Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.748
Filtrar
1.
Phytomedicine ; 134: 156021, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39255724

RESUMO

BACKGROUND: Cholestasis (CT) is a group of disorders caused by impaired production, secretion or excretion of bile. This may result in the deposition of bile components in the blood and liver, which in turn causes damage to liver cells and other tissues. If untreated, CT can progress to severe complications, including cirrhosis, liver failure, and potentially life-threatening conditions. OBJECTIVE: This research was intended to elucidate the function and mechanism of Paeoniflorin (PF) in ameliorating ANIT-induced pyroptosis in CT. METHODS: CT models were established in SD rats and HepG2 cells through ANIT treatment. Histological examination was conducted using haematoxylin and eosin (HE) staining to assess the histopathological alterations in the liver. Network pharmacology was employed to identify potential PF targets in CT treatment. To evaluate pyroptosis levels, various methods were used, including serum biochemical analysis, Enzyme-Linked Immunosorbent Assay (ELISA), immunofluorescence (IF), immunohistochemistry (IHC), Western blotting, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The HuProt™ 20K Chip was utilized to pinpoint potential PF-binding targets. PF's direct mechanisms in CT treatment were explored using molecular docking (MD), molecular dynamics simulations (MDS), Cellular Thermal Shift Assay (CETSA), and Surface Plasmon Resonance (SPR). RESULTS: PF administration was found to alleviate ANIT-induced liver pathology, enhance liver function markers, and improve cell viability. Network pharmacology and pyroptosis inhibitor studies suggested that PF might mitigate CT via the NLRP3-dependent pyroptosis pathway. This hypothesis was further supported by Western blotting, IF, and IHC analyses, which indicated PF's potential to inhibit NLRP3-dependent pyroptosis in CT. GSDMD was identified as a target through HuProt™ 20K Chip screening. The binding affinity of PF to GSDMD was validated through MD, MDS, CETSA, and SPR techniques. Additionally, the regulatory impact of GSDMD on downstream inflammatory pathways was confirmed by ELISA and IHC. CONCLUSION: PF exhibited a hepatoprotective effect in ANIT-induced CT, primarily by targeting GSDMD, thereby suppressing ANIT-induced pyroptosis and the subsequent release of inflammatory mediators.


Assuntos
Colestase , Glucosídeos , Monoterpenos , Proteínas de Ligação a Fosfato , Piroptose , Ratos Sprague-Dawley , Transdução de Sinais , Piroptose/efeitos dos fármacos , Animais , Glucosídeos/farmacologia , Monoterpenos/farmacologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Masculino , Ratos , Células Hep G2 , Colestase/tratamento farmacológico , Colestase/induzido quimicamente , Proteínas de Ligação a Fosfato/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Simulação de Acoplamento Molecular , Modelos Animais de Doenças , Farmacologia em Rede , Gasderminas
2.
J Ethnopharmacol ; 335: 118713, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39163894

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yin-Chen-Si-Ni Decoction is a classical traditional Chinese medicine (TCM) prescription that is used clinically for treating cholestatic liver injury (CLI) and other hepatic diseases. However, the material basis and underlying mechanisms of YCSND are not clear. AIM OF THE STUDY: To investigate effective components and mechanisms of YCSND in the treatment of CLI using serum pharmacochemistry, metabolomics, and network pharmacology. MATERIALS AND METHODS: Biochemical indicators, liver index, and histopathology analysis were adopted to evaluate the protective effect of YCSND on ANIT-induced CLI rats. Then, a UPLC-Q-Exactive Orbitrap MS/MS analysis of the migrant components in serum and liver including prototype and metabolic components was performed in YCSND. In addition, a study of the endogenous metabolites using serum and liver metabolomics was performed to discover potential biomarkers, metabolic pathways, and associated mechanisms. Further, the network pharmacology oriented by in vivo migrant components was also used to pinpoint the active ingredients, core targets, and signaling pathways of YCSND. Finally, molecular docking and molecular dynamics simulation (MDS) were used to predict the binding ability between components and core targets, and a real-time qPCR (RT-qPCR) experiment was used to measure the mRNA expression of the core target genes. RESULTS: Pharmacodynamic studies suggest that YCSND could exert obvious hepatoprotective effects on CLI rats. Furthermore, 68 compounds, comprising 32 prototype components and 36 metabolic components from YCSND, were found by serum pharmacochemistry analysis. Network pharmacology combining molecular docking and MDS showed that apigenin, naringenin, 18ß-glycyrrhetinic acid, and isoformononetin have better binding ability to 6 core targets (EGFR, AKT1, IL6, MMP9, CASP3, PPARG). Additionally, PI3K, TNF-α, MAPK3, and six core target genes in liver tissues were validated with RT-qPCR. Metabolomics revealed the anti-CLI effects of YCSND by regulating four metabolic pathways of primary bile acid and biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and arachidonic acid metabolism. Integrating metabolomics and network pharmacology identified four pathways related to CLI, including the PI3K-Akt, HIF-1, MAPK, and TNF signaling pathway, which revealed multiple mechanisms of YCSND against CLI that might involve anti-inflammatory and apoptosis. CONCLUSION: The research based on serum pharmacochemistry, network pharmacology, and metabolomics demonstrates the beneficial hepatoprotective effects of YCSND on CLI rats by regulating multiple components, multiple targets, and multiple pathways, and provides a potent means of illuminating the material basis and mechanisms of TCM prescriptions.


