Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 646
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 107, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38697972

RESUMO

Cholangiocarcinoma (CCA) is a highly malignant biliary tract cancer with currently suboptimal diagnostic and prognostic approaches. We present a novel system to monitor CCA using exosomal circular RNA (circRNA) via serum and biliary liquid biopsies. A pilot cohort consisting of patients with CCA-induced biliary obstruction (CCA-BO, n = 5) and benign biliary obstruction (BBO, n = 5) was used to identify CCA-derived exosomal circRNAs through microarray analysis. This was followed by a discovery cohort (n = 20) to further reveal a CCA-specific circRNA complex (hsa-circ-0000367, hsa-circ-0021647, and hsa-circ-0000288) in both bile and serum exosomes. In vitro and in vivo studies revealed the three circRNAs as promoters of CCA invasiveness. Diagnostic and prognostic models were established and verified by two independent cohorts (training cohort, n = 184; validation cohort, n = 105). An interpreter-free diagnostic model disclosed the diagnostic power of biliary exosomal circRNA signature (Bile-DS, AUROC = 0.947, RR = 6.05) and serum exosomal circRNA signature (Serum-DS, AUROC = 0.861, RR = 4.04) compared with conventional CA19-9 (AUROC = 0.759, RR = 2.08). A prognostic model of CCA undergoing curative-intent surgery was established by calculating early recurrence score, verified with bile samples (Bile-ERS, C-index=0.783) and serum samples (Serum-ERS, C-index = 0.782). These models, combined with other prognostic factors revealed by COX-PH model, enabled the establishment of nomograms for recurrence monitoring of CCA. Our study demonstrates that the exosomal triple-circRNA panel identified in both bile and serum samples serves as a novel diagnostic and prognostic tool for the clinical management of CCA.


Assuntos
Colangiocarcinoma , Exossomos , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/sangue , Colangiocarcinoma/genética , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/sangue , Colangiocarcinoma/patologia , Exossomos/genética , Masculino , Feminino , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Pessoa de Meia-Idade , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/sangue , Neoplasias dos Ductos Biliares/patologia , Prognóstico , Colestase/genética , Colestase/diagnóstico , Colestase/sangue
2.
Commun Biol ; 7(1): 621, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783088

RESUMO

Nuclear factor erythroid 2-related factor-2 (Nrf2) antioxidant signaling is involved in liver protection, but this generalization overlooks conflicting studies indicating that Nrf2 effects are not necessarily hepatoprotective. The role of Nrf2/heme oxygenase-1 (HO-1) in cholestatic liver injury (CLI) remains poorly defined. Here, we report that Nrf2/HO-1 activation exacerbates liver injury rather than exerting a protective effect in CLI. Inhibiting HO-1 or ameliorating bilirubin transport alleviates liver injury in CLI models. Nrf2 knockout confers hepatoprotection in CLI mice, whereas in non-CLI mice, Nrf2 knockout aggravates liver damage. In the CLI setting, oxidative stress activates Nrf2/HO-1, leads to bilirubin accumulation, and impairs mitochondrial function. High levels of bilirubin reciprocally upregulate the activation of Nrf2 and HO-1, while antioxidant and mitochondrial-targeted SOD2 overexpression attenuate bilirubin toxicity. The expression of Nrf2 and HO-1 is elevated in serum of patients with CLI. These results reveal an unrecognized function of Nrf2 signaling in exacerbating liver injury in cholestatic disease.


Assuntos
Bilirrubina , Colestase , Heme Oxigenase-1 , Camundongos Knockout , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais , Camundongos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Colestase/metabolismo , Colestase/patologia , Colestase/genética , Humanos , Masculino , Bilirrubina/metabolismo , Bilirrubina/sangue , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/lesões , Fígado/patologia , Modelos Animais de Doenças , Proteínas de Membrana
3.
Nat Genet ; 56(5): 938-952, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627596

