+ excretion and reabsorption in response to vitamin D3.


Assuntos
Cálcio , Colecalciferol , Homeostase , Camundongos Knockout , Fosfatos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa , Animais , Fosfatos/metabolismo , Cálcio/metabolismo , Homeostase/efeitos dos fármacos , Camundongos , Colecalciferol/farmacologia , Colecalciferol/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Rim/metabolismo , Rim/efeitos dos fármacos , Fator de Crescimento de Fibroblastos 23 , Hormônio Paratireóideo/metabolismo , Masculino , Hipofosfatemia/metabolismo , Hipofosfatemia/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb
4.
JCI Insight ; 9(15)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916957

RESUMO

The immune benefits of vitamin D3 supplementation beyond calcium and phosphate maintenance are highly clinically debated. Kidney expression of CYP27B1 is the source of endocrine, circulating 1,25(OH)2D3 (active form of vitamin D) that maintains serum calcium and phosphate. 1,25(OH)2D3 may also be made by the CYP27B1 enzyme in nonrenal cells, like immune cells, in a process driven by cellular availability of 25(OH)D3 and inflammation. Due to the endocrine nature of 1,25(OH)2D3 in circulation, it is difficult to discern between these 2 sources. We recently created a regulatory deletion model of Cyp27b1 (M1/M21-DIKO) where mice have normal inflammatory-regulated Cyp27b1 expression in nonrenal tissues (unlike global Cyp27b1-KO) but no expression within the kidney. Here, utilizing on-tissue chemical derivatization and matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI), we investigated the distribution of 1,25(OH)2D3 and 25(OH)D3 in the kidney, liver, spleen, and thymus. MALDI-MSI demonstrated increased 1,25(OH)2D3 in nonrenal tissues such as the spleen after vitamin D3 supplementation in M1/M21-DIKO mice. Additionally, from this, we found increased Il4 and decreased Tnfa in the spleen after vitamin D3 supplementation. Taken together, these data demonstrate nonrenal production of 1,25(OH)2D3 in vivo and provide a consequence of vitamin D3 supplementation and nonrenal 1,25(OH)2D3 production in cytokine changes.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase , Calcitriol , Rim , Camundongos Knockout , Animais , Calcitriol/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Camundongos , Rim/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Masculino , Colecalciferol/metabolismo , Inflamação/metabolismo , Feminino
5.
Nutrients ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732518

RESUMO

Vitamin D3 (VD3) is a steroid hormone that plays pivotal roles in pathophysiology, and 1,25(OH)2D3 is the most active form of VD3. In the current study, the crucial role of VD3 in maintaining energy homeostasis under short-term fasting conditions was investigated. Our results confirmed that glucose-depriving pathways were inhibited while glucose-producing pathways were strengthened in zebrafish after fasting for 24 or 48 h. Moreover, VD3 anabolism in zebrafish was significantly suppressed in a time-dependent manner under short-fasting conditions. After fasting for 24 or 48 h, zebrafish fed with VD3 displayed a higher gluconeogenesis level and lower glycolysis level in the liver, and the serum glucose was maintained at higher levels, compared to those fed without VD3. Additionally, VD3 augmented the expression of fatty acids (FAs) transporter cd36 and lipogenesis in the liver, while enhancing lipolysis in the dorsal muscle. Similar results were obtained in cyp2r1-/- zebrafish, in which VD3 metabolism is obstructed. Importantly, it was observed that VD3 induced the production of gut GLP-1, which is considered to possess a potent gluconeogenic function in zebrafish. Meanwhile, the gene expression of proprotein convertase subtilisin/kexin type 1 (pcsk1), a GLP-1 processing enzyme, was also induced in the intestine of short-term fasted zebrafish. Notably, gut microbiota and its metabolite acetate were involved in VD3-regulated pcsk1 expression and GLP-1 production under short-term fasting conditions. In summary, our study demonstrated that VD3 regulated GLP-1 production in zebrafish by influencing gut microbiota and its metabolite, contributing to energy homeostasis and ameliorating hypoglycemia under short-term fasting conditions.


