Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
FASEB J ; 38(5): e23543, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466278

RESUMO

Collectin-11 (CL-11) is a pattern recognition molecule of the lectin pathway capable of interacting with collectin-10 (CL-10) and the MASPs to activate the complement cascade. Alternative splicing of the COLEC11 gene gives rise to two different isoforms found in serum (A and D). These isoforms vary in the length of their collagen-like region, which is involved in the stabilization of the trimeric subunit and the interaction with the MASPs. Here we aim at elucidating the biological differences of naturally occurring CL-11 isoforms A and D. We produced recombinant CL-11 as independent isoforms (CL-11A and CL-11D) and together with CL-10 (CL-10/11A, CL-10/11D). Both CL-11 isoforms associated with CL-10, but CL-11D did so to a lesser extent. CL-10/11 heterocomplexes were composed of trimeric subunits of CL-10 and CL-11, as opposed to CL-10 and CL-11 homotrimers. Heterocomplexes were more stable and migrated with higher apparent molecular weights. Immunoprecipitation of serum CL-11 and subsequent mass spectrometry analysis confirmed that native CL-11 circulates in the form of CL-10/11 heterocomplexes that associate with MASP-1, and MASP-3, but not necessarily MASP-2. Despite a shorter collagen region, CL-11D was capable to bind to the MASPs, suggesting that the missing exon 4 is not required for MASP association CL-11D had a reduced ligand binding compared to full-length CL-11A. Based on its reduced ability to oligomerize, form CL-10/11 heterocomplexes, and bind to ligands, we hypothesize that CL-11D may have a limited complement activation potential compared to full-length CL-11A.


Assuntos
Processamento Alternativo , Serina Proteases Associadas a Proteína de Ligação a Manose , Isoformas de Proteínas/genética , Colágeno , Colectinas/genética
2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473757

RESUMO

Collectin-K1 (CL-K1) is a multifunctional C-type lectin that has been identified as playing a crucial role in innate immunity. It can bind to carbohydrates on pathogens, leading to direct neutralization, agglutination, and/or opsonization, thereby inhibiting pathogenic infection. In this study, we investigated a homolog of CL-K1 (OnCL-K1) in Nile tilapia (Oreochromis niloticus) and its role in promoting the clearance of the pathogen Streptococcus agalactiae (S. agalactiae) and enhancing the antibacterial ability of the fish. Our analysis of bacterial load displayed that OnCL-K1 substantially reduced the amount of S. agalactiae in tissues of the liver, spleen, anterior kidney, and brain in Nile tilapia. Furthermore, examination of tissue sections revealed that OnCL-K1 effectively alleviated tissue damage and inflammatory response in the liver, anterior kidney, spleen, and brain tissue of tilapia following S. agalactiae infection. Additionally, OnCL-K1 was found to decrease the expression of the pro-inflammatory factor IL-6 and migration inhibitor MIF, while increasing the expression of anti-inflammatory factor IL-10 and chemokine IL-8 in the spleen, anterior kidney, and brain tissues of tilapia. Moreover, statistical analysis of survival rates demonstrated that OnCL-K1 significantly improved the survival rate of tilapia after infection, with a survival rate of 90%. Collectively, our findings suggest that OnCL-K1 plays a vital role in the innate immune defense of resisting bacterial infection in Nile tilapia. It promotes the removal of bacterial pathogens from the host, inhibits pathogen proliferation in vivo, reduces damage to host tissues caused by pathogens, and improves the survival rate of the host.


Assuntos
Ciclídeos , Infecções Estreptocócicas , Tilápia , Animais , Ciclídeos/metabolismo , Streptococcus agalactiae , Regulação da Expressão Gênica , Sequência de Aminoácidos , Tilápia/metabolismo , Colectinas/genética
3.
J Mol Med (Berl) ; 102(2): 273-284, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38153509