Assuntos
1-Naftilisotiocianato , Medicamentos de Ervas Chinesas , Fígado , Metabolômica , Farmacologia em Rede , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , 1-Naftilisotiocianato/toxicidade , Ratos , Ratos Sprague-Dawley , Colestase/tratamento farmacológico , Colestase/induzido quimicamente , Colestase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Biomarcadores/sangue
3.
Toxicol Appl Pharmacol ; 490: 117038, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019095

RESUMO

Cholestasis is a hepatobiliary disorder characterized by the excessive accumulation of toxic bile acids in hepatocytes, leading to cholestatic liver injury (CLI) through multiple pathogenic inflammatory pathways. Currently, there are limited therapeutic options for the management of cholestasis and associated CLI; therefore, new options are urgently needed. Pirfenidone (PF), an oral bioavailable pyridone analog, is used for the treatment of idiopathic pulmonary fibrosis. PF has recently demonstrated diverse potential therapeutic activities against different pathologies. Accordingly, the present study adopted the α-naphthyl isothiocyanate (ANIT)-induced CLI model in mice to explore the potential protective impact of PF and investigate the underlying mechanisms of action. PF intervention markedly reduced the serum levels of ALT, AST, LDH, total bilirubin, and total bile acids, which was accompanied by a remarkable amelioration of histopathological lesions induced by ANIT. PF also protected the mice against ANIT-induced redox imbalance in the liver, represented by reduced MDA levels and elevated GSH and SOD activities. Mechanistically, PF inhibited ANIT-induced downregulated expressions of the farnesoid X receptor (FXR), as well as the bile salt export pump (BSEP) and the multidrug resistance-associated protein 2 (MRP2) bile acid efflux channels. PF further repressed ANIT-induced NF-κB activation and TNF-α and IL-6 production. These beneficial effects were associated with its ability to dose-dependently inhibit Wnt/GSK-3ß/ß-catenin/cyclin D1 signaling. Collectively, PF protects against ANIT-induced CLI in mice, demonstrating powerful antioxidant and anti-inflammatory activities as well as an ability to oppose BA homeostasis disorder. These protective effects are primarily mediated by modulating the interplay between FXR, NF-κB/TNF-α/IL-6, and Wnt/ß-catenin signaling pathways.


Assuntos
1-Naftilisotiocianato , Colestase , Glicogênio Sintase Quinase 3 beta , NF-kappa B , Piridonas , Receptores Citoplasmáticos e Nucleares , Fator de Necrose Tumoral alfa , Via de Sinalização Wnt , Animais , Piridonas/farmacologia , NF-kappa B/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Masculino , 1-Naftilisotiocianato/toxicidade , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Colestase/induzido quimicamente , Colestase/metabolismo , Colestase/tratamento farmacológico , Colestase/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Camundongos Endogâmicos C57BL , beta Catenina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia
4.
Int Immunopharmacol ; 139: 112799, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39068755

RESUMO

Antituberculosis drugs induce pharmacologic cholestatic liver injury with long-term administration. Liver injury resulting from rifampicin is potentially related to the bile acid nuclear receptor Farnesoid X Receptor (FXR). To investigate this, cholestasis was induced in both wild-type (C57BL/6N) mice and FXR knockout (FXR-null) mice through administration of rifampicin (200 mg/kg) via gavage for 7 consecutive days. Compared with C57BL/6N mice, FXR-null mice exhibited more severe liver injury after rifampicin administration, characterized by enlarged liver size, elevated transaminases, and increased inflammation. Moreover, under rifampicin treatment, FXR knockout impairs lipid secretion and exacerbates hepatic steatosis. Significantly, the expression of metabolism molecules BSEP increased, while NTCP and CYP7A1 decreased following rifampicin administration in C57BL/6N mice, whereas these changes were absent in FXR knockout mice. Furthermore, rifampicin treatment in both C57BL/6N and FXR-null mice was associated with elevated c-Jun N-terminal kinase phosphorylation (p-JNK) levels, with a more pronounced elevation in FXR-null mice. Our study suggests that rifampicin-induced liver injury, steatosis, and cholestasis are associated with FXR dysfunction and altered bile acid metabolism, and that the JNK signaling pathway is partially implicated in this injury. Based on these results, we propose that FXR might be a novel therapeutic target for addressing drug-induced liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares , Rifampina , Animais , Rifampina/efeitos adversos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Simportadores/genética , Simportadores/metabolismo , Ácidos e Sais Biliares/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Colestase/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
5.
J Appl Toxicol ; 44(11): 1742-1760, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39030796