RESUMO

Cholestatic liver injuries, characterized by regional damage around the bile ductular region, lack curative therapies and cause considerable mortality. Here we generated a high-definition spatiotemporal atlas of gene expression during cholestatic injury and repair in mice by integrating spatial enhanced resolution omics sequencing and single-cell transcriptomics. Spatiotemporal analyses revealed a key role of cholangiocyte-driven signaling correlating with the periportal damage-repair response. Cholangiocytes express genes related to recruitment and differentiation of lipid-associated macrophages, which generate feedback signals enhancing ductular reaction. Moreover, cholangiocytes express high TGFß in association with the conversion of liver progenitor-like cells into cholangiocytes during injury and the dampened proliferation of periportal hepatocytes during recovery. Notably, Atoh8 restricts hepatocyte proliferation during 3,5-diethoxycarbonyl-1,4-dihydro-collidin damage and is quickly downregulated after injury withdrawal, allowing hepatocytes to respond to growth signals. Our findings lay a keystone for in-depth studies of cellular dynamics and molecular mechanisms of cholestatic injuries, which may further develop into therapies for cholangiopathies.


Assuntos
Colestase , Hepatócitos , Animais , Camundongos , Colestase/genética , Colestase/patologia , Colestase/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/lesões , Fígado/patologia , Proliferação de Células/genética , Ductos Biliares/metabolismo , Regeneração Hepática/genética , Camundongos Endogâmicos C57BL , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdução de Sinais , Masculino , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Transcriptoma , Modelos Animais de Doenças , Análise Espaço-Temporal
4.
Orphanet J Rare Dis ; 19(1): 157, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610052

RESUMO

BACKGROUND: ABCB4 gene-related cholestatic liver diseases have a wide spectrum of clinical and genetic variations. The correlation between genotype and clinical phenotype still unclear. This study retrospectively analyzed the clinical and pathological characteristics of 23 patients with ABCB4 gene-related cholestatic liver diseases. Next-generation sequencing was used to identify the genetic causes. RESULTS: The 23 included patients (15 children and 8 adults) were diagnosed as progressive familial intrahepatic cholestasis type 3 (PFIC3), drug-induced liver injury (DILI), cirrhosis cholestasis, cirrhosis, and mild liver fibrosis. Nineteen patients underwent liver pathological examination of the liver, exhibiting fibrosis, small bile duct hyperplasia, CK7(+), Cu(+), bile duct deletion, and cirrhosis. Thirty ABCB4 variants were identified, including 18 novel variants. CONCLUSION: ABCB4 gene-related cholestatic liver diseases have a wide spectrum of clinical and genetic variations. Biallelic ABCB4 mutation carriers tended to severe PFIC3, which mostly occurs in children; while ABCB4 non-biallelic variants can lead to milder ICP, LACP, DILI or overlapping, mostly in adults. Thus, the ABCB4 genotype has a specific correlation with the phenotype, but there are exceptions. Non-biallelic null mutations can cause severe diseases. The mechanisms underlying this genetic phenotype require further investigation.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Colestase Intra-Hepática , Colestase , Adulto , Criança , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , China , Colestase/genética , Colestase Intra-Hepática/genética , Cirrose Hepática , Estudos Retrospectivos
5.
Orphanet J Rare Dis ; 19(1): 171, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641832

RESUMO

BACKGROUND: Clinical studies on progressive familial intrahepatic cholestasis (PFIC) type 5 caused by mutations in NR1H4 are limited. METHODS: New patients with biallelic NR1H4 variants from our center and all patients from literature were retrospectively analyzed. RESULTS: Three new patients were identified to be carrying five new variants. Liver phenotypes of our patients manifests as low-γ-glutamyl transferase cholestasis, liver failure and related complications. One patient underwent liver transplantation (LT) and survived, and two other patients died without LT. Nine other patients were collected through literature review. Twelve out of 13 patients showed neonatal jaundice, with the median age of onset being 7 days after birth. Reported clinical manifestations included cholestasis (13/13, 100%), elevated AFP (11/11, 100%), coagulopathy (11/11, 100%), hypoglycemia (9/13, 69%), failure to thrive (8/13, 62%), splenomegaly (7/13, 54%), hyperammonemia (7/13, 54%), and hepatomegaly (6/13, 46%). Six of 13 patients received LT at a median age of 6.2 months, and only one patient died of acute infection at one year after LT. Other 7 patients had no LT and died with a median age of 5 months (range 1.2-8). There were 8 patients with homozygous genotype and 5 patients with compound heterozygous genotype. In total, 13 different variants were detected, and 5 out of 12 single or multiple nucleotides variants were located in exon 5. CONCLUSIONS: We identified three newly-diagnosed patients and five novel mutations. NR1H4-related PFIC typically cause progressive disease and early death. LT may be the only lifesaving therapy leading to cure.