RESUMO

EN1 encodes a homeodomain-containing transcription factor and is a determinant of bone density and fracture. Previous powerful genome-wide association studies (GWASs) have identified multiple single-nucleotide polymorphisms (SNPs) near EN1 at 2q14.2 locus for osteoporosis, but the causal SNPs and functional mechanisms underlying these associations are poorly understood. The target genes regulated by the transcription factor EN1 are also unclear. In this study, we identified rs188303909, a functional CpG-SNP, as a causal SNP for osteoporosis at 2q14.2 through the integration of functional and epigenomic analyses. Functional experiments demonstrated that unmethylated rs188303909 acted as a strong allele-specific distal enhancer to regulate EN1 expression by modifying the binding of transcription factor E2F6, but rs188303909 methylation attenuated the active effect of E2F6 on EN1 expression. Importantly, transcription factor EN1 could differentially bind osteoporosis GWAS lead SNPs rs4869739-T and rs4355801-G to upregulate CCDC170 and COLEC10 expression, thus promoting bone formation. Our study provided a mechanistic insight into expression regulation of the osteoporosis susceptibility gene EN1, which could be a potential therapeutic target for osteoporosis precision medicine. KEY MESSAGES: CpG-SNP rs188303909 is a causal SNP at the osteoporosis susceptibility locus 2q14.2. Rs188303909 distally regulates EN1 expression by modulating DNA methylation and E2F6 binding. EN1 upregulates CCDC170 and COLEC10 expression through osteoporosis GWAS lead SNPs rs4869739 and rs4355801.


Assuntos
Osteoporose , Polimorfismo de Nucleotídeo Único , Humanos , Estudo de Associação Genômica Ampla , Metilação de DNA , Osteoporose/genética , Fatores de Transcrição/genética , Predisposição Genética para Doença , Colectinas/genética , Fator de Transcrição E2F6/genética , Proteínas de Homeodomínio/genética
4.
Kidney Int ; 105(3): 524-539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158182

RESUMO

The urinary tract is constantly exposed to microorganisms. Host defense mechanisms in protection from microbial colonization and development of urinary tract infections require better understanding to control kidney infection. Here we report that the lectin collectin 11 (CL-11), particularly kidney produced, has a pivotal role in host defense against uropathogen infection. CL-11 was found in mouse urine under normal and pathological conditions. Mice with global gene ablation of Colec11 had increased susceptibility to and severity of kidney and to an extent, bladder infection. Mice with kidney-specific Colec11 ablation exhibited a similar disease phenotype to that observed in global Colec11 deficient mice, indicating the importance of kidney produced CL-11 for protection against kidney and bladder infection. Conversely, intravesical or systemic administration of recombinant CL-11 reduced susceptibility to and severity of kidney and bladder infection. Mechanism analysis revealed that CL-11 can mediate several key innate defense mechanisms (agglutination, anti- adhesion, opsonophagocytosis), and limit local inflammatory responses to pathogens. Furthermore, CL-11-mediated innate defense mechanisms can act on clinically relevant microorganisms including multiple antibiotic resistant strains. CL-11 was detectable in eight of 24 urine samples from patients with urinary tract infections but not detectable in urine samples from ten healthy individuals. Thus, our findings demonstrate that CL-11 is a key factor of host defense mechanisms in kidney and bladder infection with therapeutic potential for human application.


Assuntos
Cistite , Infecções por Escherichia coli , Infecções Urinárias , Humanos , Camundongos , Animais , Bexiga Urinária , Rim , Colectinas/genética
5.
Fish Shellfish Immunol ; 140: 108972, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37488038

RESUMO

With the tremendous success of the artificial breeding of Hexagrammos otakii, the yield has been substantially improved. However, intensive farming often results in bacterial diseases; hence it is imperative to find new antimicrobial molecules. In the present study, we identified a homologous cDNA fragment of collectin-10 from H. otakii, designated as HoCL-10. The cDNA length is 899 bp, which contains an open reading frame (ORF) of 816 bp encoding a secreted protein with 272 amino acid residues. The peptide of HoCL-10 contains an N-terminal collagen domain, a neck region, and a C-terminal carbohydrate recognition domain. The qRT-PCR results revealed that HoCL-10 mRNA was highest expressed in the liver and skin and was significantly induced post-LPS stimulation. The sugar and bacteria binding assay suggested that the recombinant HoCL-10 (rHoCL-10) could recognize various pathogen-associated molecular patterns (PAMPs) and bacteria. For effect on cells, rHoCL-10 enhanced the phagocytosis and migration ability of the macrophage indicated using pro-phagocytosis assay and trans-well assay. To determine the role of HoCL-10 in the complement system, the interaction between HoCL-10 and mannose-binding lectin associated serine protease 1, 2 (MASP-1, 2) were analyzed and demonstrated using ELISA and Far-western. And in vivo, the concentration of membrane-attack complex (MAC) in fish plasma was significantly down-regulated post-injection with HoCL-10 antibody. Finally, the bacteria challenge experiment was performed, implying that HoCL-10 may assist the host in defending against microbial invasion. The findings suggest that HoCL-10 may play crucial roles in host defense against microorganisms, possibly through opsonizing pathogens and activating the complement system.