Assuntos
Colecalciferol , Metabolismo Energético , Jejum , Homeostase , Peixe-Zebra , Animais , Colecalciferol/metabolismo , Colecalciferol/farmacologia , Fígado/metabolismo , Gluconeogênese , Microbioma Gastrointestinal/fisiologia , Glicemia/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/sangue
6.
Food Chem ; 451: 139507, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696940

RESUMO

In the domain of infant nutrition, optimizing the absorption of crucial nutrients such as vitamin D3 (VD3) is paramount. This study harnessed dynamic-high-pressure microfluidization (DHPM) on soybean protein isolate (SPI) to engineer SPI-VD3 nanoparticles for fortifying yogurt. Characterized by notable binding affinity (Ka = 0.166 × 105 L·mol-1) at 80 MPa and significant surface hydrophobicity (H0 = 3494), these nanoparticles demonstrated promising attributes through molecular simulations. During simulated infant digestion, the 80 MPa DHPM-treated nanoparticles showcased an impressive 74.4% VD3 bioaccessibility, delineating the pivotal roles of hydrophobicity, bioaccessibility, and micellization dynamics. Noteworthy was their traversal through the gastrointestinal tract, illuminating bile salts' crucial function in facilitating VD3 re-encapsulation, thereby mitigating crystallization and augmenting absorption. Moreover, DHPM treatment imparted enhancements in nanoparticle integrity and hydrophobic properties, consequently amplifying VD3 bioavailability. This investigation underscores the potential of SPI-VD3 nanoparticles in bolstering VD3 absorption, thereby furnishing invaluable insights for tailored infant nutrition formulations.


Assuntos
Disponibilidade Biológica , Colecalciferol , Digestão , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Soja , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Humanos , Colecalciferol/química , Colecalciferol/metabolismo , Lactente , Modelos Biológicos , Nanopartículas/química , Nanopartículas/metabolismo
7.
J Chem Inf Model ; 64(9): 3865-3873, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38598310

RESUMO

Previous experimental studies have shown that the isomerization reaction of previtamin D3 (PreD3) to vitamin D3 (VitD3) is accelerated 40-fold when it takes place within a ß-cyclodextrin dimer, in comparison to the reaction occurring in conventional isotropic solutions. In this study, we employ quantum mechanics-based molecular dynamics (MD) simulations and statistical multistructural variational transition state theory to unveil the origin of this acceleration. We find that the conformational landscape in the PreD3 isomerization is highly dependent on whether the system is encapsulated. In isotropic media, the triene moiety of the PreD3 exhibits a rich torsional flexibility. However, when encapsulated, such a flexibility is limited to a more confined conformational space. In both scenarios, our calculated rate constants are in close agreement with experimental results and allow us to identify the PreD3 flexibility restriction as the primary catalytic factor. These findings enhance our understanding of VitD3 isomerization and underscore the significance of MD and environmental factors in biochemical modeling.


Assuntos
Simulação de Dinâmica Molecular , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Catálise , Isomerismo , Vitamina D/química , Vitamina D/metabolismo , Teoria Quântica , Conformação Molecular , Colecalciferol/química , Colecalciferol/metabolismo
8.
Int J Biol Macromol ; 267(Pt 1): 131474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599429

RESUMO

Advanced glycation end products (AGEs) are produced non-enzymatically through the process of glycation. Increased AGEs production has been linked to several diseases including polycystic ovary syndrome (PCOS). PCOS contributes to the development of secondary comorbidities, such as diabetes, cardiovascular complications, infertility, etc. Consequently, research is going on AGEs-inhibiting phytochemicals for their potential to remediate and impede the progression of hyperglycaemia associated disorders. In this study human serum albumin is used as a model protein, as albumin is predominantly present in follicular fluid. This article focusses on the interaction and antiglycating potential of (-)-Epigallocatechin-3-gallate (EGCG) and vitamin D in combination using various techniques. The formation of the HSA-EGCG and HSA-vitamin D complex was confirmed by UV and fluorescence spectroscopy. Thermodynamic analysis verified the spontaneity of reaction, and presence of hydrogen bonds and van der Waals interactions. FRET confirms high possibility of energy transfer. Cumulative antiglycation resulted in almost 60 % prevention in AGEs formation, decreased alterations at lysine and arginine, and reduced protein carbonylation. Secondary and tertiary structural changes were analysed by circular dichroism, Raman spectroscopy and ANS binding assay. Type and size of aggregates were confirmed by Rayleigh and dynamic light scattering, ThT fluorescence, SEM and SDS-PAGE. Effect on cellular redox status, DNA integrity and cytotoxicity was analysed in lymphocytes using dichlorofluorescein (DCFH-DA), DAPI and MTT assay which depicted an enhancement in antioxidant level by cumulative treatment. These findings indicate that EGCG and vitamin D binds strongly to HSA and have antiglycation ability which enhances upon synergism.