Assuntos
Colestase Intra-Hepática , Colestase , Humanos , Recém-Nascido , Lactente , Estudos Retrospectivos , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/terapia , Colestase/genética
6.
J Integr Med ; 22(2): 188-198, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472011

RESUMO

OBJECTIVE: This study explores the mechanism of action of Danhongqing formula (DHQ), a compound-based Chinese medicine formula, in the treatment of cholestatic liver fibrosis. METHODS: In vivo experiments were conducted using 8-week-old multidrug resistance protein 2 knockout (Mdr2-/-) mice as an animal model of cholestatic liver fibrosis. DHQ was administered orally for 8 weeks, and its impact on cholestatic liver fibrosis was evaluated by assessing liver function, liver histopathology, and the expression of liver fibrosis-related proteins. Real-time polymerase chain reaction, Western blot, immunohistochemistry and other methods were used to observe the effects of DHQ on long non-coding RNA H19 (H19) and signal transducer and activator of transcription 3 (STAT3) phosphorylation in the liver tissue of Mdr2-/- mice. In addition, cholangiocytes and hepatic stellate cells (HSCs) were cultured in vitro to measure the effects of bile acids on cholangiocyte injury and H19 expression. Cholangiocytes overexpressing H19 were constructed, and a conditioned medium containing H19 was collected to measure its effects on STAT3 protein expression and cell activation. The intervention effect of DHQ on these processes was also investigated. HSCs overexpressing H19 were constructed to measure the impact of H19 on cell activation and assess the intervention effect of DHQ. RESULTS: DHQ alleviated liver injury, ductular reaction, and fibrosis in Mdr2-/- mice, and inhibited H19 expression, STAT3 expression and STAT3 phosphorylation. This formula also reduced hydrophobic bile acid-induced cholangiocyte injury and the upregulation of H19, inhibited the activation of HSCs induced by cholangiocyte-derived conditioned medium, and decreased the expression of activation markers in HSCs. The overexpression of H19 in a human HSC line confirmed that H19 promoted STAT3 phosphorylation and HSC activation, and DHQ was able to successfully inhibit these effects. CONCLUSION: DHQ effectively alleviated spontaneous cholestatic liver fibrosis in Mdr2-/- mice by inhibiting H19 upregulation in cholangiocytes and preventing the inhibition of STAT3 phosphorylation in HSC, thereby suppressing cell activation. Please cite this article as: Li M, Zhou Y, Zhu H, Xu LM, Ping J. Danhongqing formula alleviates cholestatic liver fibrosis by downregulating long non-coding RNA H19 derived from cholangiocytes and inhibiting hepatic stellate cell activation. J Integr Med. 2024; 22(2): 188-198.


Assuntos
Colestase , RNA Longo não Codificante , Humanos , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Meios de Cultivo Condicionados/metabolismo , Camundongos Knockout , Colestase/tratamento farmacológico , Colestase/genética , Colestase/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fígado/metabolismo
7.
J Proteome Res ; 23(4): 1433-1442, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488493

RESUMO

MDR3 (multidrug resistance 3) deficiency in humans (MDR2 in mice) causes progressive familial intrahepatic cholestasis type 3 (PFIC3). PFIC3 is a lethal disease characterized by an early onset of intrahepatic cholestasis progressing to liver cirrhosis, a preneoplastic condition, putting individuals at risk of hepatocellular carcinoma (HCC). Hepatocyte-like organoids from MDR2-deficient mice (MDR2KO) were used in this work to study the molecular alterations caused by the deficiency of this transporter. Proteomic analysis by mass spectrometry allowed characterization of 279 proteins that were differentially expressed in MDR2KO compared with wild-type organoids. Functional enrichment analysis indicated alterations in three main cellular functions: (1) interaction with the extracellular matrix, (2) remodeling intermediary metabolism, and (3) cell proliferation and differentiation. The affected cellular processes were validated by orthogonal molecular biology techniques. Our results point to molecular mechanisms associated with PFIC3 that may drive the progression to liver cirrhosis and HCC and suggest proteins and cellular processes that could be targeted for the development of early detection strategies for these severe liver diseases.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Carcinoma Hepatocelular , Colestase Intra-Hepática , Colestase , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Carcinoma Hepatocelular/patologia , Colestase/genética , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Knockout , Proteômica
8.
Am J Pathol ; 194(6): 879-893, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38417698