Assuntos
Infecções Bacterianas , Perciformes , Animais , DNA Complementar , Bactérias/genética , Ativação do Complemento , Perciformes/genética , Proteínas do Sistema Complemento , Carboidratos , Colectinas/genética
6.
Fish Shellfish Immunol ; 133: 108543, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669601

RESUMO

The collectin subfamily member 11 (Colec11), plays an important role in innate immunity as a pattern recognition molecule. In the present study, a colec11 homolog was identified and characterised from Qihe crucian carp, namely, Ca-colec11. The full-length cDNA of Ca-colec11 was composed of 1129 bp, with a 99 bp 5'-untranslated region (UTR), 816 bp open reading frame (ORF) encoding a 271-aa protein and 214 bp 3'-UTR with a polyadenylation signal sequence (aataaa) and a poly(A) tail. The deduced amino acid sequence of Ca-Colec11 contained a si gnal peptide, collagen domain, neck region and carbohydrate-recognition domain (CRD), which had four conserved cysteine residues (Cys170-Cys256 and Cys242-Cys264) and an EPN/WND motif required for carbohydrate-binding specificity. Tissue expression profile analysis by quantitative real-time polymerase chain reaction (RT-qPCR) showed that Ca-colec11 was ubiquitously distributed in the tested tissues and highly expressed in the liver. The gene expression levels of Ca-colec11 were evidently up-regulated in the liver, spleen, kidney and head kidney after infection with A. hydrophila and S. aureus. The recombinant Ca-Colec11 (rCa-Colec11) purified from Escherichia coli BL21 (DE3) could agglutinate A. hydrophila and S. aureus, and it possessed haemagglutination activity against rabbit erythrocytes, which was inhibited by various carbohydrates, including d-Mannose, N-Acetyl-d-mannosamine, l-Fucose, d-Glucose, N-Acetyl-d-glucosamine, d-Galactose, LPS and PGN. Furthermore, rCa-Colec11 could inhibit the growth of A. hydrophila and S. aureus. These findings collectively demonstrated that Ca-Colec11, as a PRR, could play a role in the immune defence of Qihe crucian carp.


Assuntos
Carpas , Carpa Dourada , Animais , Coelhos , Carpas/genética , Carpas/metabolismo , Staphylococcus aureus/metabolismo , Aeromonas hydrophila/genética , Sequência de Bases , Proteínas de Peixes/química , Colectinas/genética , Carboidratos , Imunidade Inata/genética , Filogenia
7.
Front Immunol ; 14: 1328658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38193083

RESUMO

The immune system starts to develop early in embryogenesis. However, at birth it is still immature and associated with high susceptibility to infection. Adaptation to extrauterine conditions requires a balance between colonization with normal flora and protection from pathogens. Infections, oxidative stress and invasive therapeutic procedures may lead to transient organ dysfunction or permanent damage and perhaps even death. Newborns are primarily protected by innate immune mechanisms. Collectins (mannose-binding lectin, collectin-10, collectin-11, collectin-12, surfactant protein A, surfactant protein D) and ficolins (ficolin-1, ficolin-2, ficolin-3) are oligomeric, collagen-related defence lectins, involved in innate immune response. In this review, we discuss the structure, specificity, genetics and role of collectins and ficolins in neonatal health and disease. Their clinical associations (protective or pathogenic influence) depend on a variety of variables, including genetic polymorphisms, gestational age, method of delivery, and maternal/environmental microflora.


Assuntos
Colectinas , Ficolinas , Recém-Nascido , Humanos , Colectinas/genética , Saúde do Lactente , Proteína A Associada a Surfactante Pulmonar , Proteína D Associada a Surfactante Pulmonar/genética
8.
Am J Med Genet A ; 188(10): 3110-3117, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35943032

