Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.471
Filtrar
1.
ACS Chem Neurosci ; 15(14): 2545-2564, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38979773

RESUMO

Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disease and remains a formidable global health challenge. The current medication for AD gives symptomatic relief and, thus, urges us to look for alternative disease-modifying therapies based on a multitarget directed approach. Looking at the remarkable progress made in peptide drug development in the last decade and the benefits associated with peptides, they offer valuable chemotypes [multitarget directed ligands (MTDLs)] as AD therapeutics. This review recapitulates the current developments made in harnessing peptides as MTDLs in combating AD by targeting multiple key pathways involved in the disease's progression. The peptides hold immense potential and represent a convincing avenue in the pursuit of novel AD therapeutics. While hurdles remain, ongoing research offers hope that peptides may eventually provide a multifaceted approach to combat AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Estresse Oxidativo , Proteínas tau , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Colinesterases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/fisiologia , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/metabolismo
2.
Protein Sci ; 33(8): e5100, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39022909

RESUMO

Cholinesterases are well-known and widely studied enzymes crucial to human health and involved in neurology, Alzheimer's, and lipid metabolism. The protonation pattern of active sites of cholinesterases influences all the chemical processes within, including reaction, covalent inhibition by nerve agents, and reactivation. Despite its significance, our comprehension of the fine structure of cholinesterases remains limited. In this study, we employed enhanced-sampling quantum-mechanical/molecular-mechanical calculations to show that cholinesterases predominantly operate as dynamic mixtures of two protonation states. The proton transfer between two non-catalytic glutamate residues follows the Grotthuss mechanism facilitated by a mediator water molecule. We show that this uncovered complexity of active sites presents a challenge for classical molecular dynamics simulations and calls for special treatment. The calculated proton transfer barrier of 1.65 kcal/mol initiates a discussion on the potential existence of two coupled low-barrier hydrogen bonds in the inhibited form of butyrylcholinesterase. These findings expand our understanding of structural features expressed by highly evolved enzymes and guide future advances in cholinesterase-related protein and drug design studies.


Assuntos
Butirilcolinesterase , Domínio Catalítico , Simulação de Dinâmica Molecular , Prótons , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Humanos , Ligação de Hidrogênio , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Colinesterases/química , Colinesterases/metabolismo
3.
PLoS One ; 19(6): e0305173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875300

RESUMO

Chlorpyrifos is an organophosphate pesticide associated with numerous health effects including motor performance decrements. While many studies have focused on the health effects following acute chlorpyrifos poisonings, almost no studies have examined the effects on motoneurons following occupational-like exposures. The main objective of this study was to examine the broad effects of repeated occupational-like chlorpyrifos exposures on spinal motoneuron soma size relative to motor activity. To execute our objective, adult rats were exposed to chlorpyrifos via oral gavage once a day, five days a week for two weeks. Chlorpyrifos exposure effects were assessed either three days or two months following the last exposure. Three days following the last repeated chlorpyrifos exposure, there were transient effects in open-field motor activity and plasma cholinesterase activity levels. Two months following the chlorpyrifos exposures, there were delayed effects in sensorimotor gating, pro-inflammatory cytokines and spinal lumbar motoneuron soma morphology. Overall, these results offer support that subacute repeated occupational-like chlorpyrifos exposures have both short-term and longer-term effects in motor activity, inflammation, and central nervous system mechanisms.


Assuntos
Clorpirifos , Atividade Motora , Neurônios Motores , Animais , Clorpirifos/toxicidade , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Ratos , Masculino , Atividade Motora/efeitos dos fármacos , Inseticidas/toxicidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Ratos Sprague-Dawley , Região Lombossacral , Colinesterases/metabolismo , Colinesterases/sangue , Inibidores da Colinesterase/toxicidade
5.
Int J Biol Macromol ; 272(Pt 1): 132748, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821306