RESUMO

Cholestatic liver diseases encompass a range of organic damages, metabolic disorders, and dysfunctions within the hepatobiliary system, arising from various pathogenic causes. These factors contribute to disruptions in bile production, secretion, and excretion. Cholestatic liver diseases can be classified into intrahepatic and extrahepatic cholestasis, according to the location of occurrence. The etiology of cholestatic liver diseases is complex, and includes drugs, poisons, viruses, parasites, bacteria, autoimmune responses, tumors, and genetic metabolism. The pathogenesis of cholelstatic liver disease is not completely clarified, and effective therapy is lacking. Clarifying its mechanism to find more effective therapeutic targets and drugs is an unmet need. Increasing evidence demonstrates that miRNA and long noncoding RNA are involved in the progression of cholestatic liver diseases. This review provides a comprehensive summary of the research progress on the roles of miRNA and long noncoding RNA in cholestatic liver diseases. The aim of the review is to enhance the understanding of their potential diagnostic, therapeutic, and prognostic value for patients with cholestasis.


Assuntos
Colestase , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Colestase/genética , Colestase/metabolismo , Colestase/patologia , Animais , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/patologia
9.
J Hepatol ; 80(6): 928-940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38336346

RESUMO

BACKGROUND & AIMS: Men are more prone to develop and die from liver fibrosis than women. In this study, we aim to investigate how sex-determining region Y gene (SRY) in hepatocytes promotes liver fibrosis. METHODS: Hepatocyte-specific Sry knock-in (KI), Sry knockout (KO), and Sry KI with platelet-derived growth factor receptor α (Pdgfrα) KO mice were generated. Liver fibrosis was induced in mice by bile duct ligation for 2 weeks or carbon tetrachloride treatment for 6 weeks. In addition, primary hepatocytes, hepatic stellate cells (HSCs), and immortalized cell lines were used for in vitro studies and mechanistic investigation. RESULTS: Compared to females, the severity of toxin- or cholestasis-induced liver fibrosis is similarly increased in castrated and uncastrated male mice. Among all Y chromosome-encoded genes, SRY was the most significantly upregulated and consistently increased gene in fibrotic/cirrhotic livers in male patients and in mouse models. Sry KI mice developed exacerbated liver fibrosis, whereas Sry KO mice had alleviated liver fibrosis, compared to age- and sex-matched control mice after bile duct ligation or administration of carbon tetrachloride. Mechanistically, both our in vivo and in vitro studies illustrated that SRY in hepatocytes can transcriptionally regulate Pdgfrα expression, and promote HMGB1 (high mobility group box 1) release and subsequent HSC activation. Pdgfrα KO or treatment with the SRY inhibitor DAX1 in Sry KI mice abolished SRY-induced HMGB1 secretion and liver fibrosis. CONCLUSIONS: SRY is a strong pro-fibrotic factor and accounts for the sex disparity observed in liver fibrosis, suggesting its critical role as a potentially sex-specific therapeutic target for prevention and treatment of the disease. IMPACT AND IMPLICATION: We identified that a male-specific gene, sex-determining region Y gene (SRY), is a strong pro-fibrotic gene that accounts for the sex disparity observed in liver fibrosis. As such, SRY might be an appropriate target for surveillance and treatment of liver fibrosis in a sex-specific manner. Additionally, SRY might be a key player in the sexual dimorphism observed in hepatic pathophysiology more generally.


Assuntos
Células Estreladas do Fígado , Hepatócitos , Cirrose Hepática , Camundongos Knockout , Proteína da Região Y Determinante do Sexo , Animais , Masculino , Feminino , Camundongos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/fisiopatologia , Humanos , Hepatócitos/metabolismo , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Células Estreladas do Fígado/metabolismo , Caracteres Sexuais , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/efeitos adversos , Colestase/genética , Colestase/metabolismo , Colestase/fisiopatologia , Modelos Animais de Doenças
10.
J Pediatr Gastroenterol Nutr ; 78(2): 339-349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374565