RESUMO

Bi-allelic variants in COLEC11 and MASP1 have been associated with 3MC syndrome, a clinical entity made of up four rare autosomal recessive disorders: Carnevale, Mingarelli, Malpuech, and Michels syndromes, characterized by variable expression of facial dysmorphia, cleft lip/palate, postnatal growth deficiency, hearing loss, cognitive impairment, craniosynostosis, radioulnar synostosis, and genital and vesicorenal anomalies. More recently, bi-allelic variants in COLEC10 have been described to be associated with 3MC syndrome. Syndromic features seen in 3MC syndrome are thought to be due to disruption of the chemoattractant properties that influence neural crest cell migration. We identified nine individuals from five families of Ashkenazi Jewish descent with homozygosity of the c.311G > T (p.Gly104Val) variant in COLEC10 and phenotype consistent with 3MC syndrome. Carrier frequency was calculated among 52,278 individuals of Jewish descent. Testing revealed 400 carriers out of 39,750 individuals of Ashkenazi Jewish descent, giving a carrier frequency of 1 in 99 or 1.01%. Molecular protein modeling suggested that the p.Gly104Val substitution alters local conformation. The c.311G > T (p.Gly104Val) variant likely represents a founder variant, and homozygosity is associated with features of 3MC syndrome. 3MC syndrome should be in the differential diagnosis for individuals with short stature, radioulnar synostosis, cleft lip and cleft palate.


Assuntos
Anormalidades Múltiplas , Fenda Labial , Fissura Palatina , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Fenda Labial/diagnóstico , Fenda Labial/genética , Fissura Palatina/diagnóstico , Fissura Palatina/genética , Colectinas/genética , Humanos , Judeus/genética , Mutação , Fenótipo , Rádio (Anatomia)/anormalidades , Sinostose , Ulna/anormalidades
9.
Genet Med ; 24(8): 1653-1663, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35511137

RESUMO

PURPOSE: Emerging evidence suggest that infection-dependent hyperactivation of complement system (CS) may worsen COVID-19 outcome. We investigated the role of predicted high impact rare variants - referred as qualifying variants (QVs) - of CS genes in predisposing asymptomatic COVID-19 in elderly individuals, known to be more susceptible to severe disease. METHODS: Exploiting exome sequencing data and 56 CS genes, we performed a gene-based collapsing test between 164 asymptomatic subjects (aged ≥60 years) and 56,885 European individuals from the Genome Aggregation Database. We replicated this test comparing the same asymptomatic individuals with 147 hospitalized patients with COVID-19. RESULTS: We found an enrichment of QVs in 3 genes (MASP1, COLEC11, and COLEC10), which belong to the lectin pathway, in the asymptomatic cohort. Analyses of complement activity in serum showed decreased activity of lectin pathway in asymptomatic individuals with QVs. Finally, we found allelic variants associated with asymptomatic COVID-19 phenotype and with a decreased expression of MASP1, COLEC11, and COLEC10 in lung tissue. CONCLUSION: This study suggests that genetic rare variants can protect from severe COVID-19 by mitigating the activity of lectin pathway and prothrombin. The genetic data obtained through ES of 786 asymptomatic and 147 hospitalized individuals are publicly available at http://espocovid.ceinge.unina.it/.


Assuntos
COVID-19 , Idoso , COVID-19/genética , Colectinas/genética , Colectinas/metabolismo , Células Germinativas , Humanos , Lectinas/genética , SARS-CoV-2 , Sequenciamento do Exoma
10.
BMC Cancer ; 22(1): 380, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397600

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the third-most deadly cancer worldwide. More breakthroughs are needed in the clinical practice for liver cancer are needed, and new treatment strategies are required. This study aims to determine the significant differences in genes associated with LIHC and further analyze its prognostic value further. METHODS: Here, we used the TCGA-LIHC database and the profiles of GSE25097 from GEO to explore the differentially co-expressed genes in HCC tissues compared with paratumor (or healthy) tissues. Then, we utilized WGCNA to screen differentially co-expressed genes. Finally, we explored the function of FYN in HCC cells and xenograft tumor models. RESULTS: We identified ten hub genes in the protein-protein interaction (PPI) network, but only three (COLEC10, TGFBR3, and FYN) appeared closely related to the prognosis. The expression of FYN was positively correlated with the prognosis of HCC patients. The xenograft model showed that overexpression of FYN could significantly inhibit malignant tumor behaviors and promote tumor cell apoptosis. CONCLUSION: Thus, FYN may be central to the development of LIHC and maybe a novel biomarker for clinical diagnosis and treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-fyn , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Colectinas/genética , Colectinas/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Hepáticas/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-fyn/genética , Proto-Oncogenes
11.
Eur J Med Genet ; 64(12): 104374, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34740859