RESUMO

Bile acid homeostasis is crucial for the normal physiological functioning of the liver. Disruptions in bile acid profiles are closely linked to the occurrence of cholestatic liver injury. As part of our diagnostic and therapeutic approach, we aimed to investigate the disturbance in bile acid profiles during cholestasis and its correlation with cholestatic liver injury. Before the occurrence of liver injury, alterations in bile acid profiles were detected in both plasma and liver between 8 and 16 h, persisting up to 96 h. TCA, TCDCA, and TUDCA in the plasma, as well as TCA, TUDCA, TCDCA, TDCA, TLCA, and THDCA in the liver, emerged as early sensitive and potential markers for diagnosing ANIT-induced cholestasis at 8-16 h. The distinguishing features of ANIT-induced liver injury were as follows: T-BAs exceeding G-BAs and serum biochemical indicators surpassing free bile acids. Notably, plasma T-BAs, particularly TCA, exhibited higher sensitivity to cholestatic hepatotoxicity compared with serum enzyme activity and liver histopathology. Further investigation revealed that TCA exacerbated ANIT-induced liver injury by elevating liver function enzyme activity, inflammation, and bile duct proliferation and promoting the migration of bile duct epithelial cell. Nevertheless, no morphological changes or alterations in transaminase activity indicative of liver damage were observed in the rats treated with TCA alone. Additionally, there were no changes in bile acid profiles or inflammatory responses under physiological conditions with maintained bile acid homeostasis. In summary, our findings suggest that taurine-conjugated bile acids in both plasma and liver, particularly TCA, can serve as early and sensitive markers for predicting intrahepatic cholestatic drugs and can act as potent exacerbators of cholestatic liver injury progression. However, exogenous TCA does not induce liver injury under physiological conditions where bile acid homeostasis is maintained.


Assuntos
1-Naftilisotiocianato , Ácidos e Sais Biliares , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas , Colestase , Fígado , Ácido Taurocólico , Animais , Biomarcadores/sangue , Masculino , Ácido Taurocólico/toxicidade , Colestase/induzido quimicamente , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/metabolismo , Ratos , 1-Naftilisotiocianato/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Ratos Sprague-Dawley
6.
Phytomedicine ; 132: 155799, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968789

RESUMO

Gardenia jasminoides Ellis, a staple in herbal medicine, has long been esteemed for its purported hepatoprotective properties. Its primary bioactive constituent, geniposide, has attracted considerable scientific interest owing to its multifaceted therapeutic benefits across various health conditions. However, recent investigations have unveiled potential adverse effects associated with its metabolite, genipin, particularly at higher doses and prolonged durations of administration, leading to hepatic injury. Determining the optimal dosage and duration of geniposide administration while elucidating its pharmacological and toxicological mechanisms is imperative for safe and effective clinical application. This study aimed to evaluate the safe dosage and administration duration of geniposide in mice and investigate its toxicological mechanisms within a comprehensive dosage-duration-efficacy/toxicity model. Four distinct mouse models were employed, including wild-type mice, cholestasis-induced mice, globally farnesoid X-activated receptor (FXR) knock out mice, and high-fat diet-induced (HFD) NAFLD mice. Various administration protocols, spanning one or four weeks and comprising two or three oral doses, were tailored to each model's requirements. Geniposide has positive effects on bile acid and lipid metabolism at doses below 220 mg/kg/day without causing liver injury in normal mice. However, in mice with NAFLD, this dosage is less effective in improving liver function, lipid profiles, and bile acid metabolism compared to lower doses. In cholestasis-induced mice, prolonged use of geniposide at 220 mg/kg/day worsened liver damage. Additionally, in NAFLD mice, this dosage of geniposide for four weeks led to intestinal pyroptosis and liver inflammation. These results highlight the lipid-lowering and bile acid regulatory effects of geniposide, but also warn of potential negative impacts on intestinal epithelial cells, particularly with higher doses and longer treatment durations. Therefore, achieving optimal therapeutic results requires a decrease in treatment duration as the dosage increases, in order to maintain a balanced approach to the use of geniposide in clinical settings.


Assuntos
Gardenia , Iridoides , Camundongos Endogâmicos C57BL , Animais , Iridoides/farmacologia , Iridoides/administração & dosagem , Masculino , Gardenia/química , Camundongos , Modelos Animais de Doenças , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Camundongos Knockout , Metabolismo dos Lipídeos/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Colestase/tratamento farmacológico , Colestase/induzido quimicamente , Ácidos e Sais Biliares/metabolismo , Relação Dose-Resposta a Droga , Receptores Citoplasmáticos e Nucleares
7.
Arch Toxicol ; 98(10): 3409-3424, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39023798