RESUMO

Neurodegenerative diseases with progressive cellular loss of the central nervous system and elusive disease etiology provide a continuous impetus to explore drug discovery programmes aiming at identifying robust and effective inhibitors of cholinesterase and monoamine oxidase enzymes. We herein present a concise library of anthranilamide derivatives involving a palladium-catalyzed Suzuki-Miyaura cross-coupling reaction to install the diverse structural diversity required for the desired biological action. Using Ellman's method, cholinesterase inhibitory activity was performed against AChE and BuChE enzymes. In vitro assay results demonstrated that anthranilamides are potent inhibitors with remarkable potency. Compound 6k emerged as the lead candidate and dual inhibitor of both enzymes with IC50 values of 0.12 ± 0.01 and 0.49 ± 0.02 µM against AChE and BuChE, respectively. Several other compounds were found as highly potent and selective inhibitors. Anthranilamide derivatives were also tested against monoamine oxidase (A and B) enzymes using fluorometric method. In vitro data revealed compound 6h as the most potent inhibitor against MAO-A, showing an IC50 value of 0.44 ± 0.02 µM, whereas, compound 6k emerged as the top inhibitor of MAO-B with an IC50 value of 0.06 ± 0.01 µM. All the lead inhibitors were analyzed for the identification of their mechanism of action using Michaelis-Menten kinetics experiments. Compound 6k and 6h depicted a competitive mode of action against AChE and MAO-A, whereas, a non-competitive and mixed-type of inhibition was observed against BuChE and MAO-B by compounds 6k. Molecular docking analysis revealed remarkable binding affinities of the potent inhibitors with specific residues inside the active site of receptors. Furthermore, molecular dynamics simulations were performed to explore the ability of potent compounds to form energetically stable complexes with the target protein. Finally, in silico ADME calculations also demonstrated that the potent compounds exhibit promising pharmacokinetic profile, satisfying the essential criteria for drug-likeness. Altogether, the findings reported in the current work clearly suggest that the identified anthranilamide derivatives have the potential to serve as effective drug candidates for future investigations.


Assuntos
Inibidores da Colinesterase , Desenho de Fármacos , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase , Monoaminoxidase , Doenças Neurodegenerativas , ortoaminobenzoatos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacologia , Monoaminoxidase/metabolismo , Monoaminoxidase/química , Humanos , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Relação Estrutura-Atividade , Descoberta de Drogas , Colinesterases/metabolismo , Colinesterases/química , Simulação de Dinâmica Molecular
6.
Eur J Med Chem ; 273: 116523, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795518

RESUMO

In the current study, a series of fluorine-substituted piperidine derivatives (1-8) has been synthesized and characterized by various spectroscopic techniques. In vitro and in vivo enzyme inhibitory studies were conducted to elucidate the efficacy of these compounds, shedding light on their potential therapeutic applications. To the best of our knowledge, for the first time, these heterocyclic structures have been investigated against α-glucosidase and cholinesterase enzymes. The antioxidant activity of the synthesized compounds was also assessed. Evaluation of synthesized compounds revealed notable inhibitory effects on α-glucosidase and cholinesterases. Remarkably, the target compounds (1-8) exhibited extraordinary α-glucosidase inhibitory activity as compared to the standard acarbose by several-fold. Subsequently, the potential antidiabetic effects of compounds 2, 4, 5, and 6 were validated using a STZ-induced diabetic rat model. Kinetic studies were also performed to understand the mechanism of inhibition, while structure-activity relationship analyses provided valuable insights into the structural features governing enzyme inhibition. Kinetic investigations revealed that compound 4 displayed a competitive mode of inhibition against α-glucosidase, whereas compound 2 demonstrated mixed-type behavior against AChE. To delve deeper into the binding interactions between the synthesized compounds and their respective enzyme targets, molecular docking studies were conducted. Overall, our findings highlight the promising potential of these densely substituted piperidines as multifunctional agents for the treatment of diseases associated with dysregulated glucose metabolism and cholinergic dysfunction.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Diabetes Mellitus Experimental , Flúor , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Simulação de Acoplamento Molecular , Piperidinas , alfa-Glucosidases , Animais , Piperidinas/química , Piperidinas/farmacologia , Piperidinas/síntese química , Piperidinas/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Relação Estrutura-Atividade , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Hipoglicemiantes/uso terapêutico , Ratos , Flúor/química , alfa-Glucosidases/metabolismo , Estrutura Molecular , Masculino , Acetilcolinesterase/metabolismo , Relação Dose-Resposta a Droga , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Colinesterases/metabolismo , Estreptozocina
7.
Chem Biol Interact ; 396: 111028, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729282