RESUMO

3MC syndrome is an autosomal recessive disorder encompassing four rare disorders previously known as the Malpuech, Michels, Mingarelli and Carnevale syndromes. They are characterized by a variable spectrum of abnormalities, including facial dysmorphisms, along with genital, limb and vesico-renal anomalies. The syndrome was originally attributed to mutations in MASP1 and COLEC11, which code for proteins involved in the lectin complement pathway. More recently, mutations in COLEC10, a third gene coding for collectin CL-L1, were identified in a limited number of patients with 3MC syndrome. Here we describe a 4-years-old patient with typical 3MC phenotypic characteristics, including blepharophimosis, telecanthus, high arched eyebrows, fifth finger clinodactyly, sacral dimple and horseshoe kidney. Initial genetic analysis was based on clinical exome sequencing, where only MASP1 and COLEC11 genes are present, without evidence of pathogenic variants. Sanger sequencing of COLEC10 identified the homozygous frameshift variant c.807_810delCTGT; p.Cys270Serfs*33, which results in the loss of the natural stop codon. The resulting protein is 24 amino acids longer and lacks a conserved cysteine residue (Cys270), which could affect protein folding. Segregation studies confirmed that both parents were carriers for the variant: interestingly they originate from the same area of Apulia in southern Italy. Plasma levels of CL-L1 in the patient and her parents were within normal range, suggesting that this variant does not modify transcription or secretion. However, the variant affects the chemo-attractive feature of CL-L1, as HeLa cells migrate significantly less in response to the mutant protein compared to the wild-type one.


Assuntos
Colectinas/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Mutação/genética , Adolescente , Adulto , Linhagem Celular Tumoral , Pré-Escolar , Face/anormalidades , Feminino , Células HeLa , Humanos , Masculino , Síndrome , Sequenciamento do Exoma/métodos , Adulto Jovem
12.
Mol Genet Genomic Med ; 9(11): e1834, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34636477

RESUMO

BACKGROUND: 3MC syndrome type 3 is an autosomal recessive disorder caused by mutations in the COLEC10 gene besides other genes like COLEC11 and MASP1. This disorder is characterized by facial dysmorphism, cleft lip and palate, postnatal growth deficiency, cognitive impairment, hearing loss, craniosynostosis, radioulnar synostosis, genital and vesicorenal anomalies, cardiac anomalies, caudal appendage, and umbilical hernia. METHODS: In the present study, whole-exome sequencing was performed in order to identify disease causing variant in an Iranian 7-year-old affected girl with craniosynostosis, dolichocephaly, blepharoptosis, clinodactyly of the 5th finger, high myopia, long face, micrognathia, patent ductus arteriosus, downslanted palpebral fissures, telecanthus, and epicanthus inversus. Identified variant confirmation in the patient and segregation analysis in her family were performed using Sanger sequencing method. RESULTS: A novel homozygous frameshift deletion variant [NM_006438.5: c.128_129delCA; p.(Thr43AsnfsTer9)] was identified within the COLEC10 gene. Up to now, only three 3MC syndrome patients with mutations in the COLEC10 gene have been reported, and here, we report the fourth patient and the first homozygous frameshift variant. CONCLUSION: Other genes and factors responsible for 3MC syndrome occurrence are remained to be discovered. We believe further investigation of the genes in the lectin complement pathway is needed to be done for the identification of other causes of this disease.


Assuntos
Fenda Labial , Fissura Palatina , Criança , Fenda Labial/genética , Fissura Palatina/genética , Colectinas/genética , Colectinas/metabolismo , Feminino , Humanos , Irã (Geográfico) , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Sequenciamento do Exoma
13.
Dev Comp Immunol ; 122: 104108, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33909995

RESUMO

BLAST searches against databases for the bullfrog (Rana catesbeiana), using the collectin sequence previously identified in tadpoles, revealed the presence of at least 20 members of the collectin gene family. Phylogenetic analysis demonstrated that the bullfrog possesses expanded gene subfamilies encoding mannose-binding lectin (MBL) and pulmonary surfactant-associated protein D (PSAPD). Two collectins, of 20 kDa (PSAPD1) and 25 kDa (PSAPD6), were purified as a mixture from adult bullfrog plasma using affinity chromatography. These collectins were present as an oligomer of ~400 kDa in their native state, and showed Ca2+-dependent carbohydrate binding with different sugar preferences. Affinity-purified collectins showed weak E. coli agglutination and bactericidal activities, compared with those of plasma. Although both PSAPD1 and PSAPD6 genes were predominantly expressed in the liver, PSAPD1 transcripts were abundant in adults whereas PSAPD6 transcripts were abundant in tadpoles. The findings indicate that two gene subfamilies in the collectin family have diverged structurally, functionally and transcriptionally in the bullfrog. Rapid expansion of the collectin family in bullfrogs may reflect the onset of sub-functionalization of the prototype MBL gene towards tetrapod MBL and PSAPDs, and may be one means of natural adaptation in the innate immune system to various pathogens in both aquatic and terrestrial environments.