RESUMO

Hepatic bile acid regulation is a multifaceted process modulated by several hepatic transporters and enzymes. Drug-induced cholestasis (DIC), a main type of drug-induced liver injury (DILI), denotes any drug-mediated condition in which hepatic bile flow is impaired. Our ability in translating preclinical toxicological findings to human DIC risk is currently very limited, mainly due to important interspecies differences. Accordingly, the anticipation of clinical DIC with available in vitro or in silico models is also challenging, due to the complexity of the bile acid homeostasis. Herein, we assessed the in vitro inhibition potential of 47 marketed drugs with various degrees of reported DILI severity towards all metabolic and transport mechanisms currently known to be involved in the hepatic regulation of bile acids. The reported DILI concern and/or cholestatic annotation correlated with the number of investigated processes being inhibited. Furthermore, we employed univariate and multivariate statistical methods to determine the important processes for DILI discrimination. We identified time-dependent inhibition (TDI) of cytochrome P450 (CYP) 3A4 and reversible inhibition of the organic anion transporting polypeptide (OATP) 1B1 as the major risk factors for DIC among the tested mechanisms related to bile acid transport and metabolism. These results were consistent across multiple statistical methods and DILI classification systems applied in our dataset. We anticipate that our assessment of the two most important processes in the development of cholestasis will enable a risk assessment for DIC to be efficiently integrated into the preclinical development process.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Colestase , Citocromo P-450 CYP3A , Transportador 1 de Ânion Orgânico Específico do Fígado , Humanos , Colestase/induzido quimicamente , Colestase/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Citocromo P-450 CYP3A/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fatores de Risco , Ácidos e Sais Biliares/metabolismo , Inibidores do Citocromo P-450 CYP3A , Fatores de Tempo
8.
Biomed Chromatogr ; 38(10): e5961, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39054754

RESUMO

Gardeniae fructus (GF) is known for its various beneficial effects on cholestatic liver injury (CLI). However, the biological mechanisms through which GF regulates CLI have not been fully elucidated. This study aimed to explore the potential mechanisms of GF against α-naphthylisothiocyanate (ANIT)-induced CLI. First, HPLC technology was used to analyze the chemical profile of the GF extract. Second, the effects of GF on serum biochemical indicators and liver histopathology were examined. Lastly, metabolomics was utilized to study the changes in liver metabolites and clarify the associated metabolic pathways. In chemical analysis, 10 components were identified in the GF extract. GF treatment regulated serum biochemical indicators in ANIT-induced CLI model rats and alleviated liver histological damage. Metabolomics identified 26 endogenous metabolites as biomarkers of ANIT-induced CLI, with 23 biomarkers returning to normal levels, particularly involving primary bile acid biosynthesis, glycerophospholipid metabolism, tryptophan metabolism, and arachidonic acid metabolism. GF shows promise in alleviating ANIT-induced CLI by modulating multiple pathways.


Assuntos
1-Naftilisotiocianato , Gardenia , Fígado , Metaboloma , Metabolômica , Extratos Vegetais , Animais , 1-Naftilisotiocianato/toxicidade , Metabolômica/métodos , Ratos , Gardenia/química , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Metaboloma/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Colestase/metabolismo , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Cromatografia Líquida de Alta Pressão/métodos , Ratos Sprague-Dawley , Biomarcadores/metabolismo , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Frutas/química
9.
Life Sci ; 352: 122839, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876186

RESUMO

AIMS: Estradiol 17ß-d-glucuronide (E217G) induces cholestasis by triggering endocytosis and further intracellular retention of the canalicular transporters Bsep and Mrp2, in a cPKC- and PI3K-dependent manner, respectively. Pregnancy-induced cholestasis has been associated with E217G cholestatic effect, and is routinely treated with ursodeoxycholic acid (UDCA). Since protective mechanisms of UDCA in E217G-induced cholestasis are still unknown, we ascertained here whether its main metabolite, tauroursodeoxycholate (TUDC), can prevent endocytosis of canalicular transporters by counteracting cPKC and PI3K/Akt activation. MAIN METHODS: Activation of cPKC and PI3K/Akt was evaluated in isolated rat hepatocytes by immunoblotting (assessment of membrane-bound and phosphorylated forms, respectively). Bsep/Mrp2 function was quantified in isolated rat hepatocyte couplets (IRHCs) by assessing the apical accumulation of their fluorescent substrates, CLF and GS-MF, respectively. We also studied, in isolated, perfused rat livers (IPRLs), the status of Bsep and Mrp2 transport function, assessed by the biliary excretion of TC and DNP-SG, respectively, and Bsep/Mrp2 localization by immunofluorescence. KEY FINDINGS: E217G activated both cPKC- and PI3K/Akt-dependent signaling, and pretreatment with TUDC significantly attenuated these activations. In IRHCs, TUDC prevented the E217G-induced decrease in apical accumulation of CLF and GS-MF, and inhibitors of protein phosphatases failed to counteract this protection. In IPRLs, E217G induced an acute decrease in bile flow and in the biliary excretion of TC and DNP-SG, and this was prevented by TUDC. Immunofluorescence studies revealed that TUDC prevented E217G-induced Bsep/Mrp2 endocytosis. SIGNIFICANCE: TUDC restores function and localization of Bsep/Mrp2 impaired by E217G, by preventing both cPKC and PI3K/Akt activation in a protein-phosphatase-independent manner.