RESUMO

Homocysteine (Hcy) is an independent cardiovascular disease (CVD) risk factor, whose mechanisms are poorly understood. We aimed to explore mild hyperhomocysteinemia (HHcy) effects on oxidative status, inflammatory, and cholinesterase parameters in aged male Wistar rats (365 days old). Rats received subcutaneous Hcy (0.03 µmol/g body weight) twice daily for 30 days, followed by euthanasia, blood collection and heart dissection 12 h after the last injection. Results revealed increased dichlorofluorescein (DCF) levels in the heart and serum, alongside decreased antioxidant enzyme activities (superoxide dismutase, catalase, glutathione peroxidase), reduced glutathione (GSH) content, and diminished acetylcholinesterase (AChE) activity in the heart. Serum butyrylcholinesterase (BuChE) levels also decreased. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) protein content decreased in both cytosolic and nuclear fractions, while cytosolic nuclear factor kappa B (NFκB) p65 increased in the heart. Additionally, interleukins IL-1ß, IL-6 and IL-10 showed elevated expression levels in the heart. These findings could suggest a connection between aging and HHcy in CVD. Reduced Nrf2 protein content and impaired antioxidant defenses, combined with inflammatory factors and altered cholinesterases activity, may contribute to understanding the impact of Hcy on cardiovascular dynamics. This study sheds light on the complex interplay between HHcy, oxidative stress, inflammation, and cholinesterases in CVD, providing valuable insights for future research.


Assuntos
Hiper-Homocisteinemia , Inflamação , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Ratos Wistar , Animais , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Hiper-Homocisteinemia/metabolismo , Ratos , Inflamação/metabolismo , Envelhecimento/metabolismo , Sistema Cardiovascular/metabolismo , Colinesterases/metabolismo , Colinesterases/sangue , Acetilcolinesterase/metabolismo , Miocárdio/metabolismo , Butirilcolinesterase/metabolismo
8.
Environ Toxicol ; 39(7): 3856-3871, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558378

RESUMO

Discharges to the aquatic environment of pharmaceuticals represent a hazard to the aquatic organisms. Subchronic assay with 17-alpha-ethinylestradiol (EE2) and in vitro essays with pharmaceuticals of environmental concern were conducted to examine the sensitivity of tissue acetylcholinesterase (AChE) and carboxylesterase (CbE) activities of Tinca tinca to them. Subchronic exposure to 17-alpha-EE2 caused significant effects on brain, liver, and muscle CbE, but no on AChE activities. Most of the pharmaceuticals tested in vitro were considered as weak inhibitors of tissular AChE activity. Depending on the tissues, some compounds were classified as moderate inhibitors of CbE activity while other were categorized as weak enzymatic inhibitors. An opposite trend was observed depending on the tissue, while brain and liver CbE activities were inhibited, the muscle CbE activity was induced. Changes experienced on enzymatic activities after exposure to pharmaceuticals might affect the physiological functions in which these enzymes are involved. In vitro exposure to 17-alpha-EE2 in tench could be an informative, but not a surrogate model to know the effect of this synthetic estrogen on AChE and CbE activities.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Fígado/efeitos dos fármacos , Fígado/enzimologia , Cyprinidae , Acetilcolinesterase/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Inibidores da Colinesterase/toxicidade , Músculos/efeitos dos fármacos , Músculos/enzimologia , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Colinesterases/metabolismo
9.
J Complement Integr Med ; 21(2): 230-238, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591965