Assuntos
Catequina , Catequina/análogos & derivados , Colecalciferol , Produtos Finais de Glicação Avançada , Ligação Proteica , Albumina Sérica Humana , Catequina/farmacologia , Catequina/química , Catequina/metabolismo , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Colecalciferol/farmacologia , Colecalciferol/metabolismo , Colecalciferol/química , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Simulação de Acoplamento Molecular , Termodinâmica , Simulação por Computador
9.
Int Immunopharmacol ; 132: 111856, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38537537

RESUMO

BACKGROUND AND AIMS: Inflammation and atherosclerosis (AS) are closely associated to Secreted Protein Acidic and Rich in Cysteine (SPARC) and its related factors. This study attempted to define the role and the potential mechanism of SPARC and its related factors in ameliorating hyperlipidemia and AS by aerobic exercise intervention. METHODS: The AS rat model was established with a high-fat diet plus vitamin D3 intraperitoneal injection. Treadmill exercises training (5 days/week at 14 m/min for 60 min/day) for 6 weeks was carried out for AS rat intervention method. Western blotting and qRT-PCR were used to analyze the mRNA and protein expression of SPARC and its related factors, respectively. H&E staining was applied to evaluate the morphological changes and inflammation damage. Von Kossa staining was used to measure the degree of vascular calcification. Fluorescence immunohistochemistry staining was used to detect the expression and distribution of SPARC signal molecules. RESULTS: SPARC was highly expressed and co-localization with the smooth muscle marker α-SMC in the AS rat. And its downstream factors, NF-κB, Caspase-1, IL-1ß and IL-18 were upregulated (P < 0.05 or P < 0.01), FNDC5 expression was downregulated in AS rat model. However, slight declined body weight, delayed AS progression, decreased hyperlipidemia and favorable morphology of skeletal muscle and blood vessels have been detected in AS rat with aerobic exercise intervention. Moreover, the expression of SPARC and its downstream factors were decreased (P < 0.05 or P < 0.01), while elevated the expression of FNDC5 (P < 0.01) was observed after aerobic exercise intervention. CONCLUSIONS: This study suggested that aerobic exercise ameliorated hyperlipidemia and AS by effectively inhibiting SPARC signal, and vascular smooth muscle cells may contribute greatly to the protection of AS.


Assuntos
Aterosclerose , Dieta Hiperlipídica , Osteonectina , Condicionamento Físico Animal , Ratos Sprague-Dawley , Animais , Osteonectina/metabolismo , Osteonectina/genética , Aterosclerose/terapia , Aterosclerose/metabolismo , Masculino , Ratos , Transdução de Sinais , Modelos Animais de Doenças , Hiperlipidemias/terapia , Hiperlipidemias/metabolismo , Colecalciferol/metabolismo
10.
Mol Neurobiol ; 61(9): 7211-7238, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38372958

RESUMO

Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.