RESUMO

OBJECTIVES: Biallelic variants in the adenosine triphosphate binding cassette subfamily B member 4 (ABCB4) gene which encodes the multidrug resistance 3 protein (MDR3) leads to progressive familiar intrahepatic cholestasis type 3. However, monoallelic variants are increasingly recognized as contributing to liver disease in adults. Our aim was to describe the clinical characteristics of MDR3 heterozygous variants in a large cohort of infants and children with cholestatic liver disease. METHODS: The clinical and genotypic data on pediatric patients seen at King's College Hospital, London, between 2004 and 2022 and found to harbour heterozygous variants in ABCB4 were reviewed. RESULTS: Ninety-two patients amongst 1568 tested were identified with a monoallelic variant (5.9%). The most common presenting problem was conjugated hyperbilirubinemia (n = 46; 50%) followed by cholelithiasis (n = 12; 13%) and cholestatic hepatitis (n = 10; 11%). The median values of liver biochemistry at presentation were: GGT 105 IU/L and total bilirubin 86 µmol/L. Thirty-two genetic variants were identified including 22 missense (69%), 4 deletions (13%), 5 splice site (16%) and 1 termination (3%). At a median follow up of 1 year there was resolution of liver disease. CONCLUSIONS: Rare variants in ABCB4 were found amongst infants and children with cholestatic liver disease. The presenting problems were variable and abnormalities tended to normalize over time. Those with severe mutations could develop liver disease later in life when exposed to further insult and should be counseled appropriately.


Assuntos
Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Colestase Intra-Hepática , Colestase , Adulto , Criança , Humanos , Lactente , Colestase/genética , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Heterozigoto , Mutação , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética
12.
Bioorg Chem ; 143: 106979, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995646

RESUMO

FXR agonistic activity screening was conducted based on natural product resources containing 38 structurally diverse sesquiterpenoids isolated from Xylopia vielana. Among them, 34 undescribed sesquiterpenoids with 5 different skeleton types were first characterized by HRESIMS, NMR data, ECD calculations and X-ray crystallographic analysis. High-content screening for FXR agonistic activity of these compounds demonstrated that 13 compounds could activate FXR. Then molecular docking results suggested that hydrogen bonding and hydrophobic interactions might contribute to the main interaction of active compounds with FXR. The preliminary structure-activity relationships (SARs) of those isolates were also discussed. The most potent compound 27 significantly elevated the transcriptional activity of the FXR target gene BSEP promoter (EC50 = 14.26 µM) by a dual-luciferase reporter assay. Western blotting indicated that compound 27 activated the FXR-associated pathway, thereby upregulating SHP and BSEP expression, and downregulating CYP7A1 and NTCP expression. We further revealed that FXR was the target protein of compound 27 through diverse target validation methods, including CETSA, SIP, and DARTS under the intervention of temperature, organic reagents and protease. Pharmacological in vivo experiments showed that compound 27 effectively ameliorated α-naphthyl isothiocyanate (ANIT)-induced cholestasis in mice, as evidenced by the ameliorative histopathology of the liver and the decrease in biochemical markers: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), direct bilirubin (DBIL), and total bile acid (TBA). This work showed a practical strategy for the discovery of new FXR agonists from natural products and provided potential insights for sesquiterpenoids as FXR agonist lead compounds.


Assuntos
Colestase , Sesquiterpenos , Camundongos , Animais , Simulação de Acoplamento Molecular , Fígado/metabolismo , Colestase/genética , Colestase/metabolismo , Colestase/prevenção & controle , Ácidos e Sais Biliares/metabolismo , Bilirrubina/metabolismo , Sesquiterpenos/farmacologia
13.
Clin Genet ; 105(1): 106-108, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866826

RESUMO

Four affected individuals from a large consanguineous family were diagnosed with variable phenotypes of cholestasis based on their clinical laboratory and biopsy findings. Cholestasis is a condition when there is not enough bile flow between liver and small intestine. Two of the affected individuals (IV-1, IV-4) died of cholestatic liver at an early age, while the other two patients are alive with chronic liver disease. Clinical exome and Sanger sequencing identified a novel homozygous pathogenic variant (c.482-7_500del) in the patients.