RESUMO

OBJECTIVES: This study aims to evaluate the neuroprotective effect of caffeic acid (CAF) against cadmium chloride (CdCl2) in rats via its effect on memory index as well as on altered enzymatic activity in the brain of CdCl2-induced neurotoxicity. METHODS: The experimental rats were divided into seven groups (n=6 rats per group) of healthy rats (group 1), CdCl2 -induced (CD) (3 mg/kg BW) rats (group 2), CD rats + Vitamin C (group 3), CD rats + CAF (10 and 20 mg/kg BW respectively) (group 4 & 5), and healthy rat + CAF (10 and 20 mg/kg BW respectively) (group 6 & 7). Thereafter, CdCl2 and CAF were administered orally to the experimental rats in group 2 to group 5 on daily basis for 14 days. Then, the Y-maze test was performed on the experimental rats to ascertain their memory index. RESULTS: CdCl2 administration significantly altered cognitive function, the activity of cholinesterase, monoamine oxidase, arginase, purinergic enzymes, nitric oxide (NOx), and antioxidant status of Cd rats (untreated) when compared with healthy rats. Thereafter, CD rats treated with vitamin C and CAF (10 and 20 mg/kg BW) respectively exhibited an improved cognitive function, and the observed altered activity of cholinesterase, monoamine oxidase, arginase, purinergic were restored when compared with untreated CD rats. Also, the level of brain NOx and antioxidant status were significantly (p<0.05) enhanced when compared with untreated CD rats. In the same vein, CAF administration offers neuro-protective effect in healthy rats vis-à-vis improved cognitive function, reduction in the activity of some enzymes linked to the progression of cognitive dysfunction, and improved antioxidant status when compared to healthy rats devoid of CAF. CONCLUSIONS: This study demonstrated the neuroprotective effect of CAF against CdCl2 exposure and in healthy rats.


Assuntos
Encéfalo , Cloreto de Cádmio , Ácidos Cafeicos , Transtornos da Memória , Fármacos Neuroprotetores , Ratos Wistar , Animais , Ratos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ácidos Cafeicos/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Monoaminoxidase/metabolismo , Memória/efeitos dos fármacos , Colinesterases/metabolismo , Óxido Nítrico/metabolismo , Arginase/metabolismo
10.
Small ; 20(24): e2309481, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38358018

RESUMO

Enzymes play a pivotal role in regulating numerous bodily functions. Thus, there is a growing need for developing sensors enabling real-time monitoring of enzymatic activity and inhibition. The activity and inhibition of cholinesterase (CHE) enzymes in blood plasma are fluorometrically monitored using near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) as probes, strategically functionalized with myristoylcholine (MC)- the substrate of CHE. A significant decrease in the fluorescence intensity of MC-suspended SWCNTs upon interaction with CHE is observed, attributed to the hydrolysis of the MC corona phase of the SWCNTs by CHE. Complementary measurements for quantifying choline, the product of MC hydrolysis, reveal a correlation between the fluorescence intensity decrease and the amount of released choline, rendering the SWCNTs optical sensors with real-time feedback in the NIR biologically transparent spectral range. Moreover, when synthetic and naturally abundant inhibitors inhibit the CHE enzymes present in blood plasma, no significant modulations of the MC-SWCNT fluorescence are observed, allowing effective detection of CHE inhibition. The rationally designed SWCNT sensors platform for monitoring of enzymatic activity and inhibition in clinically relevant samples is envisioned to not only advance the field of clinical diagnostics but also deepen further understanding of enzyme-related processes in complex biological fluids.


Assuntos
Inibidores da Colinesterase , Colinesterases , Nanotubos de Carbono , Nanotubos de Carbono/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Colinesterases/metabolismo , Colinesterases/sangue , Humanos
11.
Transplant Proc ; 56(3): 712-714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355371

RESUMO

BACKGROUND: Inappropriate matching of motor and sensory fibers after nerve repair or grafting can lead to nerve recovery failure. Identifying the motor and sensory fascicles enables surgeons to match them accurately and correctly align nerve stumps, which is crucial for neural regeneration. Very few methods have been reported to differentiate between the sensory and motor nerve fascicles, and the replicability of these techniques remains unestablished. In this study, we aimed to assess the accuracy of axonal cholinesterase (CE) histochemical staining in distinguishing motor and sensory nerve fibers. METHODS: The femoral and sciatic nerves were harvested from rats. The specimens were immediately cut, frozen in isopentane, and cooled with liquid nitrogen. Nerve serial cross-sections were processed for hematoxylin and eosin staining, followed by CE histochemistry. The staining protocol solutions included acetylthiocholine iodide, phosphate buffer, cobalt sulfate hydrate, potassium phosphate monobasic, sulfuric acid, sodium bicarbonate, glutaraldehyde, and ammonium sulfide. RESULTS: Cross-sections of nerves containing efferent and afferent nerve fibers in segregated fascicles showed that CE activity was confined to motor neurons. A histochemical study revealed that motor fibers with high cholinesterase activity can be differentiated from sensory fibers. The motor branches of the femoral and sciatic nerves showed specific axonal staining, whereas the sensory branch did not show any specific staining. CONCLUSION: CE histochemical staining is a useful technique for distinguishing between motor and sensory nerve fibers. It can be potentially useful in improving the outcomes of nerve grafts or extremity allotransplantation surgery.