Assuntos
Colestase , Endocitose , Estradiol , Hepatócitos , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Ácido Tauroquenodesoxicólico , Animais , Colestase/metabolismo , Colestase/induzido quimicamente , Colestase/prevenção & controle , Ratos , Transdução de Sinais/efeitos dos fármacos , Estradiol/metabolismo , Estradiol/farmacologia , Estradiol/análogos & derivados , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Feminino , Masculino , Proteína Quinase C/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo
10.
Toxins (Basel) ; 16(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922135

RESUMO

The aim of this study was to investigate the effects of aflatoxin B1 (AFB1) on cholestasis in duck liver and its nutritional regulation. Three hundred sixty 1-day-old ducks were randomly divided into six groups and fed for 4 weeks. The control group was fed a basic diet, while the experimental group diet contained 90 µg/kg of AFB1. Cholestyramine, atorvastatin calcium, taurine, and emodin were added to the diets of four experimental groups. The results show that in the AFB1 group, the growth properties, total bile acid (TBA) serum levels and total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) liver levels decreased, while the malondialdehyde (MDA) and TBA liver levels increased (p < 0.05). Moreover, AFB1 caused cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin could reduce the TBA serum and liver levels (p < 0.05), alleviating the symptoms of cholestasis. The qPCR results show that AFB1 upregulated cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and cytochrome P450 family 8 subfamily B member 1 (CYP8B1) gene expression and downregulated ATP binding cassette subfamily B member 11 (BSEP) gene expression in the liver, and taurine and emodin downregulated CYP7A1 and CYP8B1 gene expression (p < 0.05). In summary, AFB1 negatively affects health and alters the expression of genes related to liver bile acid metabolism, leading to cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin can alleviate AFB1-induced cholestasis.


Assuntos
Aflatoxina B1 , Colestase , Patos , Fígado , Animais , Aflatoxina B1/toxicidade , Colestase/induzido quimicamente , Colestase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/sangue , Doenças das Aves Domésticas/induzido quimicamente , Resina de Colestiramina/farmacologia , Ração Animal
11.
Arch Toxicol ; 98(8): 2605-2617, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38753187

RESUMO

Drug-induced cholestasis results in drug discontinuation and market withdrawal, and the prediction of cholestasis risk is critical in the early stages of drug development. Animal tests and membrane vesicle assay are currently being conducted to assess the risk of cholestasis in the preclinical stage. However, these methods have drawbacks, such as species differences with humans and difficulties in evaluating the effects of drug metabolism and other transporters, implying the need for a cholestasis risk assessment system using human hepatocytes. However, human hepatocytes hardly form functional, extended bile canaliculi, a requirement for cholestasis risk assessment. We previously established a culture protocol for functional, extended bile canaliculi formation in human iPSC-derived hepatocytes. In this study, we modified this culture protocol to support the formation of functional, extended bile canaliculi in human cryopreserved hepatocytes (cryoheps). The production of bile acids, which induces bile canaliculi extension, increased time-dependently during bile canaliculi formation using this protocol, suggesting that increased bile acid production may be involved in the extended bile canaliculi formation. We have also shown that our culture protocol can be applied to cryoheps from multiple donors and that bile canaliculi can be formed stably among different culture batches. Furthermore, this protocol enables long-term maintenance of bile canaliculi and scaling down to culture in 96-well plates. We expect our culture protocol to be a breakthrough for in vitro cholestasis risk assessment.


Assuntos
Ácidos e Sais Biliares , Canalículos Biliares , Colestase , Criopreservação , Meios de Cultura , Hepatócitos , Humanos , Criopreservação/métodos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo , Canalículos Biliares/metabolismo , Colestase/metabolismo , Colestase/induzido quimicamente , Técnicas de Cultura de Células/métodos , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo
12.
Arch Toxicol ; 98(9): 3077-3095, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38755481

RESUMO

Cholestasis is characterized by hepatic accumulation of bile acids. Clinical manifestation of cholestasis only occurs in a small proportion of exposed individuals. The present study aims to develop a new approach methodology (NAM) to predict drug-induced cholestasis as a result of drug-induced hepatic bile acid efflux inhibition and the resulting bile acid accumulation. To this end, hepatic concentrations of a panel of drugs were predicted by a generic physiologically based kinetic (PBK) drug model. Their effects on hepatic bile acid efflux were incorporated in a PBK model for bile acids. The predicted bile acid accumulation was used as a measure for a drug's cholestatic potency. The selected drugs were known to inhibit hepatic bile acid efflux in an assay with primary suspension-cultured hepatocytes and classified as common, rare, or no for cholestasis incidence. Common cholestasis drugs included were atorvastatin, chlorpromazine, cyclosporine, glimepiride, ketoconazole, and ritonavir. The cholestasis incidence of the drugs appeared not to be adequately predicted by their Ki for inhibition of hepatic bile acid efflux, but rather by the AUC of the PBK model predicted internal hepatic drug concentration at therapeutic dose level above this Ki. People with slower drug clearance, a larger bile acid pool, reduced bile salt export pump (BSEP) abundance, or given higher than therapeutic dose levels were predicted to be at higher risk to develop drug-induced cholestasis. The results provide a proof-of-principle of using a PBK-based NAM for cholestasis risk prioritization as a result of transporter inhibition and identification of individual risk factors.