Assuntos
Envelhecimento , Colecalciferol , Doenças do Sistema Nervoso , Humanos , Colecalciferol/metabolismo , Colecalciferol/sangue , Animais , Doenças do Sistema Nervoso/metabolismo , Envelhecimento/metabolismo
11.
Nutrients ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337700

RESUMO

The definition of "Vitamin D" encompasses a group of fat-soluble steroid compounds of different origins with similar chemical structures and the same biological effects. Vitamin D deficiency and/or a defect in the process of its synthesis or transport predispose individuals to several types of rickets. In addition to cholecalciferol, ergocalciferol, and vitamins D3 and D2, there are also active metabolites for the treatment of this condition which are commercially available. Calcitriol and aphacalcidiol are active metabolites that do not require the renal activation step, which is required with calcifediol, or hepatic activation. The purpose of this review is to summarize current approaches to the treatment of rickets for generalist physicians, focusing on the best vitamin D form to be used in each type, or, in the case of X-linked hypophosphatemic rickets (XLH), on both conventional and innovative monoclonal antibody treatments.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Raquitismo , Humanos , Vitamina D/uso terapêutico , Raquitismo/tratamento farmacológico , Raquitismo/metabolismo , Calcitriol/uso terapêutico , Colecalciferol/uso terapêutico , Colecalciferol/metabolismo , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/metabolismo , Vitaminas
12.
Aging Cell ; 23(4): e14093, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38287646

RESUMO

Vitamin D3 replacement in older insufficient adults significantly improves their antigen-specific varicella zoster virus (VZV) cutaneous immunity. However, the mechanisms involved in this enhancement of cutaneous immunity are not known. Here, we show for the first time that vitamin D3 blocks the senescence-associated secretory phenotype (SASP) production by senescent fibroblasts by partially inhibiting the p38 MAPK pathway. Furthermore, transcriptomic analysis of skin biopsies from older subjects after vitamin D3 supplementation shows that vitamin D3 inhibits the same inflammatory pathways in response to saline as the specific p38 inhibitor, losmapimod, which also enhances immunity in the skin of older subjects. Vitamin D3 supplementation therefore may enhance immunity during ageing in part by blocking p38 MAPK signalling and in turn inhibit SASP production from senescent cells in vivo.


Assuntos
Senescência Celular , Colecalciferol , Adulto , Humanos , Idoso , Senescência Celular/genética , Colecalciferol/farmacologia , Colecalciferol/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Envelhecimento , Fibroblastos/metabolismo , Mediadores da Inflamação/metabolismo , Imunidade
13.
Br Poult Sci ; 65(1): 71-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921562

RESUMO

1. Based on the hypothesis that 25-hydroxycholecalciferol (25-OH-D3) inclusion would optimise dietary mineral digestibility and ameliorate growth performance and bone mineralisation in available phosphorus (AvP) deficient-fed broilers, a trial was conducted to evaluate its effect on diets with different levels of AvP.2. Broilers aged 1-21 d were randomly assigned one of the eight treatments, consisting of four dietary levels of AvP (0.45%, 0.42%, 0.39%, and 0.36%) and with or without supplementation with 25-OH-D3 at 69 µg/kg of feed. All diets contained 100 µg/kg of vitamin D3 (cholecalciferol).3. The addition of 25-OH-D3 resulted in higher feed intake and body weight gain, and lower FCR (P < 0.05) compared to non-supplemented diets, whereas AvP levels had a quadratic effect only on feed intake. There were no interactions between treatment factors.4. Increasing AvP levels linearly reduced the ileal digestibility of Ca and P (P < 0.01) and supplementing 25-OH-D3 increased both Ca and P ileal digestibility (P < 0.05), without any interactions observed for ileal digestibility.5. There was an interaction, whereby 25-OH-D3 inclusion increased serum metabolites in broilers fed 0.36% to 0.42% AvP compared to the non-supplemented diets (P < 0.001), whereas, at 0.45% AvP, diets with or without 25-OH-D3 had similar results.6. The P content in bone linearly increased in line with AvP levels (P < 0.05) and supplementation of 25-OH-D3 increased ash bone content (P < 0.001).7. Broilers can benefit from 25-OH-D3 supplementation combined with cholecalciferol with regard to Ca and P utilisation and vitamin D status, allowing for a reduction of dietary AvP levels down to 0.36% without impairing growth performance or bone status.