Assuntos
Colinesterases , Neurônios Motores , Nervo Isquiático , Coloração e Rotulagem , Animais , Nervo Isquiático/enzimologia , Ratos , Colinesterases/metabolismo , Colinesterases/análise , Coloração e Rotulagem/métodos , Neurônios Motores/enzimologia , Axônios/enzimologia , Células Receptoras Sensoriais/enzimologia , Masculino , Nervo Femoral , Ratos Sprague-Dawley
12.
Environ Sci Pollut Res Int ; 31(13): 19927-19945, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367111

RESUMO

Environmental studies in Northern Poland are example of the functioning of ecophysiological relationships under anthropogenic impact. The aim of our studies was to investigate sex-dependent effects on the alterations in the concentration of chemical elements in soil samples collected from habitats of feral pigeon Columba livia f. urbana from Northern Poland, as well as feathers, biomarkers of oxidative stress, antioxidant defense, and total cholinesterase activity in tissues (liver, kidney, brain). Concentration of Si, Zn, and Pb in feathers of pigeons was significant. The levels of Si and Zn were higher in feathers of females from non-polluted, while higher Pb levels were found only in females from polluted areas (p = 0.000). This was confirmed by MANOVA of biomarkers of antioxidant defense, elements concentration, and revealing the order of effects: tissue type > environment > sex. Erythrocytes of males living in polluted areas were more fragile to hemolytic agents resulting in a higher percentage of hemolyzed erythrocytes. The effects of polluted environment on the level of carbonyl derivatives of oxidatively modified proteins compared to the effects of sex were more pronounced in the case of kidney (p = 0.000) and hepatic tissues (p = 0.000). Polluted areas were associated with significant increase in SOD activity in the brain and hepatic tissues of pigeons (p = 0.000). Health status of feral pigeons is significantly different in conditions of environmental destabilization.


Assuntos
Columbidae , Poluentes Ambientais , Animais , Feminino , Masculino , Columbidae/metabolismo , Antioxidantes/metabolismo , Chumbo/metabolismo , Poluentes Ambientais/análise , Estresse Oxidativo , Nível de Saúde , Biomarcadores/metabolismo , Colinesterases/metabolismo
13.
Eur J Med Chem ; 266: 116131, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215587

RESUMO

Heterocyclic compounds play a crucial role in the discovery of therapeutics. Alzheimer's disease (AD) is an unfathomable sporadic neurodegenerative disorder that involves multiple pathological pathways. The failure of current single-target small molecules to address AD's underlying causes has prompted interest in discovering multi-target directed ligands (MTDLs) to slow down the disease's progression. Herein we report the synthesis and biological evaluation of indole-piperidine amides as MTDLs for AD. The 5,6-dimethoxy-indole N-(2-(1-benzylpiperidine) carboxamide (23a) inhibits hAChE and hBACE-1 with IC50 values of 0.32 and 0.39 µM, respectively. The MTDL 23a is a mixed-type inhibitor of both hAChE and hBACE-1 with Ki values of 0.26 µM and 0.46 µM, respectively. The MD simulation studies revealed that both AChE and BACE-1 experience minor conformational changes on binding with 23a. In the PAMPA-BBB assay, analog 23a demonstrated CNS permeability, indicating the possibility for future investigation in preclinical models of AD.


Assuntos
Doença de Alzheimer , Colinesterases , Humanos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Barreira Hematoencefálica/metabolismo , Inibidores da Colinesterase/química , Colinesterases/metabolismo , Desenho de Fármacos , Indóis/farmacologia , Indóis/metabolismo , Piperidinas , Relação Estrutura-Atividade , Amidas/química , Amidas/farmacologia
14.
Drug Des Devel Ther ; 18: 133-159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283137

RESUMO

Purpose: Alzheimer's disease (AD) is the most common neurodegenerative disease, and its multifactorial nature increases the difficulty of medical research. To explore an effective treatment for AD, a series of novel tacrine-selegiline hybrids with ChEs and MAOs inhibitory activities were designed and synthesized as multifunctional drugs. Methods: All designed compounds were evaluated in vitro for their inhibition of cholinesterases (AChE/BuChE) and monoamine oxidases (MAO-A/B) along with their blood-brain barrier permeability. Then, further biological activities of the optimizing compound 7d were determined, including molecular model analysis, in vitro cytotoxicity, acute toxicity studies in vivo, and pharmacokinetic and pharmacodynamic property studies in vivo. Results: Most synthesized compounds demonstrated potent inhibitory activity against ChEs/MAOs. Particularly, compound 7d exhibited good and well-balanced activity against ChEs (hAChE: IC50 = 1.57 µM, hBuChE: IC50 = 0.43 µM) and MAOs (hMAO-A: IC50 = 2.30 µM, hMAO-B: IC50 = 4.75 µM). Molecular modeling analysis demonstrated that 7d could interact simultaneously with both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE in a mixed-type manner and also exhibits binding affinity towards BuChE and MAO-B. Additionally, 7d displayed excellent permeability of the blood-brain barrier, and under the experimental conditions, it elicited low or no toxicity toward PC12 and BV-2 cells. Furthermore, 7d was not acutely toxic in mice at doses up to 2500 mg/kg and could improve the cognitive function of mice with scopolamine-induced memory impairment. Lastly, 7d possessed well pharmacokinetic characteristics. Conclusion: In light of these results, it is clear that 7d could potentially serve as a promising multi-functional drug for the treatment of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Taurina/análogos & derivados , Camundongos , Animais , Tacrina/farmacologia , Tacrina/química , Tacrina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Colinesterases/metabolismo , Selegilina/farmacologia , Selegilina/uso terapêutico , Monoaminoxidase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Doenças Neurodegenerativas/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Acetilcolinesterase/metabolismo , Desenho de Fármacos , Relação Estrutura-Atividade , Peptídeos beta-Amiloides
15.
J Enzyme Inhib Med Chem ; 38(1): 2225797, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38061987

RESUMO

Cholinesterase (ChE) enzymes have been identified as diagnostic markers for Alzheimer disease (AD). Substrate-based probes have been synthesised to detect ChEs but they have not detected changes in ChE distribution associated with AD pathology. Probes are typically screened using spectrophotometric methods with pure enzyme for specificity and kinetics. However, the biochemical properties of ChEs associated with AD pathology are altered. The present work was undertaken to determine whether the Karnovsky-Roots (KR) histochemical method could be used to evaluate probes at the site of pathology. Thirty thioesters and esters were synthesised and evaluated using enzyme kinetic and KR methods. Spectrophotometric methods demonstrated all thioesters were ChE substrates, yet only a few provided staining in the brain with the KR method. Esters were ChE substrates with interactions with brain ChEs. These results suggest that the KR method may provide an efficient means to screen compounds as probes for imaging AD-associated ChEs.


Assuntos
Doença de Alzheimer , Colinesterases , Humanos , Colinesterases/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Inibidores da Colinesterase/química , Encéfalo , Acetilcolinesterase/metabolismo
16.
BMC Complement Med Ther ; 23(1): 421, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990185

RESUMO

BACKGROUND: Myrtus communis L. (MC) has been used in Mesopotamian medicine. Here, the cholinesterase (ChE) inhibitory potential of its methyl alcohol extracts has been investigated and computationally dissected. METHOD: The ChE inhibition has been measured based on usual Ellman's colorimetric method compared to a canonical ChE inhibitor, eserine. Through a deep text mining, the structures of phytocompounds (= ligands) of MC were curated from ChemSpider, PubChem, and ZINC databases and docked into protein targets, AChE (PDB 1EVE) and BChE (PDB 1P0I) after initial in silico preparedness and binding affinity (BA; kcal/mol) reported as an endpoint. The calculation of ADMET (absorption, distribution, metabolism, excretion, and toxicity) features of phytocompounds were retrieved from SwissADME ( http://www.swissadme.ch/ ) and admetSAR software to predict the drug-likeness or lead-likeness fitness. The Toxtree v2.5.1, software platforms ( http://toxtree.sourceforge.net/ ) have been used to predict the class of toxicity of phytocompounds. The STITCH platform ( http://stitch.embl.de ) has been employed to predict ChE-chemicals interactions. RESULTS: The possible inhibitory activities of AChE of extracts of leaves and berries were 37.33 and 70.00%, respectively as compared to that of eserine while inhibitory BChE activities of extracts of leaves and berries of MC were 19.00 and 50.67%, respectively as compared to that of eserine. Phytochemicals of MC had BA towards AChE ranging from -7.1 (carvacrol) to -9.9 (ellagic acid) kcal/mol. In this regard, alpha-bulnesene, (Z)-gamma-Bisabolene, and beta-bourbonene were top-listed low toxic binders of AChE, and (Z)-gamma-bisabolene was a more specific AChE binder. Alpha-cadinol, estragole, humulene epoxide II, (a)esculin, ellagic acid, patuletin, juniper camphor, linalyl anthranilate, and spathulenol were high class (Class III) toxic substances which among others, patuletin and alpha-cadinol were more specific AChE binders. Among intermediate class (Class II) toxic substances, beta-chamigrene was a more specific AChE binder while semimyrtucommulone and myrtucommulone A were more specific BChE binders. CONCLUSION: In sum, the AChE binders derived from MC were categorized mostly as antiinsectants (e.g., patuletin and alpha-cardinal) due to their predicted toxic classes. It seems that structural amendment and stereoselective synthesis like adding sulphonate or sulphamate groups to these phytocompounds may make them more suitable candidates for considering in preclinical investigations of Alzheimer's disease.


Assuntos
Myrtaceae , Myrtus , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Myrtus/química , Fisostigmina/análise , Frutas/química , Ácido Elágico/análise , Colinesterases/metabolismo
17.
Protein Sci ; 32(11): e4784, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717261

RESUMO

Thyroglobulin must pass endoplasmic reticulum (ER) quality control to become secreted for thyroid hormone synthesis. Defective thyroglobulin, blocked in trafficking, can cause hypothyroidism. Thyroglobulin is a large protein (~2750 residues) spanning regions I-II-III plus a C-terminal cholinesterase-like domain. The cholinesterase-like domain functions as an intramolecular chaperone for regions I-II-III, but the folding pathway leading to successful thyroglobulin trafficking remains largely unknown. Here, informed by the recent three-dimensional structure of thyroglobulin as determined by cryo-electron microscopy, we have bioengineered three novel classes of mutants yielding three entirely distinct quality control phenotypes. Specifically, upon expressing recombinant thyroglobulin, we find that first, mutations eliminating a disulfide bond enclosing a 200-amino acid loop in region I have surprisingly little impact on the ability of thyroglobulin to fold to a secretion-competent state. Next, we have identified a mutation on the surface of the cholinesterase-like domain that has no discernible effect on regional folding yet affects contact between distinct regions and thereby triggers impairment in the trafficking of full-length thyroglobulin. Finally, we have probed a conserved disulfide in the cholinesterase-like domain that interferes dramatically with local folding, and this defect then impacts on global folding, blocking the entire thyroglobulin in the ER. These data highlight variants with distinct effects on ER quality control, inhibiting domain-specific folding; folding via regional contact; neither; or both.


Assuntos
Dobramento de Proteína , Tireoglobulina , Tireoglobulina/genética , Tireoglobulina/química , Tireoglobulina/metabolismo , Microscopia Crioeletrônica , Hormônios Tireóideos , Transporte Proteico , Colinesterases/química , Colinesterases/metabolismo , Dissulfetos
18.
Chem Biol Interact ; 383: 110671, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37582413

RESUMO

The ESTHER database, dedicated to ESTerases and alpha/beta-Hydrolase Enzymes and Relatives (https://bioweb.supagro.inra.fr/ESTHER/general?what=index), offers online access to a continuously updated, sequence-based classification of proteins harboring the alpha/beta hydrolase fold into families and subfamilies. In particular, the database proposes links to the sequences, structures, ligands and huge diversity of functions of these proteins, and to the related literature and other databases. Taking advantage of the promiscuity of enzymatic function, many engineered esterases, lipases, epoxide-hydrolases, haloalkane dehalogenases are used for biotechnological applications. Finding means for detoxifying those protein members that are targeted by insecticides, herbicides, antibiotics, or for reactivating human cholinesterases when inhibited by nerve gas, are still active areas of research. Using or improving the capacity of some enzymes to breakdown plastics with the aim to recycle valuable material and reduce waste is an emerging challenge. Most hydrolases in the superfamily are water-soluble and act on or are inhibited by small organic compounds, yet in a few subfamilies some members interact with other, unrelated proteins to modulate activity or trigger functional partnerships. Recent development in 3D structure prediction brought by AI-based programs now permits analysis of enzymatic mechanisms for a variety of hydrolases with no experimental 3D structure available. Finally, mutations in as many as 34 of the 120 human genes compiled in the database are now linked to genetic diseases, a feature fueling research on early detection, metabolic pathways, pharmacological treatment or enzyme replacement therapy. Here we review those developments in the database that took place over the latest decade and discuss potential new applications and recent and future expected research in the field.


Assuntos
Hidrolases , Dobramento de Proteína , Humanos , Hidrolases/metabolismo , Esterases/metabolismo , Proteínas , Colinesterases/metabolismo
19.
Protein Sci ; 32(9): e4718, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37417463

RESUMO

Nicotinic acetylcholine receptors (N-AChRs) mediate fast synaptic signaling and are members of the pentameric ligand-gated ion channel (pLGIC) family. They rely on a network of accessory proteins in vivo for correct formation and transport to the cell surface. Resistance to cholinesterase 3 (RIC-3) is an endoplasmic reticulum protein that physically interacts with nascent pLGIC subunits and promotes their oligomerization. It is not known why some N-AChRs require RIC-3 in heterologous expression systems, whereas others do not. Previously we reported that the ACR-16 N-AChR from the parasitic nematode Dracunculus medinensis does not require RIC-3 in Xenopus laevis oocytes. This is unusual because all other nematode ACR-16, like the closely related Ascaris suum ACR-16, require RIC-3. Their high sequence similarity limits the number of amino acids that may be responsible, and the goal of this study was to identify them. A series of chimeras and point mutations between A. suum and D. medinensis ACR-16, followed by functional characterization with electrophysiology, identified two residues that account for a majority of the receptor requirement for RIC-3. ACR-16 with R/K159 in the cys-loop and I504 in the C-terminal tail did not require RIC-3 for functional expression. Mutating either of these to R/K159E or I504T, residues found in other nematode ACR-16, conferred a RIC-3 requirement. Our results agree with previous studies showing that these regions interact and are involved in receptor synthesis. Although it is currently unclear what precise mechanism they regulate, these residues may be critical during specific subunit folding and/or assembly cascades that RIC-3 may promote.


Assuntos
Receptores Nicotínicos , Receptores Nicotínicos/genética , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Colinesterases/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo
20.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37298693

RESUMO

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease that has a heavy social and economic impact on all societies and for which there is still no cure. Multitarget-directed ligands (MTDLs) seem to be a promising therapeutic strategy for finding an effective treatment for this disease. For this purpose, new MTDLs were designed and synthesized in three steps by simple and cost-efficient procedures targeting calcium channel blockade, cholinesterase inhibition, and antioxidant activity. The biological and physicochemical results collected in this study allowed us the identification two sulfonamide-dihydropyridine hybrids showing simultaneous cholinesterase inhibition, calcium channel blockade, antioxidant capacity and Nrf2-ARE activating effect, that deserve to be further investigated for AD therapy.


Assuntos
Doença de Alzheimer , Di-Hidropiridinas , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Ligantes , Doenças Neurodegenerativas/tratamento farmacológico , Di-Hidropiridinas/farmacologia , Di-Hidropiridinas/uso terapêutico , Canais de Cálcio , Colinesterases/metabolismo , Acetilcolinesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...