Assuntos
Colestase , Hepatopatias , Humanos , Sequenciamento do Exoma , Colestase/diagnóstico , Colestase/genética , Hepatopatias/genética , Fenótipo , Cinesinas/genética
14.
Ann Hum Genet ; 88(3): 194-211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38108658

RESUMO

Many inherited conditions cause hepatocellular cholestasis in infancy, including progressive familial intrahepatic cholestasis (PFIC), a heterogeneous group of diseases with highly overlapping symptoms. In our study, six unrelated Tunisian infants with PFIC suspicion were the subject of a panel-target sequencing followed by an exhaustive bioinformatic and modeling investigations. Results revealed five disease-causative variants including known ones: (the p.Asp482Gly and p.Tyr354 * in the ABCB11 gene and the p.Arg446 * in the ABCC2 gene), a novel p.Ala98Cys variant in the ATP-binding cassette subfamily G member 5 (ABCG5) gene and a first homozygous description of the p.Gln312His in the ABCB11 gene. The p.Gln312His disrupts the interaction pattern of the bile salt export pump as well as the flexibility of the second intracellular loop domain harboring this residue. As for the p.Ala98Cys, it modulates both the interactions within the first nucleotide-binding domain of the bile transporter and its accessibility. Two additional potentially modifier variants in cholestasis-associated genes were retained based on their pathogenicity (p.Gly758Val in the ABCC2 gene) and functionality (p.Asp19His in the ABCG8 gene). Molecular findings allowed a PFIC2 diagnosis in five patients and an unexpected diagnosis of sisterolemia in one case. The absence of genotype/phenotype correlation suggests the implication of environmental and epigenetic factors as well as modifier variants involved directly or indirectly in the bile composition, which could explain the cholestasis phenotypic variability.


Assuntos
Colestase Intra-Hepática , Colestase , Lactente , Humanos , Recém-Nascido , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/genética , Colestase/genética , Estudos de Associação Genética , Mutação , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Lipoproteínas/genética
15.
Sultan Qaboos Univ Med J ; 23(4): 543-546, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38090248

RESUMO

Progressive familial intrahepatic cholestasis type 4 (PFIC4) is a relatively newly described autosomal recessive disorder caused by biallelic mutations in the gene encoding tight junction protein 2 (TJP2) which is located in chromosome 9q21. PFIC4 is characterised by cholestasis with or without other extrahepatic manifestations. Bleeding tendency due to vitamin k deficiency is a well-known complication of cholestasis. We present a neonate who presented to the Emergency Department at a tertiary care hospital in 2021 with cholestasis and multiple intracranial bleeds. He was found to have severe coagulopathy and his genetic work up revealed a homozygous variant mutation in TJP2 gene causing PFIC4. He had persistent cholestasis that necessitated an internal biliary diversion with some clinical improvement.


Assuntos
Colestase Intra-Hepática , Colestase , Masculino , Lactente , Recém-Nascido , Humanos , Colestase/complicações , Colestase/genética , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/complicações , Mutação
16.
Hepatol Commun ; 7(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055647

RESUMO

BACKGROUND: Our objective was to better understand the natural history and disease modifiers of Alpha-1-antitrypsin deficiency (AATD), a common genetic liver disease causing hepatitis and cirrhosis in adults and children. The clinical course is highly variable. Some infants present with neonatal cholestasis, which can resolve spontaneously or progress to cirrhosis; others are well in infancy, only to develop portal hypertension later in childhood. METHODS: The Childhood Liver Disease Research Network has been enrolling AATD participants into longitudinal, observational studies at North American tertiary centers since 2004. We examined the clinical courses of 2 subgroups of participants from the several hundred enrolled; first, those presenting with neonatal cholestasis captured by a unique study, enrolled because of neonatal cholestasis but before specific diagnosis, then followed longitudinally (n=46); second, separately, all participants who progressed to liver transplant (n=119). RESULTS: We found male predominance for neonatal cholestasis in AATD (65% male, p=0.04), an association of neonatal gamma-glutamyl transpeptidase elevation to more severe disease, and a higher rate of neonatal cholestasis progression to portal hypertension than previously reported (41%) occurring at median age of 5 months. Participants with and without preceding neonatal cholestasis were at risk of progression to transplant. Participants who progressed to liver transplant following neonatal cholestasis were significantly younger at transplant than those without neonatal cholestasis (4.1 vs. 7.8 years, p=0.04, overall range 0.3-17 years). Neonatal cholestasis had a negative impact on growth parameters. Coagulopathy and varices were common before transplant, but gastrointestinal bleeding was not. CONCLUSIONS: Patients with AATD and neonatal cholestasis are at risk of early progression to severe liver disease, but the risk of severe disease extends throughout childhood. Careful attention to nutrition and growth is needed.