Assuntos
Calcifediol , Fósforo na Dieta , Animais , Fósforo na Dieta/metabolismo , Suplementos Nutricionais , Galinhas , Colecalciferol/metabolismo , Vitamina D/metabolismo , Fósforo/metabolismo
14.
Poult Sci ; 103(2): 103209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052129

RESUMO

Maintenance of calcium and phosphorus homeostasis in laying hens is crucial for preservation of skeletal integrity and eggshell quality, though physiological regulation of these systems is incompletely defined. To investigate changes in mineral and vitamin D3 homeostasis during the 24-h egg formation cycle, 32-wk-old commercial laying hens were sampled at 1, 3, 4, 6, 7, 8, 12, 15, 18, 21, 23, and 24 h post-oviposition (HPOP; n ≥ 4). Ovum location and egg calcification stage were recorded, and blood chemistry, plasma vitamin D3 metabolites, circulating parathyroid hormone (PTH), and expression of genes mediating uptake and utilization of calcium and phosphorus were evaluated. Elevated levels of renal 25-hydroxylase from 12 to 23 HPOP suggest this tissue might play a role in vitamin D3 25-hydroxylation during eggshell calcification. In shell gland, retinoid-x-receptor gamma upregulation between 6 and 8 HPOP followed by subsequently increased vitamin D receptor indicate that vitamin D3 signaling is important for eggshell calcification. Increased expression of PTH, calcitonin, and fibroblast growth factor 23 (FGF23) receptors in the shell gland between 18 and 24 HPOP suggest elevated sensitivity to these hormones toward the end of eggshell calcification. Shell gland sodium-calcium exchanger 1 was upregulated between 4 and 7 HPOP and plasma membrane calcium ATPase 1 increased throughout eggshell calcification, suggesting the primary calcium transporter may differ according to eggshell calcification stage. Expression in shell gland further indicated that bicarbonate synthesis precedes transport, where genes peaked at 6 to 7 and 12 to 18 HPOP, respectively. Inorganic phosphorus transporter 1 (PiT-1) expression peaked in kidney between 12 and 15 HPOP, likely to excrete excess circulating phosphorus, and in shell gland between 18 and 21 HPOP. Upregulation of FGF23 receptors and PiT-1 during late eggshell calcification suggest shell gland phosphorus uptake is important at this time. Together, these findings identified potentially novel hormonal pathways involved in calcium and phosphorus homeostasis along with associated circadian patterns in gene expression that can be used to devise strategies aimed at improving eggshell and skeletal strength in laying hens.


Assuntos
Cálcio , Oviposição , Animais , Feminino , Cálcio/metabolismo , Oviposição/fisiologia , Fósforo/metabolismo , Galinhas/metabolismo , Colecalciferol/metabolismo , Hormônio Paratireóideo/metabolismo , Cálcio da Dieta/metabolismo , Homeostase , Casca de Ovo/fisiologia , Dieta , Ração Animal/análise
15.
Behav Brain Res ; 459: 114788, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38036263

RESUMO

Does it make a difference what we eat when it comes to our mental health? Food and nutrients are essential not only for human biology and physical appearance but also for mental and emotional well-being. There has been a significant increase in the favourable effects of dietary supplements in the treatment of depressive state in the latest days. Co-supplements which can be a great contribution in the management of depression from the future perspective and might help to reduce standard anti-depressant drug doses, which can be a strategic way to reduce the side effect of standard anti-depressants drugs. This study was designed to evaluate and compare the anti-depressant effects of cholecalciferol-D3 (V.D3), n-3 polyunsaturated fatty acid (PUFA), and a combination of V.D3 + n-3 PUFA with fluoxetine treatment in chronic unpredictable mild stress (CUMS) induced depression in the mice model. We established CUMS depressant mice model and treated CUMS mice with V.D3, n-3 PUFA, and a combination of V.D3 + n-3 PUFA with fluoxetine. Behavioral changes were measured by the forced swim and tail suspension test. Oxidative stress markers and anti-depressant activity were assessed through parameters such as superoxide dismutase, reduced glutathione, lipid peroxidation, and serum corticosterone levels. Additionally, we measured the levels of neurotransmitters dopamine and serotonin. CUMS induced mice displayed depressive-like behaviours. Moreover, cholecalciferol-D3, n-3 PUFA, and a combination of Cholecalciferol-D3 + n-3 PUFA with fluoxetine treatment attenuated the depressive-like behaviour in CUMS mice accompanied with suppression of oxidative stress markers by up-regulated the expression of an antioxidant signalling pathway. The results suggested that treatment of cholecalciferol-D3, n-3 PUFA, and a combination of Cholecalciferol-D3 + n-3 PUFA with fluoxetine significantly ameliorated depressive-like behaviours in CUMS induced depression in mice. To delve further into the implications of these findings, future studies could explore the specific molecular mechanisms underlying the observed effects on oxidative stress markers and the antioxidant signaling pathway. This could provide valuable insights into the potential of dietary supplements in the management of depression and help in reducing the reliance on conventional antidepressant medications, thus improving the overall quality of treatment for this prevalent mental health condition.