Assuntos
Ácidos e Sais Biliares , Colestase , Hepatócitos , Modelos Biológicos , Colestase/induzido quimicamente , Colestase/metabolismo , Humanos , Ácidos e Sais Biliares/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Medição de Risco , Fígado/metabolismo , Fígado/efeitos dos fármacos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores
13.
Biochimie ; 223: 41-53, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38608750

RESUMO

The endogenous metabolite of estradiol, estradiol 17ß-D-glucuronide (E17G), is considered the main responsible of the intrahepatic cholestasis of pregnancy. E17G alters the activity of canalicular transporters through a signaling pathway-dependent cellular internalization, phenomenon that was attributed to oxidative stress in different cholestatic conditions. However, there are no reports involving oxidative stress in E17G-induced cholestasis, representing this the aim of our work. Using polarized hepatocyte cultures, we showed that antioxidant compounds prevented E17G-induced Mrp2 activity alteration, being this alteration equally prevented by the NADPH oxidase (NOX) inhibitor apocynin. The model antioxidant N-acetyl-cysteine prevented, in isolated and perfused rat livers, E17G-induced impairment of bile flow and Mrp2 activity, thus confirming the participation of reactive oxygen species (ROS) in this cholestasis. In primary cultured hepatocytes, pretreatment with specific inhibitors of ERK1/2 and p38MAPK impeded E17G-induced ROS production; contrarily, NOX inhibition did not affect ERK1/2 and p38MAPK phosphorylation. Both, knockdown of p47phox by siRNA and preincubation with apocynin in sandwich-cultured rat hepatocytes significantly prevented E17G-induced internalization of Mrp2, suggesting a crucial role for NOX in this phenomenon. Concluding, E17G-induced cholestasis is partially mediated by NOX-generated ROS through internalization of canalicular transporters like Mrp2, being ERK1/2 and p38MAPK necessary for NOX activation.


Assuntos
Estradiol , Hepatócitos , NADPH Oxidases , Espécies Reativas de Oxigênio , Animais , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Estradiol/farmacologia , Estradiol/metabolismo , Estradiol/análogos & derivados , Feminino , Colestase/induzido quimicamente , Colestase/metabolismo , Colestase/patologia , Ratos Wistar , Acetofenonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Cultivadas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Colestase Intra-Hepática , Complicações na Gravidez , Transportadores de Cassetes de Ligação de ATP
14.
Chem Res Toxicol ; 37(5): 804-813, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38646980

RESUMO

With the increasing use of oral contraceptives and estrogen replacement therapy, the incidence of estrogen-induced cholestasis (EC) has tended to rise. Psoralen (P) and isopsoralen (IP) are the major bioactive components in Psoraleae Fructus, and their estrogen-like activities have already been recognized. Recent studies have also reported that ERK1/2 plays a critical role in EC in mice. This study aimed to investigate whether P and IP induce EC and reveal specific mechanisms. It was found that P and IP increased the expression of esr1, cyp19a1b and the levels of E2 and VTG at 80 µM in zebrafish larvae. Exemestane (Exe), an aromatase antagonist, blocked estrogen-like activities of P and IP. At the same time, P and IP induced cholestatic hepatotoxicity in zebrafish larvae with increasing liver fluorescence areas and bile flow inhibition rates. Further mechanistic analysis revealed that P and IP significantly decreased the expression of bile acids (BAs) synthesis genes cyp7a1 and cyp8b1, BAs transport genes abcb11b and slc10a1, and BAs receptor genes nr1h4 and nr0b2a. In addition, P and IP caused EC by increasing the level of phosphorylation of ERK1/2. The ERK1/2 antagonists GDC0994 and Exe both showed significant rescue effects in terms of cholestatic liver injury. In conclusion, we comprehensively studied the specific mechanisms of P- and IP-induced EC and speculated that ERK1/2 may represent an important therapeutic target for EC induced by phytoestrogens.


Assuntos
Colestase , Ficusina , Furocumarinas , Psoralea , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Colestase/induzido quimicamente , Colestase/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Ficusina/farmacologia , Furocumarinas/farmacologia , Furocumarinas/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Psoralea/química , Peixe-Zebra
15.
Biomed Pharmacother ; 174: 116530, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574623

RESUMO

BACKGROUND: Serum transaminases, alkaline phosphatase and bilirubin are common parameters used for DILI diagnosis, classification, and prognosis. However, the relevance of clinical examination, histopathology and drug chemical properties have not been fully investigated. As cholestasis is a frequent and complex DILI manifestation, our goal was to investigate the relevance of clinical features and drug properties to stratify drug-induced cholestasis (DIC) patients, and to develop a prognosis model to identify patients at risk and high-concern drugs. METHODS: DIC-related articles were searched by keywords and Boolean operators in seven databases. Relevant articles were uploaded onto Sysrev, a machine-learning based platform for article review and data extraction. Demographic, clinical, biochemical, and liver histopathological data were collected. Drug properties were obtained from databases or QSAR modelling. Statistical analyses and logistic regressions were performed. RESULTS: Data from 432 DIC patients associated with 52 drugs were collected. Fibrosis strongly associated with fatality, whereas canalicular paucity and ALP associated with chronicity. Drugs causing cholestasis clustered in three major groups. The pure cholestatic pattern divided into two subphenotypes with differences in prognosis, canalicular paucity, fibrosis, ALP and bilirubin. A predictive model of DIC outcome based on non-invasive parameters and drug properties was developed. Results demonstrate that physicochemical (pKa-a) and pharmacokinetic (bioavailability, CYP2C9) attributes impinged on the DIC phenotype and allowed the identification of high-concern drugs. CONCLUSIONS: We identified novel associations among DIC manifestations and disclosed novel DIC subphenotypes with specific clinical and chemical traits. The developed predictive DIC outcome model could facilitate DIC prognosis in clinical practice and drug categorization.


Assuntos
Colestase , Aprendizado de Máquina , Fenótipo , Humanos , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Colestase/induzido quimicamente , Bases de Dados Factuais , Prognóstico
16.
J Ethnopharmacol ; 328: 118108, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38574780

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polygala fallax Hemsl. is a traditional folk medicine commonly used by ethnic minorities in the Guangxi Zhuang Autonomous Region, and has a traditional application in the treatment of liver disease. Polygala fallax Hemsl. polysaccharides (PFPs) are of interest for their potential health benefits. AIM OF THIS STUDY: This study explored the impact of PFPs on a mouse model of cholestatic liver injury (CLI) induced by alpha-naphthyl isothiocyanate (ANIT), as well as the potential mechanisms. MATERIALS AND METHODS: A mouse CLI model was constructed using ANIT (80 mg/kg) and intervened with different doses of PFPs or ursodeoxycholic acid. Their serum biochemical indices, hepatic oxidative stress indices, and hepatic pathological characteristics were investigated. Then RNA sequencing was performed on liver tissues to identify differentially expressed genes and signaling pathways and to elucidate the mechanism of liver protection by PFPs. Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to verify the differentially expressed genes. RESULTS: Data analyses showed that PFPs reduced the levels of liver function-related biochemical indices, such as ALT, AST, AKP, TBA, DBIL, and TBIL. PFPs up-regulated the activities of SOD and GSH, down-regulated the contents of MDA, inhibited the release of IL-1ß, IL-6, and TNF-α, or promoted IL-10. Pathologic characterization of the liver revealed that PFPs reduced hepatocyte apoptosis or necrosis. The RNA sequencing indicated that the genes with differential expression were primarily enriched for the biosynthesis of primary bile acids, secretion or transportation of bile, the reactive oxygen species in chemical carcinogenesis, and the NF-kappa B signaling pathway. In addition, the results of qRT-PCR and Western blotting analysis were consistent with those of RNA sequencing analysis. CONCLUSIONS: In summary, this study showed that PFPs improved intrahepatic cholestasis and alleviated liver damage through the modulation of primary bile acid production, Control of protein expression related to bile secretion or transportation, decrease in inflammatory reactions, and inhibition of oxidative pressure. As a result, PFPs might offer a hopeful ethnic dietary approach for managing intrahepatic cholestasis.


Assuntos
Colestase Intra-Hepática , Colestase , Polygala , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , 1-Naftilisotiocianato/toxicidade , China , Fígado/metabolismo , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Colestase/metabolismo , Colestase Intra-Hepática/induzido quimicamente , Isotiocianatos/efeitos adversos , Isotiocianatos/metabolismo , Ácidos e Sais Biliares/metabolismo
18.
J Ethnopharmacol ; 327: 118009, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38447617