Assuntos
Carboidratos/imunologia , Imunidade Inata/imunologia , Lectina de Ligação a Manose/sangue , Proteína D Associada a Surfactante Pulmonar/sangue , Rana catesbeiana/metabolismo , Aglutinação/imunologia , Animais , Aderência Bacteriana/imunologia , Metabolismo dos Carboidratos/imunologia , Colectinas/sangue , Colectinas/genética , Colectinas/metabolismo , Escherichia coli/imunologia , Imunidade Inata/genética , Larva/imunologia , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/metabolismo , Filogenia , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/metabolismo
14.
Front Immunol ; 12: 594858, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790889

RESUMO

The skin is a complex organ that faces the external environment and participates in the innate immune system. Skin immune homeostasis is necessary to defend against external microorganisms and to recover from stress to the skin. This homeostasis depends on interactions among a variety of cells, cytokines, and the complement system. Collectins belong to the lectin pathway of the complement system, and have various roles in innate immune responses. Mannose-binding lectin (MBL), collectin kidney 1, and liver (CL-K1, CL-L1) activate the lectin pathway, while all have multiple functions, including recognition of pathogens, opsonization of phagocytosis, and modulation of cytokine-mediated inflammatory responses. Certain collectins are localized in the skin, and their expressions change during skin diseases. In this review, we summarize important advances in our understanding of how MBL, surfactant proteins A and D, CL-L1, and CL-K1 function in skin immune homeostasis. Based on the potential roles of collectins in skin diseases, we suggest therapeutic strategies for skin diseases through the targeting of collectins and relevant regulators.


Assuntos
Colectinas/metabolismo , Homeostase , Imunidade Inata , Pele/imunologia , Pele/metabolismo , Animais , Biomarcadores , Colectinas/genética , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Suscetibilidade a Doenças , Humanos
15.
Am J Med Genet A ; 185(7): 2267-2270, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33765348

RESUMO

3MC syndrome is a rare condition manifesting with typical facial appearance, postnatal growth deficiency, skeletal manifestations, and genitourinary tract anomalies. 3MC is caused by biallelic pathogenic variants in MASP1, COLEC11, or COLEC10. Here, we report an affected subject of Kurdish origin from Turkey presenting with facial dysmorphisms, such as, hypertelorism, blepharophimosis, blepharoptosis, highly arched eyebrows, umbilical hernia, and caudal appendage. These features were compatible with 3MC syndrome. Molecular analysis revealed a novel homozygous pathogenic variant, c.310C > T; p.Gln104Ter in the MASP1 gene, resulting in a premature stop codon. Few subjects with 3MC syndrome have been reported in the literature so far. Thus, detailed study of this subject contributes to the evolving clinical and genetic characterization of 3MC syndrome.


Assuntos
Anormalidades Múltiplas/genética , Colectinas/genética , Anormalidades Craniofaciais/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Atrofia Muscular/genética , Anormalidades Múltiplas/patologia , Blefarofimose/genética , Blefarofimose/patologia , Blefaroptose/genética , Blefaroptose/patologia , Fenda Labial/genética , Fenda Labial/patologia , Fissura Palatina/genética , Fissura Palatina/patologia , Anormalidades Craniofaciais/patologia , Craniossinostoses/genética , Craniossinostoses/patologia , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Humanos , Hipertelorismo/genética , Hipertelorismo/patologia , Lactente , Masculino , Atrofia Muscular/patologia , Turquia/epidemiologia
16.
Innate Immun ; 27(1): 50-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33241978