Assuntos
Depressão , Ácidos Graxos Ômega-3 , Camundongos , Humanos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Fluoxetina/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Colecalciferol/farmacologia , Colecalciferol/metabolismo , Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Comportamento Animal
16.
J Dairy Sci ; 107(4): 2346-2356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37944806

RESUMO

The objective of the present study was to evaluate the effect of 2 dosages of prepartum cholecalciferol injection on blood minerals, vitamin D metabolites, and milk production. Cows entering their second or greater lactation (n = 158) were randomly assigned to a control group (CON) or one of 2 treatment groups receiving either 6 × 106 IU (6VitD) or 12 × 106 IU (12VitD) cholecalciferol intramuscularly on d 275 ± 1.2 (SD) of gestation. Concentrations of serum total Ca (tCa), phosphate, and Mg were determined on 1, 2, 3, 5, 7, and 10 d in milk (DIM). For a subsample of 30 cows entering the third lactation (n = 10/group), these samples were analyzed for cholecalciferol, 25-hydroxycholecalciferol (25-OHD3), and 24,25-dihydroxycholecalciferol (24,25-[OH]2D3). In these cows, we also determined 1,25-dihydroxycholecalciferol (1,25-[OH]2D3), the biologically most active metabolite, on 1, 2, 3, and 5 DIM. Repeated measures ANOVA was performed to evaluate the effect of different dosages of cholecalciferol on blood minerals, vitamin D metabolites, and milk yield over the first 5 test days after calving. Binary outcomes such as retained placenta and metritis were analyzed using a chi-squared test. Although the 12VitD treatment increased tCa concentrations on 1, 2, and 3 DIM compared with CON, administration of 6VitD increased tCa concentrations only on 1 DIM. Compared with CON cows and 6VitD cows, 12VitD cows had greater serum phosphate concentration during the first 10 DIM. Furthermore, 6VitD cows had greater serum phosphate concentrations compared with CON cows. On the contrary, 12VitD cows had lower serum Mg concentrations during the first 10 DIM compared with CON and 6VitD cows. Cholecalciferol was increased by the treatment and decreased quickly until 10 DIM. In respect to 25-OHD3, the 6VitD treatment resulted in a 4.1-fold increase in comparison to the CON group, while a 6.5-fold increase was observed in 12VitD animals. The vitamin D metabolite 24,25-(OH)2D3 increased linearly with 25-OHD3 serum levels, resulting in the highest concentrations in the 12VitD group. An increase of 1,25-(OH)2D3 until 3 DIM was observed in all cows. However, this rise was most pronounced in the CON group. The incidence of retained placenta was 1.9%, 11.5%, and 29.6%, and that of metritis was 11.5%, 15.4%, and 31.5% for CON, 6VitD, and 12VitD cows, respectively. Although none of the treated cows exerted clinical signs of hypocalcemia, one cow in CON incurred clinical hypocalcemia. Cows of the 12VitD group had a lower milk yield over the first 5 monthly test days compared with the control and 6VitD group (42.2 ± 0.5, 42.0, ± 0.5 and 40.7 ± 0.5 kg for control cows, 6VitD cows and 12VitD cows, respectively). Although no negative side effects were observed in 6VitD cows, we do not recommend the general application of 6 × 106 IU cholecalciferol before calving as positive effects on calcium homeostasis were marginal and restricted to the first DIM. The present findings confirm that the application of 12 × 106 IU cholecalciferol negatively affected milk production on this farm.


Assuntos
Doenças dos Bovinos , Hipocalcemia , Placenta Retida , Gravidez , Feminino , Bovinos , Animais , Leite/metabolismo , Período Pós-Parto , Colecalciferol/metabolismo , Hipocalcemia/veterinária , Placenta Retida/veterinária , Lactação , Minerais/metabolismo , Vitamina D/metabolismo , Fosfatos , Dieta/veterinária , Doenças dos Bovinos/epidemiologia
17.
J Med Life ; 16(7): 1032-1040, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37900077

RESUMO

The pathogenesis of kidney damage involves complicated interactions between vascular endothelial and tubular cell destruction. Evidence has shown that vitamin D may have anti-inflammatory effects in several models of kidney damage. In this study, we evaluated the effects of synthetic vitamin D on levofloxacin-induced renal injury in rats. Forty-two white Albino rats were divided into six groups, with each group comprising seven rats. Group I served as the control (negative control) and received intraperitoneal injections of normal saline (0.5 ml) once daily for twenty-one days. Group II and Group III were treated with a single intraperitoneal dose of Levofloxacin (50 mg/kg/day) and (100 mg/kg/day), respectively, for 14 days (positive control groups). Group IV served as an additional negative control and received oral administration of vitamin D3 (500 IU/rat/day) for twenty-one days. In Group V, rats were orally administered vitamin D3 (500 IU/rat/day) for twenty-one days, and intraperitoneal injections of Levofloxacin (50 mg/kg/day) were administered on day 8 for 14 days. Group VI received oral vitamin D3 supplementation (500 IU/rat/day) for twenty-one days, followed by intraperitoneal injections of Levofloxacin (100 mg/kg/day) on day 8 for fourteen days. Blood samples were collected to measure creatinine, urea, malondialdehyde, glutathione reductase, and superoxide dismutase levels. Compared to the positive control group, vitamin D supplementation lowered creatinine, urea, and malondialdehyde levels, while increasing glutathione reductase and superoxide dismutase levels. Urea, creatinine, and malondialdehyde levels were significantly (p<0.05) higher in rats administered LFX 50mg and 100mg compared to rats given (LFX + vitamin D). The main findings of this study show that vitamin D reduces renal dysfunction, suggesting that vitamin D has antioxidant properties and may be used to prevent renal injury.


Assuntos
Nefropatias , Levofloxacino , Vitamina D , Animais , Ratos , Antioxidantes/farmacologia , Colecalciferol/metabolismo , Creatinina , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Glutationa Redutase/farmacologia , Rim , Levofloxacino/efeitos adversos , Levofloxacino/metabolismo , Malondialdeído , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Vitamina D/farmacologia
18.
Poult Sci ; 102(12): 103089, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852049

RESUMO

Keel bone fractures and osteoporosis are prevalent and damaging skeletal issues in the laying hen industry. There is a large interest in improving bone quality parameters to reduce or eliminate these conditions, thus improving bird welfare. Both essential fatty acids (EFA) and vitamin D can play a role in bone metabolism. The hypothesis of this study was that birds supplemented with lower n-6:n-3 EFA ratio or vitamin D would have improved bone properties compared to a control diet. A total of 3,520 Lohmann Brown-Lite pullets were used in this study. Pullets were housed on the floor from 0 to 17 wk of age and then moved to an aviary (17-52 wk of age). Starting at 12 wk of age, birds were split into diet treatments-control, flax, fish, or vitamin D diets with n-6:n-3 ratios of 6.750, 0.534, 0.534, and 6.750, respectively. Diets were formulated to be isonitrogenous and isocaloric. Basal vitamin D3 levels were formulated to be 2,760 IU/kg across all diets; for the vitamin D diet, the vitamin D3 level was increased to 5,520 IU/kg. Hens on fish and vitamin D diets had greater bone density, keel bone volume, digital bone mineral content, and keel condition compared to flax and control hens. Additionally, birds fed the vitamin D diet had the heaviest body weights compared to birds fed fish or control diets. Birds fed the flax and vitamin D diets had improved feather coverage across multiple body regions. Feeding an n-3 EFA- or vitamin D-enriched diet decreased mortality by 1.6 to 3.3% compared to the control. The fish and vitamin D diets generated mixed production performance. Compared to the other treatments, the vitamin D diet generated higher case weights but lower hen day percentage throughout the study. When compared to the other treatments, the fish diet had the lowest case weights but had a greater hen day percentage after 36 wk of age. Results indicate that a fish-based EFA and vitamin D supplementation show promise in improving skeletal health but require further investigation.