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to traditional Chinese medicine (TCM) theory, cholestasis belongs to category of jaundice. Artemisia capillaris Thunb. has been widely used for the treatment of jaundice in TCM. The polysaccharides are the one of main active components of the herb, but its effects on cholestasis remain unclear. AIM OF THE STUDY: To investigate the protective effect and mechanism of Artemisia capillaris Thunb. polysaccharide (APS) on cholestasis and liver injury. MATERIALS AND METHODS: The amelioration of APS on cholestasis was evaluated in an alpha-naphthyl isothiocyanate (ANIT)-induced mice model. Then nuclear Nrf2 knockout mice, mass spectrometry, 16s rDNA sequencing, metabolomics, and molecular biotechnology methods were used to elucidate the associated mechanisms of APS against cholestatic liver injury. RESULTS: Treatment with low and high doses of APS markedly decreased cholestatic liver injury of mice. Mechanistically, APS promoted nuclear translocation of hepatic nuclear factor erythroid 2-related factor (Nrf2), upregulated downstream bile acid (BA) efflux transporters and detoxifying enzymes expression, improved BA homeostasis, and attenuated oxidative liver injury; however, these effects were annulled in Nrf2 knock-out mice. Furthermore, APS ameliorated the microbiota dysbiosis of cholestatic mice and selectively increased short-chain fatty acid (SCFA)-producing bacteria growth. Fecal microbiota transplantation of APS also promoted hepatic Nrf2 activation, increased BA efflux transporters and detoxifying enzymes expression, ameliorated intrahepatic BA accumulation and cholestatic liver injury. Non-targeted metabolomics and in vitro microbiota culture confirmed that APS significantly increased the production of a microbiota-derived SCFA (butyric acid), which is also able to upregulate Nrf2 expression. CONCLUSIONS: These findings indicate that APS can ameliorate cholestasis by modulating gut microbiota and activating the Nrf2 pathway, representing a novel therapeutic approach for cholestatic liver disease.


Assuntos
Artemisia , Colestase , Microbioma Gastrointestinal , Icterícia , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fígado , Colestase/induzido quimicamente , Transdução de Sinais , Icterícia/metabolismo , Ácidos e Sais Biliares/metabolismo
19.
Toxicol Lett ; 395: 50-59, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552811

RESUMO

A better understanding of cyclosporine A (CsA)-induced nephro- and hepatotoxicity at the molecular level is necessary for safe and effective use. Utilizing a sophisticated study design, this study explored metabolic alterations after long-term CsA treatment in vivo. Rats were exposed to CsA with 4, 10, and 25 mg/kg for 4 weeks and then sacrificed to obtain liver, kidney, urine, and serum for untargeted metabolomics analysis. Differential network analysis was conducted to explore the biological relevance of metabolites significantly altered by toxicity-induced disturbance. Dose-dependent toxicity was observed in all biospecimens. The toxic effects were characterized by alterations of metabolites related to energy metabolism and cellular membrane composition, which could lead to the cholestasis-induced accumulation of bile acids in the tissues. The unfavorable impacts were also demonstrated in the serum and urine. Intriguingly, phenylacetylglycine was increased in the kidney, urine, and serum treated with high doses versus controls. Differential correlation network analysis revealed the strong correlations of deoxycytidine and guanosine with other metabolites in the network, which highlighted the influence of repeated CsA exposure on DNA synthesis. Overall, prolonged CsA administration had system-level dose-dependent effects on the metabolome in treated rats, suggesting the need for careful usage and dose adjustment.


Assuntos
Colestase , Ciclosporina , Ratos , Animais , Ciclosporina/toxicidade , Ciclosporina/metabolismo , Fígado/metabolismo , Rim/metabolismo , Colestase/induzido quimicamente , Metaboloma
20.
Exp Clin Transplant ; 22(Suppl 1): 338-341, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38385422

RESUMO

Drug-induced liver injury after liver transplant occurs in 1.7% of patients. Tacrolimus is an effective immunosuppressant that is used to treat acute rejection. Although rare, it can cause toxicity, which is demonstrated by cholestatic liver injury. Here, we present a case of a young male patient who was diagnosed with Wilson disease, had penicillaminechelating therapy, and underwent living related liver transplant. Within 1 month posttransplant, he developed deranged, predominantly cholestatic pattern liver function tests. Laboratory parameters showed total bilirubin of 1.12 mg/ dL, alanine aminotransferase of 553 IU/L, gammaglutamyltransferase of 624 IU/L, and tacrolimus level of 10.2 ng/mL. After thorough evaluation, a liver biopsy was performed. Liver biopsy showed hepatocellular necrosis with centrilobular cholestasis without any evidence of graft rejection. However, with normal level of tacrolimus, the biopsy was suggestive of drug-induced liver injury. Thus, tacrolimus dose was reduced, resulting in improved liver function tests and patient discharge from the hospital. Tacrolimus is an effective immunosuppressant after liver transplant and has the ability to treat early acute rejection. The patient's liver biopsy showed hepatocellular necrosis with centrilobular cholestasis without any evidence of graft rejection. Cholestatic liver injury after tacrolimus usually resolves after dose reduction or by switching to another agent. With demonstrated tacrolimus-induced toxicity in liver transplant recipients, despite normal serum levels, transplant physicians should keep high index of suspicion regarding toxicity in the posttransplant setting.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Colestase , Transplante de Fígado , Humanos , Masculino , Tacrolimo/efeitos adversos , Transplante de Fígado/efeitos adversos , Imunossupressores/efeitos adversos , Colestase/induzido quimicamente , Colestase/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/cirurgia , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/prevenção & controle , Necrose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...