RESUMO

Classical collectins (surfactant protein A and D) play a significant role in innate immunity and host defence in uropathogenic Escherichia coli (UPEC)-induced urinary tract infection (UTI). However, the functions of collectin-11 (CL-11) with respect to UPEC and UTI remain largely unexplored. This study aimed to investigate the effect of CL-11 on UPEC and its role in UTI. We further examined its modulatory effect on inflammatory reactions in proximal tubular epithelial cells (PTECs). The present study provides evidence for the effect of CL-11 on the growth, agglutination, binding, epithelial adhesion and invasion of UPEC. We found increased basal levels of phosphorylated p38 MAPK and human cytokine homologue (keratinocyte-derived chemokine) expression in CL-11 knockdown PTECs. Furthermore, signal regulatory protein α blockade reversed the increased basal levels of inflammation associated with CL-11 knockdown in PTECs. Additionally, CL-11 knockdown effectively inhibited UPEC-induced p38 MAPK phosphorylation and cytokine production in PTECs. These were further inhibited by CD91 blockade. We conclude that CL-11 functions as a mediator of innate immunity via direct antibacterial roles as well as dual modulatory roles in UPEC-induced inflammatory responses during UTI. Thus, the study findings suggest a possible function for CL-11 in defence against UTI.


Assuntos
Colectinas/genética , Infecções por Escherichia coli/genética , Imunidade Inata/genética , Infecções Urinárias/genética , Animais , Atividade Bactericida do Sangue , Adesão Celular , Citocinas/genética , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Técnicas de Silenciamento de Genes , Túbulos Renais Proximais/imunologia , Túbulos Renais Proximais/microbiologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
17.
Acta Neuropathol Commun ; 8(1): 174, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115535

RESUMO

The lectin pathway (LP) of complement activation is believed to contribute to brain inflammation. The study aims to identify the key components of the LP contributing to TBI outcome as possible novel pharmacological targets. We compared the long-term neurological deficits and neuropathology of wild-type mice (WT) to that of mice carrying gene deletions of key LP components after experimental TBI. WT or MASP-2 (Masp2-/-), ficolin-A (Fcna-/-), CL-11 (Colec11-/-), MASP-1/3 (Masp1-/-), MBL-C (Mbl2-/-), MBL-A (Mbl1-/-) or MBL-/- (Mbl1-/-/Mbl2-/-) deficient male C57BL/6J mice were used. Mice underwent sham surgery or TBI by controlled cortical impact. The sensorimotor response was evaluated by neuroscore and beam walk tests weekly for 4 weeks. To obtain a comparative analysis of the functional outcome each transgenic line was rated according to a health score calculated on sensorimotor performance. For selected genotypes, brains were harvested 6 weeks after injury for histopathological analysis. MASP-2-/-, MBL-/- and FCN-A-/- mice had better outcome scores compared to WT. Of these, MASP-2-/- mice had the best recovery after TBI, showing reduced sensorimotor deficits (by 33% at 3 weeks and by 36% at 4 weeks). They also showed higher neuronal density in the lesioned cortex with a 31.5% increase compared to WT. Measurement of LP functional activity in plasma from MASP-2-/- mice revealed the absence of LP functional activity using a C4b deposition assay. The LP critically contributes to the post-traumatic inflammatory pathology following TBI with the highest degree of protection achieved through the absence of the LP key enzyme MASP-2, underlining a therapeutic utility of MASP-2 targeting in TBI.


Assuntos
Lesões Encefálicas Traumáticas/genética , Lectina de Ligação a Manose da Via do Complemento/genética , Inflamação/genética , Recuperação de Função Fisiológica/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Colectinas/genética , Complemento C4b/metabolismo , Deleção de Genes , Inflamação/metabolismo , Lectinas/genética , Lectina de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Camundongos , Camundongos Knockout , Prognóstico , Ficolinas
18.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751929

RESUMO

The Malpuech, Michels, Mingarelli, Carnevale (3MC) syndrome is a rare, autosomal recessive genetic- disorder associated with mutations in the MASP1/3, COLEC1,1 or COLEC10 genes. The number of 3MC patients with known mutations in these three genes reported so far remains very small. To date, 16 mutations in MASP-1/3, 12 mutations in COLEC11 and three in COLEC10 associated with 3MC syndrome have been identified. Their products play an essential role as factors involved in the activation of complement via the lectin or alternative (MASP-3) pathways. Recent data indicate that mannose-binding lectin-associated serine protease-1 (MASP-1), MASP-3, collectin kidney-1 (collectin-11) (CL-K1), and collectin liver-1 (collectin-10) (CL-L1) also participate in the correct migration of neural crest cells (NCC) during embryogenesis. This is supported by relationships between MASP1/3, COLEC10, and COLEC11 gene mutations and the incidence of 3MC syndrome, associated with craniofacial abnormalities such as radioulnar synostosis high-arched eyebrows, cleft lip/palate, hearing loss, and ptosis.