Assuntos
Galinhas , Ácidos Graxos Ômega-3 , Animais , Feminino , Galinhas/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Vitaminas/farmacologia , Vitaminas/metabolismo , Colecalciferol/farmacologia , Colecalciferol/metabolismo , Ração Animal/análise
19.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834080

RESUMO

Vitamin D3 is a pre-hormone that regulates hundreds of target genes and dozens of physiological functions, including calcium homeostasis and the activity of the immune system, via its metabolite 1,25-dihydroxyvitamin D3, which is a high-affinity ligand for the transcription factor vitamin D receptor. In this study, we took advantage of data from the VitDHiD vitamin D3 intervention trial (25 healthy individuals) indicating that 442 protein-coding genes were significantly (false discovery rate < 0.05) up- or downregulated in peripheral blood mononuclear cells one day after taking a vitamin D3 bolus. Since more than half of the encoded proteins had "signaling" assigned as a primary biological function, we evaluated their involvement in signal transduction cascades included in the KEGG (Kyoto Encyclopedia of Genes and Genomes) database and found 88 of the vitamin D targets contributing to 16 different pathways. Eight of the pathways show an approximately even contribution of up- and downregulated genes, suggesting that the actions of vitamin D stabilize homeostasis of the physiological processes driven by the respective signaling cascades. Interestingly, vitamin D target genes involved in the signaling pathways of hypoxia-inducible factor 1 (HIF1), tumor necrosis factor (TNF), mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NFκB) are primarily downregulated. This supports the observation that the physiological role of vitamin D in healthy individuals is to tone down certain processes rather than activate them. In conclusion, under in vivo conditions, vitamin D either alleviates the homeostasis of immune cells in healthy individuals or counteracts molecular responses to oxygen deprivation (HIF1), microbe infection (TNF), growth stimulation (MAPKs) and inflammation (NFκB).


Assuntos
Leucócitos Mononucleares , Vitamina D , Humanos , Leucócitos Mononucleares/metabolismo , Vitamina D/metabolismo , Vitaminas/metabolismo , Transdução de Sinais/genética , Receptores de Calcitriol/metabolismo , Colecalciferol/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Homeostase
20.
Eur J Immunol ; 53(10): e2350390, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37525585

RESUMO

Therapeutic strategies that enhance regulatory T (Treg) cell proliferation or suppressive function hold promise for the treatment of autoimmune and inflammatory diseases. We previously reported that the topical application of the vitamin D3 analog MC903 systemically expands Treg cells by stimulating the production of thymic stromal lymphopoietin (TSLP) from the skin. Using mice lacking TSLP receptor expression by dendritic cells (DCs), we hereby show that TSLP receptor signaling in DCs is required for this Treg expansion in vivo. Topical MC903 treatment of ear skin selectively increased the number of migratory DCs in skin-draining lymph nodes (LNs) and upregulated their expression of co-stimulatory molecules. Accordingly, DCs isolated from skin-draining LNs but not mesenteric LNs or spleen of MC903-treated mice showed an enhanced ability to promote Treg proliferation, which was driven by co-stimulatory signals through CD80/CD86 and OX40 ligand. Among the DC subsets in the skin-draining LNs of MC903-treated mice, migratory XCR1- CD11b+ type 2 and XCR1- CD11b- double negative conventional DCs promoted Treg expansion. Together, these data demonstrate that vitamin D3 stimulation of skin induces TSLP expression, which stimulates skin migratory DCs to expand Treg cells. Thus, topical MC903 treatment could represent a convenient strategy to treat inflammatory disorders by engaging this pathway.


Assuntos
Linfócitos T Reguladores , Linfopoietina do Estroma do Timo , Animais , Camundongos , Colecalciferol/metabolismo , Citocinas/metabolismo , Células Dendríticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...