Assuntos
Colestase , Hipertensão Portal , Deficiência de alfa 1-Antitripsina , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/diagnóstico , Deficiência de alfa 1-Antitripsina/epidemiologia , Colestase/genética , Hipertensão Portal/etiologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/epidemiologia , Cirrose Hepática/etiologia , Fenótipo , alfa 1-Antitripsina/metabolismo
17.
Zhonghua Gan Zang Bing Za Zhi ; 31(9): 901-904, 2023 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-37872084

RESUMO

With China's outstanding achievements in the prevention and treatment of hepatitis, hereditary cholestasis caused by genetic variants has gradually become an important cause of death or transplantation in children with liver disease. The continuous identification of new pathogenic genes expands the disease spectrum and clinician's understanding of disease. The disease characteristics and clinical manifestations of hereditary cholestasis caused by different gene variants vary, and the severity of diseases caused by the same gene variants and the response to treatment are also significantly different. Therefore, early genetic diagnosis is of great value for improving the clinical management of patients. In terms of treatment, in addition to traditional drugs and surgery, targeted therapy and gene therapy are also gradually moving towards clinical application. Advances in metabolomics, gene editing technology, and structural biology have made it possible to provide personalized and precise treatment of children with hereditary cholestasis in the future; however, this which will put forward higher requirements for on relevant practitioners.


Assuntos
Colestase , Hepatopatias , Criança , Humanos , Colestase/diagnóstico , Colestase/genética , Colestase/terapia
18.
Hepatol Commun ; 7(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902507

RESUMO

BACKGROUND: Sarcopenia occurs in pediatric chronic liver disease, although the prevalence and contributing factors in genetic intrahepatic cholestasis are not well-described. The objective of this study was to measure muscle mass in school-aged children with genetic intrahepatic cholestasis and assess relationships between sarcopenia, clinical variables, and outcomes. METHODS: Estimated skeletal muscle mass (eSMM) was calculated on dual-energy x-ray absorptiometry obtained in a Childhood Liver Disease Research Network study of children with bile acid synthesis disorders(BASD) alpha-1 antitrypsin deficiency (a1ATd), chronic intrahepatic cholestasis (CIC), and Alagille syndrome (ALGS). Relationships between eSMM, liver disease, and transplant-free survival were assessed. RESULTS: eSMM was calculated in 127 participants (5-18 y): 12 BASD, 41 a1ATd, 33 CIC, and 41 ALGS. eSMM z-score was lower in CIC (-1.6 ± 1.3) and ALGS (-2.1 ± 1.0) than BASD (-0.1 ± 1.1) and a1ATd (-0.5 ± 0.8, p < 0.001). Sarcopenia (defined as eSMM z-score ≤- 2) was present in 33.3% of CIC and 41.5% of ALGS participants. eSMM correlated with bone mineral density in the 4 disease groups (r=0.52-0.55, p < 0.001-0.07), but not serum bile acids, bilirubin, aspartate aminotransferase/platelet ratio index, or clinically evident portal hypertension. Of the 2 patients who died (1 with sarcopenia) and 18 who underwent liver transplant (LT, 4 with sarcopenia), eSMM z-score did not predict transplant-free survival. eSMM z-score correlated with the Physical Pediatric Quality of Life Inventory score (r=0.38-0.53, p = 0.007-0.04) in CIC and a1ATd. CONCLUSION: Severe sarcopenia occurs in some children with ALGS and CIC. The lack of correlation between eSMM and biochemical cholestasis suggests mechanisms beyond cholestasis contribute to sarcopenia. While sarcopenia did not predict transplant-free survival, LT and death were infrequent events. Future studies may define mechanisms of sarcopenia in genetic intrahepatic cholestasis.


Assuntos
Doenças Ósseas Metabólicas , Colestase Intra-Hepática , Colestase , Sarcopenia , Humanos , Criança , Qualidade de Vida , Sarcopenia/genética , Colestase/genética , Doenças Ósseas Metabólicas/genética , Colestase Intra-Hepática/genética
19.
PLoS One ; 18(8): e0290385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647292

RESUMO

BACKGROUND: We have developed a mouse model of Parenteral Nutrition Associated Cholestasis (PNAC) in which combining intestinal inflammation and PN infusion results in cholestasis, hepatic macrophage activation, and transcriptional suppression of bile acid and sterol signaling and transport. In the liver, the master circadian gene regulators Bmal/Arntl and Clock drive circadian modulation of hepatic functions, including bile acid synthesis. Once activated, Bmal and Clock are downregulated by several transcription factors including Reverbα (Nr1d1), Dbp (Dbp), Dec1/2 (Bhlhe40/41), Cry1/2 (Cry1/2) and Per1/2 (Per1/2). The aim of this study was to examine the effects of PN on expression of hepatic circadian rhythm (CR) regulatory genes in mice. METHODS: WT, IL1KO or TNFRKO mice were exposed to dextran sulfate sodium (DSS) for 4 days followed by soy-oil lipid emulsion-based PN infusion through a central venous catheter for 14 days (DSS-PN) and the expression of key CR regulatory transcription factors evaluated. Animals were NPO on a 14 hr light-dark cycle and were administered PN continuously over 24 hrs. Mice were sacrificed, and hepatic tissue obtained at 9-10AM (Zeitgeber Z+3/Z+4 hrs). PNAC was defined by increased serum aspartate aminotransferase, alanine aminotransferase, total bile acids, and total bilirubin and the effect of i.p. injection of recombinant IL-1ß (200ng/mouse) or TNFα (200ng/mouse) on CR expression was examined after 4 hrs. RESULTS: In the PNAC model, DSS-PN increased serum biomarkers of hepatic injury (ALT, AST, serum bile acids) which was suppressed in both DSS-PN IL1KO and DSS-PN TNFRKO mice. In WT DSS-PN, mRNA expression of Arntl and Dec1 was suppressed corresponding to increased Nr1d1, Per2, Dbp and Dec2. These effects were ameliorated in both DSS-PN IL1KO and DSS-PN TNFRKO groups. Western analysis of the circadian transcription factor network revealed in WT mice DSS-PN significantly suppressed Reverbα, Bmal, Dbp, Per2 and Mtnr1b. With the exception of Dbp, DSS-PN mediated suppression was ameliorated by both IL1KO and TNFRKO. Intraperitoneal injection of IL-1ß or TNFα into WT mice increased serum AST and ALT and suppressed mRNA expression of Nr1d1, Arntl and Clock and increased Dbp and Per2. CONCLUSIONS: Altered expression of CR-dependent regulatory genes during PNAC accompanies cholestasis and is, in part, due to increased cytokine (IL-1ß and TNFα) production. Evaluation of the effects of modulating CR in PNAC thus deserves further investigation.


Assuntos
Traumatismos Abdominais , Colestase , Animais , Camundongos , Fator de Necrose Tumoral alfa , Fatores de Transcrição ARNTL , Genes Reguladores , Colestase/genética , Nutrição Parenteral , Ácidos e Sais Biliares , RNA Mensageiro
20.
Arch Toxicol ; 97(11): 2969-2981, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37603094

RESUMO

Drug-induced intrahepatic cholestasis (DIC) is a main type of hepatic toxicity that is challenging to predict in early drug development stages. Preclinical animal studies often fail to detect DIC in humans. In vitro toxicogenomics assays using human liver cells have become a practical approach to predict human-relevant DIC. The present study was set up to identify transcriptomic signatures of DIC by applying machine learning algorithms to the Open TG-GATEs database. A total of nine DIC compounds and nine non-DIC compounds were selected, and supervised classification algorithms were applied to develop prediction models using differentially expressed features. Feature selection techniques identified 13 genes that achieved optimal prediction performance using logistic regression combined with a sequential backward selection method. The internal validation of the best-performing model showed accuracy of 0.958, sensitivity of 0.941, specificity of 0.978, and F1-score of 0.956. Applying the model to an external validation set resulted in an average prediction accuracy of 0.71. The identified genes were mechanistically linked to the adverse outcome pathway network of DIC, providing insights into cellular and molecular processes during response to chemical toxicity. Our findings provide valuable insights into toxicological responses and enhance the predictive accuracy of DIC prediction, thereby advancing the application of transcriptome profiling in designing new approach methodologies for hazard identification.


Assuntos
Rotas de Resultados Adversos , Doença Hepática Induzida por Substâncias e Drogas , Colestase , Animais , Humanos , Colestase/induzido quimicamente , Colestase/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...