Assuntos
Anormalidades Múltiplas/genética , Colectinas/genética , Anormalidades Craniofaciais/genética , Cardiopatias Congênitas/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Deficiências do Desenvolvimento/genética , Humanos , Mutação
19.
J Clin Lab Anal ; 34(11): e23469, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32822099

RESUMO

OBJECTIVE: To investigate the role of COLEC12 in osteosarcoma and observe the relationship between COLEC12 knockdown and the inflammation of osteosarcoma. Then, further explore whether the process is regulated by TLR4. METHOD: GEPIA and TCGA systems were used to predict the potential function of COLEC12. Western blot and RT-PCR were used to analyze the protein expression, or mRNA level, of COLEC12 in different tissue or cell lines. The occurrence and development of osteosarcoma were observed by using COLEC12 knockdown lentivirus. The inflammation indexes of osteosarcoma, in vitro and in vivo, were explored. TLR4 knockdown lentivirus was applied to the relationship between COLEC12 and TLR4. RESULTS: COLEC12 expression in SARC tumor tissue was higher than in normal, and a high expression of COLEC12 in SARC patients had a worse prognostic outcome. Pairwise gene correlation analysis revealed a potential relationship between COLEC12 and TLR4. The COLEC12 expression and mRNA level in the tumor or Saos-2 cells were increased. COLEC12 knockdown lentivirus could inhibit osteosarcoma development, in vivo and vitro, through reducing tumor volume and weight, weakening tumor proliferation, migration, and invasion, and enhancing apoptosis. Furthermore, COLEC12 knockdown could increase inflammation of osteosarcoma, in vivo and in vitro, through inducing myeloperoxidase (MPO), TLR4, NF-κB, and C3, and expression of related inflammatory factors. Finally, TLR4 knockdown lentivirus inhibits the progress of inflammation after COLEC12 regulation, in vivo and vitro. CONCLUSION: COLEC12 may be able to regulate apoptosis and inflammation of osteosarcoma, and TLR4 may be the downstream target factor of COLEC12 in inflammation.


Assuntos
Apoptose/genética , Colectinas , Inflamação/metabolismo , Osteossarcoma/metabolismo , Receptores Depuradores , Receptor 4 Toll-Like , Animais , Linhagem Celular Tumoral , Colectinas/genética , Colectinas/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
20.
J Immunol Methods ; 483: 112807, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32540393

RESUMO

Monoclonal antibodies (mAb) are unique tools in therapeutics and immunodiagnostics applications but many of these applications rely on conjugated mAbs. Whether conjugating drugs or tracers, the conjugation process, frequently taking advantage of primary amines on lysine residues, may affect the binding activity of the antibodies. Furthermore, due to the sticky nature of many mAbs, unfavorable interactions may become eminent, with the result of high background signals. The workload associated with producing mAbs, able to withstand conjugation, preserving stability and affinity and avoiding off-target interactions, is comprehensive and related with only incidental success. We designed a method, where uncloned hybridomas were pre-selected for secretion of mAbs with the above characteristics. Using human collectin K1 (CL-K1, alias CL-11, Colec11) as a model antigen, mAbs present in culture supernatant from uncloned hybridomas were immobilized on Protein A beads, followed by solid phase biotinylation and subsequent elution. ELISA was employed to compare the binding activity of conjugated vs. unconjugated mAbs, and furthermore for their application in combination with other antibodies. From a group of 96 uncloned hybridomas we accomplished in obtaining five suitable mAbs, among which, two mAbs were superior. The successful conjugation of the selected mAbs with fluorophores and subsequent applications in microscopy and flow cytometry were further demonstrated. In conclusion, pre-selection of uncloned hybridomas, by testing of their mAbs' ability to withstand conjugation with tracers or drugs, is a successful strategy to avoid a huge workload of cloning numerous hybridomas, in order to obtain conjugatable mAbs.


Assuntos
Anticorpos Monoclonais/biossíntese , Colectinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Imunoconjugados/metabolismo , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Especificidade de Anticorpos , Biotinilação , Células CHO , Clonagem Molecular , Colectinas/genética , Colectinas/imunologia , Cricetulus , Humanos , Hibridomas , Imunoconjugados/genética , Imunoconjugados/imunologia , Camundongos , Estabilidade Proteica , Proteína Estafilocócica A/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA