Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.149
Filtrar
1.
Front Immunol ; 15: 1368852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933264

RESUMO

The classical pathway of the complement system is activated by the binding of C1q in the C1 complex to the target activator, including immune complexes. Factor H is regarded as the key downregulatory protein of the complement alternative pathway. However, both C1q and factor H bind to target surfaces via charge distribution patterns. For a few targets, C1q and factor H compete for binding to common or overlapping sites. Factor H, therefore, can effectively regulate the classical pathway activation through such targets, in addition to its previously characterized role in the alternative pathway. Both C1q and factor H are known to recognize foreign or altered-self materials, e.g., bacteria, viruses, and apoptotic/necrotic cells. Clots, formed by the coagulation system, are an example of altered self. Factor H is present abundantly in platelets and is a well-known substrate for FXIIIa. Here, we investigated whether clots activate the complement classical pathway and whether this is regulated by factor H. We show here that both C1q and factor H bind to the fibrin formed in microtiter plates and the fibrin clots formed under in vitro physiological conditions. Both C1q and factor H become covalently bound to fibrin clots, and this is mediated via FXIIIa. We also show that fibrin clots activate the classical pathway of complement, as demonstrated by C4 consumption and membrane attack complex detection assays. Thus, factor H downregulates the activation of the classical pathway induced by fibrin clots. These results elucidate the intricate molecular mechanisms through which the complement and coagulation pathways intersect and have regulatory consequences.


Assuntos
Coagulação Sanguínea , Complemento C1q , Fator H do Complemento , Via Clássica do Complemento , Fibrina , Humanos , Fator H do Complemento/metabolismo , Fator H do Complemento/imunologia , Fibrina/metabolismo , Complemento C1q/metabolismo , Complemento C1q/imunologia , Via Clássica do Complemento/imunologia , Ligação Proteica , Ativação do Complemento/imunologia , Plaquetas/imunologia , Plaquetas/metabolismo
2.
Front Immunol ; 15: 1342467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881889

RESUMO

Introduction: Significant neurologic morbidity is caused by pediatric cerebrospinal fluid (CSF) shunt infections. The underlying mechanisms leading to impaired school performance and increased risk of seizures are unknown, however, a better understanding of these mechanisms may allow us to temper their consequences. Recent evidence has demonstrated important roles for complement proteins in neurodevelopment and neuroinflammation. Methods: We examined complement activation throughout Staphylococcus epidermidis (S. epidermidis) central nervous system (CNS) catheter infection. In addition, based on accumulating evidence that C3 plays a role in synaptic pruning in other neuroinflammatory states we determined if C3 and downstream C5 led to alterations in synaptic protein levels. Using our murine model of S. epidermidis catheter infection we quantified levels of the complement components C1q, Factor B, MASP2, C3, and C5 over the course of infection along with bacterial burdens. Results: We found that MASP2 predominated early in catheter infection, but that Factor B was elevated at intermediate time points. Unexpectedly C1q was elevated at late timepoints when bacterial burdens were low or undetectable. Based on these findings and the wealth of information regarding the emerging roles of C1q in the CNS, this suggests functions beyond pathogen elimination during S. epidermidis CNS catheter infection. To identify if C3 impacted synaptic protein levels we performed synaptosome isolation and quantified levels of VGLUT1 and PSD95 as well as pre-, post- and total synaptic puncta in cortical layer V of C3 knockout (KO) and wild type mice. We also used C5 KO and wild type mice to determine if there was any difference in pre-, post- and total synaptic puncta. Discussion: Neither C3 nor C5 impacted synaptic protein abundance. These findings suggest that chronic elevations in C1q in the brain that persist once CNS catheter infection has resolved may be modulating disease sequalae.


Assuntos
Infecções Relacionadas a Cateter , Complemento C1q , Infecções Estafilocócicas , Staphylococcus epidermidis , Animais , Staphylococcus epidermidis/fisiologia , Camundongos , Complemento C1q/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Masculino , Ativação do Complemento , Feminino , Doença Crônica , Camundongos Knockout
3.
Curr Microbiol ; 81(8): 242, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913141

RESUMO

Chikungunya virus (CHIKV) is a causative agent of a disease continuum, ranging from an acute transient chikungunya fever to chronic incapacitating viral arthralgia. The interaction between anti-CHIKV antibodies and the complement system has recently received attention. However, the contribution of complement activation in CHIKV-induced pathologies has not been fully elucidated. The present study was undertaken to delineate the possible contribution of complement activation in CHIKV-induced disease progression. In this study, using plasma specimens of chikungunya patients in the acute, chronic, and recovered phases of infection, we explicated the involvement of complement activation in CHIKV disease progression by ELISAs and Bio-Plex assays. Correlation analysis was carried out to demonstrate interrelation among C1q-binding IgG-containing circulating immune complexes (CIC-C1q), complement activation fragments (C3a, C5a, sC5b-9), and complement-modulated pro-inflammatory cytokines (IL-1ß, IL-18, IL-6, and TNF-α). We detected elevated complement activation fragments, CIC-C1q, and complement-modulated cytokines in the varied patient groups compared with the healthy controls, indicating persistent activation of the complement system. Furthermore, we observed statistically significant correlations among CIC-C1q with complement activation fragments and C3a with complement modulatory cytokines IL-1ß, IL-6, and IL-18 during the CHIKV disease progression. Taken together, the current data provide insight into the plausible association between CICs, complement activation, subsequent complement modulatory cytokine expression, and CHIKV etiopathology.


Assuntos
Complexo Antígeno-Anticorpo , Febre de Chikungunya , Vírus Chikungunya , Ativação do Complemento , Complemento C1q , Citocinas , Humanos , Complemento C1q/metabolismo , Complemento C1q/imunologia , Febre de Chikungunya/imunologia , Febre de Chikungunya/virologia , Febre de Chikungunya/sangue , Complexo Antígeno-Anticorpo/sangue , Complexo Antígeno-Anticorpo/imunologia , Vírus Chikungunya/imunologia , Masculino , Citocinas/sangue , Citocinas/metabolismo , Pessoa de Meia-Idade , Adulto , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Idoso , Adulto Jovem
4.
Inflamm Res ; 73(7): 1069-1080, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38724770

RESUMO

OBJECTIVE: Resident immune cells are at the forefront of sensory organ-specific signals, and changes in these cells are closely related to the aging process. The Sirt pathway can regulate NAD + metabolism during aging, thereby affecting the accumulation of ROS. However, the role of the Sirt pathway in resident immune cells in aged tissues is currently unclear. METHODS: We investigated Sirt1 signalling in resident immune cells during chronic inflammation in an aged mouse model. Integrated single-cell RNA sequencing data from young and aged mice were used to refine the characterization of immune cells in aged tissues RESULTS: We found that C1q + macrophages could affect chronic inflammation during aging. C1q + macrophages acted in an opposing manner to Il1b + macrophages and were responsible for anti-inflammatory effects during aging. Sirt1 agonists inhibited the decrease in C1qb in macrophages during aging, and anti-aging drugs could affect the expression of C1qb in macrophages via the Sirt1 pathway. CONCLUSIONS: In this study, we first identified the relevance of C1q + macrophages in chronic inflammation during aging. The potential anti-aging effect of C1q + macrophages was mediated by the Sirt1 pathway, suggesting new strategies for aging immunotherapy.


Assuntos
Envelhecimento , Complemento C1q , Macrófagos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Complemento C1q/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Masculino , Inflamação , Interleucina-1beta/metabolismo
5.
J Hazard Mater ; 473: 134607, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761765

RESUMO

Paraquat (PQ) exposure is strongly associated with neurotoxicity. However, research on the neurotoxicity mechanisms of PQ varies in terms of endpoints of toxic assessment, resulting in a great challenge to understand the early neurotoxic effects of PQ. In this study, we developed an adverse outcome pathway (AOP) to investigate PQ-induced neuro-immunotoxicity from an immunological perspective, combining of traditional toxicology methods and computer simulations. In vivo, PQ can microstructurally lead to an early synaptic loss in the brain mice, which is a large degree regarded as a main reason for cognitive impairment to mice behavior. Both in vitro and in vivo demonstrated synapse loss is caused by excessive activation of the complement C1q/C3-CD11b pathway, which mediates microglial phagocytosis dysfunction. Additionally, the interaction between PQ and C1q was validated by molecular simulation docking. Our findings extend the AOP framework related to PQ neurotoxicity from a neuro-immunotoxic perspective, highlighting C1q activation as the initiating event for PQ-induced neuro-immunotoxicity. In addition, downstream complement cascades induce abnormal microglial phagocytosis, resulting in reduced synaptic density and subsequent non-motor dysfunction. These findings deepen our understanding of neurotoxicity and provide a theoretical basis for ecological risk assessment of PQ.


Assuntos
Complemento C1q , Simulação por Computador , Microglia , Paraquat , Fagocitose , Paraquat/toxicidade , Animais , Complemento C1q/imunologia , Complemento C1q/metabolismo , Fagocitose/efeitos dos fármacos , Microglia/efeitos dos fármacos , Rotas de Resultados Adversos , Masculino , Síndromes Neurotóxicas/imunologia , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/etiologia , Camundongos , Encéfalo/efeitos dos fármacos , Herbicidas/toxicidade , Antígeno CD11b/metabolismo , Complemento C3/metabolismo , Simulação de Acoplamento Molecular , Sinapses/efeitos dos fármacos , Camundongos Endogâmicos C57BL
6.
Biochem Biophys Res Commun ; 720: 150076, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772224

RESUMO

Chronic morphine withdrawal memory formation is a complex process influenced by various molecular mechanisms. In this study, we aimed to investigate the contributions of the basolateral amygdala (BLA) and complement component 1, q subcomponent-like 3 (C1QL3), a secreted and presynaptically targeted protein, to the formation of chronic morphine (repeat dosing of morphine) withdrawal memory using conditioned place aversion (CPA) and chemogenetic methods. We conducted experiments involving the inhibition of the BLA during naloxone-induced withdrawal to assess its impact on CPA scores, providing insights into the significance of the BLA in the chronic morphine memory formation process. We also examined changes in C1ql3/C1QL3 expression within the BLA following conditioning. Immunofluorescence analysis revealed the colocalization of C1QL3 and the G protein-coupled receptor, brain-specific angiogenesis inhibitor 3 (BAI3) in the BLA, supporting their involvement in synaptic development. Moreover, we downregulated C1QL3 expression in the BLA to investigate its role in chronic morphine withdrawal memory formation. Our findings revealed that BLA inhibition during naloxone-induced withdrawal led to a significant reduction in CPA scores, confirming the critical role of the BLA in this memory process. Additionally, the upregulation of C1ql3 expression within the BLA postconditioning suggested its participation in withdrawal memory formation. The colocalization of C1QL3 and BAI3 in the BLA further supported their involvement in synaptic development. Furthermore, downregulation of C1QL3 in the BLA effectively hindered chronic morphine withdrawal memory formation, emphasizing its pivotal role in this process. Notably, we identified postsynaptic density protein 95 (PSD95) as a potential downstream effector of C1QL3 during chronic morphine withdrawal memory formation. Blocking PSD95 led to a significant reduction in the CPA score, and it appeared that C1QL3 modulated the ubiquitination-mediated degradation of PSD95, resulting in decreased PSD95 protein levels. This study underscores the importance of the BLA, C1QL3 and PSD95 in chronic morphine withdrawal memory formation. It provides valuable insights into the underlying molecular mechanisms, emphasizing their significance in this intricate process.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Proteína 4 Homóloga a Disks-Large , Memória , Morfina , Síndrome de Abstinência a Substâncias , Animais , Morfina/farmacologia , Síndrome de Abstinência a Substâncias/metabolismo , Masculino , Camundongos , Memória/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complemento C1q/metabolismo , Camundongos Endogâmicos C57BL , Naloxona/farmacologia
7.
Front Immunol ; 15: 1404752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690267

RESUMO

Helminths produce calreticulin (CRT) to immunomodulate the host immune system as a survival strategy. However, the structure of helminth-derived CRT and the structural basis of the immune evasion process remains unclarified. Previous study found that the tissue-dwelling helminth Trichinella spiralis produces calreticulin (TsCRT), which binds C1q to inhibit activation of the complement classical pathway. Here, we used x-ray crystallography to resolve the structure of truncated TsCRT (TsCRTΔ), the first structure of helminth-derived CRT. TsCRTΔ was observed to share the same binding region on C1q with IgG based on the structure and molecular docking, which explains the inhibitory effect of TsCRT on C1q-IgG-initiated classical complement activation. Based on the key residues in TsCRTΔ involved in the binding activity to C1q, a 24 amino acid peptide called PTsCRT was constructed that displayed strong C1q-binding activity and inhibited C1q-IgG-initiated classical complement activation. This study is the first to elucidate the structural basis of the role of TsCRT in immune evasion, providing an approach to develop helminth-derived bifunctional peptides as vaccine target to prevent parasite infections or as a therapeutic agent to treat complement-related autoimmune diseases.


Assuntos
Calreticulina , Complemento C1q , Evasão da Resposta Imune , Trichinella spiralis , Trichinella spiralis/imunologia , Complemento C1q/imunologia , Complemento C1q/metabolismo , Complemento C1q/química , Animais , Calreticulina/imunologia , Calreticulina/química , Calreticulina/metabolismo , Cristalografia por Raios X , Ligação Proteica , Simulação de Acoplamento Molecular , Proteínas de Helminto/imunologia , Proteínas de Helminto/química , Ativação do Complemento/imunologia , Imunoglobulina G/imunologia , Humanos , Antígenos de Helmintos/imunologia , Antígenos de Helmintos/química , Triquinelose/imunologia , Triquinelose/parasitologia , Via Clássica do Complemento/imunologia , Conformação Proteica
8.
Front Immunol ; 15: 1351656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711524

RESUMO

Understanding at the molecular level of the cell biology of tumors has led to significant treatment advances in the past. Despite such advances however, development of therapy resistance and tumor recurrence are still unresolved major challenges. This therefore underscores the need to identify novel tumor targets and develop corresponding therapies to supplement existing biologic and cytotoxic approaches so that a deeper and more sustained treatment responses could be achieved. The complement system is emerging as a potential novel target for cancer therapy. Data accumulated to date show that complement proteins, and in particular C1q and its receptors cC1qR/CR and gC1qR/p33/HABP1, are overexpressed in most cancer cells and together are involved not only in shaping the inflammatory tumor microenvironment, but also in the regulation of angiogenesis, metastasis, and cell proliferation. In addition to the soluble form of C1q that is found in plasma, the C1q molecule is also found anchored on the cell membrane of monocytes, macrophages, dendritic cells, and cancer cells, via a 22aa long leader peptide found only in the A-chain. This orientation leaves its 6 globular heads exposed outwardly and thus available for high affinity binding to a wide range of molecular ligands that enhance tumor cell survival, migration, and proliferation. Similarly, the gC1qR molecule is not only overexpressed in most cancer types but is also released into the microenvironment where it has been shown to be associated with cancer cell proliferation and metastasis by activation of the complement and kinin systems. Co-culture of either T cells or cancer cells with purified C1q or anti-gC1qR has been shown to induce an anti-proliferative response. It is therefore postulated that in the tumor microenvironment, the interaction between C1q expressing cancer cells and gC1qR bearing cytotoxic T cells results in T cell suppression in a manner akin to the PD-L1 and PD-1 interaction.


Assuntos
Proteínas de Transporte , Complemento C1q , Inibidores de Checkpoint Imunológico , Glicoproteínas de Membrana , Proteínas Mitocondriais , Neoplasias , Receptores de Complemento , Humanos , Complemento C1q/metabolismo , Complemento C1q/imunologia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Complemento/metabolismo , Animais , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Microambiente Tumoral/imunologia
9.
Lipids Health Dis ; 23(1): 131, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704561

RESUMO

BACKGROUND: In the past few years, circulating complement C1q involvement in atherosclerosis has garnered growing research interest in addition to the emerging recognition of the novel lipid marker named atherogenic index of plasma (AIP). Nevertheless, among patients experiencing low-density lipoprotein cholesterol (LDL-C) levels less than 1.8mmol/L, the interplay between C1q combined with the AIP for coronary artery disease (CAD) is ambiguous. METHODS: Patients were stratified into a non-CAD and CAD group according to their coronary angiography. The association between C1q in conjunction with the AIP and CAD was explored using restricted cubic spline analyses and logistic regression models. To assess how it predicted, a receiver operating characteristic analysis was undertaken. RESULTS: A total of 7270 patients comprised 1476 non-CAD patients and 5794 patients diagnosed with CAD were analyzed. A comparison of the two groups showed that the C1q levels were notably higher compared to the CAD group, while AIP exhibited an inverse trend. Across quartiles of C1q, the AIP demonstrated a decline with increasing C1q levels, and significant differences were observed between the groups. A correlation analysis underscored a notable negative correlation between the two variables. Univariate and multivariate logistic regression analyses revealed significant associations between CAD and the C1q quartile groups/AIP. Furthermore, compared with the Q4 group, a decrease in the C1q levels corresponded to an escalation in CAD risk, with the odds ratio rising from 1.661 to 2.314. CONCLUSIONS: In conclusion, there appears to be a notable positive correlation between the combination of C1q with the AIP and CAD.


Assuntos
LDL-Colesterol , Complemento C1q , Doença da Artéria Coronariana , Humanos , Complemento C1q/metabolismo , Masculino , Doença da Artéria Coronariana/sangue , Feminino , Pessoa de Meia-Idade , Idoso , LDL-Colesterol/sangue , Angiografia Coronária , Biomarcadores/sangue , Curva ROC , Modelos Logísticos , Aterosclerose/sangue , Fatores de Risco
10.
Clin Appl Thromb Hemost ; 30: 10760296241257517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38778544

RESUMO

Early identification of biomarkers that can predict the onset of sepsis-induced coagulopathy (SIC) in septic patients is clinically important. This study endeavors to examine the diagnostic and prognostic utility of serum C1q in the context of SIC. Clinical data from 279 patients diagnosed with sepsis at the Departments of Intensive Care, Respiratory Intensive Care, and Infectious Diseases at the Renmin Hospital of Wuhan University were gathered spanning from January 2022 to January 2024. These patients were categorized into two groups: the SIC group comprising 108 cases and the non-SIC group consisting of 171 cases, based on the presence of SIC. Within the SIC group, patients were further subdivided into a survival group (43 cases) and non-survival group (65 cases). The concentration of serum C1q in the SIC group was significantly lower than that in the non-SIC group. Furthermore, A significant correlation was observed between serum C1q levels and both SIC score and coagulation indices. C1q demonstrated superior diagnostic and prognostic performance for SIC patients, as indicated by a higher area under the curve (AUC). Notably, when combined with CRP, PCT, and SOFA score, C1q displayed the most robust diagnostic efficacy for SIC. Moreover, the combination of C1q with the SOFA score heightened predictive value concerning the 28-day mortality of SIC patients.


Assuntos
Transtornos da Coagulação Sanguínea , Complemento C1q , Sepse , Humanos , Sepse/sangue , Sepse/complicações , Sepse/diagnóstico , Sepse/mortalidade , Masculino , Feminino , Transtornos da Coagulação Sanguínea/diagnóstico , Transtornos da Coagulação Sanguínea/etiologia , Transtornos da Coagulação Sanguínea/sangue , Pessoa de Meia-Idade , Complemento C1q/metabolismo , Prognóstico , Idoso , Biomarcadores/sangue
11.
Microvasc Res ; 154: 104692, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38705254

RESUMO

OBJECTIVES: Systemic vasculitis is a heterogenous group of autoimmune diseases characterized by enhanced cardiovascular mortality. Endothelial dysfunction is associated with accelerated vascular damage, representing a core pathophysiologic mechanism contributing to excess CV risk. Recent studies have also shown that complement activation holds significant role in the pathogenesis of Anti-Neutrophilic Cytoplasmic Autoantibody (ANCA) -associated vasculitis (AAV). Given the potential crosstalk between the endothelium and complement, we aimed to assess, for the first time simultaneously, easily accessible biomarkers of endothelial dysfunction and complement activation in SV. METHODS: We measured circulating endothelial microvesicles (EMVs) and soluble complement components representative of alternative, classical and terminal activation (C5b-9, C1q, Bb fragments, respectively) in a meticulously selected group of patients with systemic vasculitis, but without cardiovascular disease. Individuals free from systemic diseases, who were matched with patients for cardiovascular risk factors(hypertension, diabetes, smoking, dyslipidemia), comprised the control group. RESULTS: We studied 60 individuals (30 in each group). Patients with systemic vasculitis had elevated EMVs, higher levels of C5b-9 [536.4(463.4) vs 1200.94457.3), p = 0.003] and C1q [136.2(146.5 vs 204.2(232.9), p = 0.0129], compared to controls [232.0 (243.5) vs 139.3(52.1), p < 0.001]. In multivariate analysis both EMVs and C5b-9 were independently associated with disease duration (p = 0.005 and p = 0.004 respectively), yet not with disease activity. CONCLUSION: Patients with systemic vasculitis exhibit impaired endothelial function and complement activation, both assessed by easily accessible biomarkers, even in the absence of cardiovascular disease manifestations. EMVs and soluble complement components such as C5b-9 and C1q could be used as early biomarkers of endothelial dysfunction and complement activation, respectively, in clinical practice during the course of SV, yet their predictive value in terms of future cardiovascular disease warrants further verification in appropriately designed studies.


Assuntos
Biomarcadores , Ativação do Complemento , Endotélio Vascular , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores/sangue , Fatores de Tempo , Endotélio Vascular/fisiopatologia , Endotélio Vascular/imunologia , Adulto , Idoso , Estudos de Casos e Controles , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Micropartículas Derivadas de Células/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Complemento C1q/metabolismo , Complemento C1q/imunologia , Células Endoteliais/patologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Vasculite Sistêmica/imunologia , Vasculite Sistêmica/sangue , Vasculite Sistêmica/fisiopatologia , Vasculite Sistêmica/diagnóstico
12.
Eur J Immunol ; 54(7): e2350918, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38629181

RESUMO

For many years complement activation in systemic lupus erythematosus (SLE) was viewed as a major cause of tissue injury. However, human and murine studies showed that complement plays a protective as well as a proinflammatory role in tissue damage. A hierarchy is apparent with early classical pathway components, particularly C1q, exerting the greatest influence. Understanding the mechanisms underlying the protective function(s) of complement remains an important challenge for the future and has implications for the use of complement therapy in SLE. We review recent advances in the field and give a new perspective on the complement conundrum in SLE.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento , Lúpus Eritematoso Sistêmico , Lúpus Eritematoso Sistêmico/imunologia , Humanos , Animais , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Complemento C1q/imunologia , Complemento C1q/metabolismo , Camundongos , Via Clássica do Complemento/imunologia
13.
Brain Behav Immun ; 119: 454-464, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642614

RESUMO

BACKGROUND: Both functional brain imaging studies and autopsy reports have indicated the presence of synaptic loss in the brains of depressed patients. The activated microglia may dysfunctionally engulf neuronal synapses, leading to synaptic loss and behavioral impairments in depression. However, the mechanisms of microglial-synaptic interaction under depressive conditions remain unclear. METHODS: We utilized lipopolysaccharide (LPS) to induce a mouse model of depression, examining the effects of LPS on behaviors, synapses, microglia, microglial phagocytosis of synapses, and the C1q/C3-CR3 complement signaling pathway. Additionally, a C1q neutralizing antibody was employed to inhibit the C1q/C3-CR3 signaling pathway and assess its impact on microglial phagocytosis of synapses and behaviors in the mice. RESULTS: LPS administration resulted in depressive and anxiety-like behaviors, synaptic loss, and abnormal microglial phagocytosis of synapses in the hippocampal dentate gyrus (DG) of mice. We found that the C1q/C3-CR3 signaling pathway plays a crucial role in this abnormal microglial activity. Treatment with the C1q neutralizing antibody moderated the C1q/C3-CR3 pathway, leading to a decrease in abnormal microglial phagocytosis, reduced synaptic loss, and improved behavioral impairments in the mice. CONCLUSIONS: The study suggests that the C1q/C3-CR3 complement signaling pathway, which mediates abnormal microglial phagocytosis of synapses, presents a novel potential therapeutic target for depression treatment.


Assuntos
Complemento C1q , Complemento C3 , Depressão , Modelos Animais de Doenças , Microglia , Fagocitose , Transdução de Sinais , Sinapses , Animais , Complemento C1q/metabolismo , Microglia/metabolismo , Sinapses/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Depressão/metabolismo , Fagocitose/fisiologia , Complemento C3/metabolismo , Masculino , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL
14.
Sci Rep ; 14(1): 9477, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658599

RESUMO

To determine the association between complement C1q and vulnerable plaque morphology among coronary artery disease (CAD) patients. We conducted a retrospective observational study of 221 CAD patients admitted to The Second Affiliated Hospital of Xi'an Jiaotong University. Intravascular optical coherence tomography was utilized to describe the culprit plaques' morphology. Using logistic regression analysis to explore the correlation between C1q and vulnerable plaques, and receiver operator characteristic (ROC) analysis assess the predictive accuracy. As reported, the complement C1q level was lower in ACS patients than CCS patients (18.25 ± 3.88 vs. 19.18 ± 4.25, P = 0.045). The low complement-C1q-level group was more prone to develop vulnerable plaques. In lipid-rich plaques, the complement C1q level was positively correlated with the thickness of fibrous cap (r = 0.480, P = 0.041). Univariate and multivariate logistic regression analyses suggested that complement C1q could be an independent contributor to plaques' vulnerability. For plaque rupture, erosion, thrombus, and cholesterol crystals, the areas under the ROC curve of complement C1q level were 0.873, 0.816, 0.785, and 0.837, respectively (P < 0.05 for all). In CAD patients, the complement C1q could be a valuable indicator of plaque vulnerability.


Assuntos
Complemento C1q , Doença da Artéria Coronariana , Placa Aterosclerótica , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Masculino , Feminino , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Pessoa de Meia-Idade , Complemento C1q/metabolismo , Complemento C1q/análise , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/patologia , Idoso , Estudos Retrospectivos , Curva ROC
15.
Int J Biol Macromol ; 268(Pt 1): 131863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670188

RESUMO

The complement system is pivotal in innate immune defense, with Complement 1qb (C1qb) playing a key role in recognizing immune complexes and initiating the classical pathway. In this research, we cloned the full-length cDNA of silver pomfret (Pampus argenteus) c1qb and demonstrated its role in mediating defense responses against Nocardia seriolae (N. seriolae) infection, which notably causes significant economic losses in the aquaculture industry. Our investigation revealed that N. seriolae infection led to tissue damage in fish bodies, as observed in tissue sections. Subsequent analysis of differential genes (DEGs) in the transcriptome highlighted genes linked to apoptosis and inflammation. Through experiments involving overexpression and interference of c1qb in vitro, we confirmed that c1qb could suppress N. seriolae-induced apoptosis and inflammation. Moreover, overexpression of c1qb hindered N. seriolae invasion, and the purified and replicated C1qb protein displayed antimicrobial properties. Additionally, our study unveiled that overexpression of c1qb might stimulate the expression of membrane attack complexes (MAC), potentially enhancing opsonization and antibacterial effects. In conclusion, our findings offer valuable insights into the immune antibacterial mechanisms of c1qb and contribute to the development of strategies for controlling N. seriolae.


Assuntos
Apoptose , Complemento C1q , Complexo de Ataque à Membrana do Sistema Complemento , Inflamação , Nocardia , Complemento C1q/metabolismo , Complemento C1q/genética , Apoptose/genética , Animais , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Inflamação/genética , Inflamação/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Nocardiose/imunologia , Nocardiose/microbiologia , Nocardiose/metabolismo , Nocardiose/genética
16.
Int J Biol Markers ; 39(2): 130-140, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38303516

RESUMO

BACKGROUND: This study aimed to establish a nomogram to distinguish advanced- and early-stage lung cancer based on coagulation-related biomarkers and liver-related biomarkers. METHODS: A total of 306 patients with lung cancer and 172 patients with benign pulmonary disease were enrolled. Subgroup analyses based on histologic type, clinical stage, and neoplasm metastasis status were carried out and multivariable logistic regression analysis was applied. Furthermore, a nomogram model was developed and validated with bootstrap resampling. RESULTS: The concentrations of complement C1q, fibrinogen, and D-dimers, fibronectin, inorganic phosphate, and prealbumin were significantly changed in lung cancer patients compared to benign pulmonary disease patients. Multiple regression analysis based on subgroup analysis of clinical stage showed that compared with early-stage lung cancer, female (P < 0.001), asymptomatic admission (P = 0.001), and total bile acids (P = 0.011) were negatively related to advanced lung cancer, while C1q (P = 0.038), fibrinogen (P < 0.001), and D-dimers (P = 0.001) were positively related. A nomogram model based on gender, symptom, and the levels of total bile acids, C1q, fibrinogen, and D-dimers was constructed for distinguishing advanced lung cancer and early-stage lung cancer, with an area under the receiver operating characteristic curve of 0.919. The calibration curve for this nomogram revealed good predictive accuracy (P-Hosmer-Lemeshow = 0.697) between the predicted probability and the actual probability. CONCLUSIONS: We developed a nomogram based on gender, symptom, and the levels of fibrinogen, D-dimers, total bile acids, and C1q that can individually distinguish early- and advanced-stage lung cancer.


Assuntos
Ácidos e Sais Biliares , Biomarcadores Tumorais , Complemento C1q , Neoplasias Pulmonares , Nomogramas , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Complemento C1q/metabolismo , Ácidos e Sais Biliares/sangue , Biomarcadores Tumorais/sangue , Idoso , Estadiamento de Neoplasias , Fibrinogênio/metabolismo , Fibrinogênio/análise , Coagulação Sanguínea
17.
Int J Biol Macromol ; 262(Pt 2): 129930, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325676

RESUMO

In the present study we report a novel interaction of human C1q, a primary activator of the Complement system, with human Galectin-3 (Gal-3). We investigated the potential recognition between C1q and Gal-3 on a solid hydrophobic surface by ELISA, by fluorescence spectroscopy, molecular docking and molecular dynamics (MD). The data showed that C1q and Gal-3 had a pronounced affinity for protein-protein interaction and supramolecular binding, locating the binding sites within the globular domains of C1q (gC1q) and on the backside of the carbohydrate recognition domain (CRD) of Gal-3. Fluorescence spectroscopy gave quantitative assessment of the recognition with KD value of 0.04 µM. MD analysis showed that when the active AAs of the two proteins interacted, electrostatic attraction, aided by a large number of hydrogen bonds, was dominant for the stabilization of the complex. When the contact of C1q and Gal-3 was not limited to active residues, the complex between them was stabilized mainly by Van der Waals interactions and smaller in number but stronger hydrogen bonds. This is the first report analyzing the interaction of Gal-3 with C1q, which could open the way to new applications of this protein-protein complex.


Assuntos
Complemento C1q , Galectina 3 , Humanos , Galectina 3/metabolismo , Complemento C1q/química , Complemento C1q/metabolismo , Simulação de Acoplamento Molecular , Ligantes , Sítios de Ligação , Ligação Proteica
18.
J Am Heart Assoc ; 13(4): e030054, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38348774

RESUMO

BACKGROUND: This study investigated whether gCTRP9 (globular C1q/tumor necrosis factor-related protein-9) could restore high-glucose (HG)-suppressed endothelial progenitor cell (EPC) functions by activating the endothelial nitric oxide synthase (eNOS). METHODS AND RESULTS: EPCs were treated with HG (25 mmol/L) and gCTRP9. Migration, adhesion, and tube formation assays were performed. Adiponectin receptor 1, adiponectin receptor 2, and N-cadherin expression and AMP-activated protein kinase, protein kinase B, and eNOS phosphorylation were measured by Western blotting. eNOS activity was determined using nitrite production measurement. In vivo reendothelialization and EPC homing assays were performed using Evans blue and immunofluorescence in mice. Treatment with gCTRP9 at physiological levels enhanced migration, adhesion, and tube formation of EPCs. gCTRP9 upregulated the phosphorylation of AMP-activated protein kinase, protein kinase B, and eNOS and increased nitrite production in a concentration-dependent manner. Exposure of EPCs to HG-attenuated EPC functions induced cellular senescence and decreased eNOS activity and nitric oxide synthesis; the effects of HG were reversed by gCTRP9. Protein kinase B knockdown inhibited eNOS phosphorylation but did not affect gCTRP9-induced AMP-activated protein kinase phosphorylation. HG impaired N-cadherin expression, but treatment with gCTRP9 restored N-cadherin expression after HG stimulation. gCTRP9 restored HG-impaired EPC functions through both adiponectin receptor 1 and N-cadherin-mediated AMP-activated protein kinase /protein kinase B/eNOS signaling. Nude mice that received EPCs treated with gCTRP9 under HG medium showed a significant enhancement of the reendothelialization capacity compared with those with EPCs incubated under HG conditions. CONCLUSIONS: CTRP9 promotes EPC migration, adhesion, and tube formation and restores these functions under HG conditions through eNOS-mediated signaling mechanisms. Therefore, CTRP9 modulation could eventually be used for vascular healing after injury.


Assuntos
Adiponectina , Células Progenitoras Endoteliais , Glicoproteínas , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Progenitoras Endoteliais/metabolismo , Complemento C1q/metabolismo , Complemento C1q/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Camundongos Nus , Receptores de Adiponectina/metabolismo , Nitritos , Movimento Celular , Glucose/farmacologia , Glucose/metabolismo , Caderinas/metabolismo , Fatores de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/farmacologia , Óxido Nítrico/metabolismo , Células Cultivadas
19.
Br J Pharmacol ; 181(12): 1812-1828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38369641

RESUMO

BACKGROUND AND PURPOSE: To deepen our knowledge of the role of complement in synaptic impairment in experimental autoimmune encephalomyelitis (EAE) mice, we investigated the distribution of C1q and C3 proteins and the role of complement as a promoter of glutamate release in purified nerve endings (synaptosomes) and astrocytic processes (gliosomes) isolated from the cortex of EAE mice at the acute stage of the disease (21 ± 1 day post-immunization). EXPERIMENTAL APPROACH: EAE cortical synaptosomes and gliosomes were analysed for glutamate release efficiency (measured as release of preloaded [3H]D-aspartate ([3H]D-ASP)), C1q and C3 protein density, and for viability and ongoing apoptosis. KEY RESULTS: In healthy mice, complement releases [3H]D-ASP from gliosomes more efficiently than from synaptosomes. The releasing activity occurs in a dilution-dependent manner and involves the reversal of the excitatory amino acid transporters (EAATs). In EAE mice, the complement-induced releasing activity is significantly reduced in cortical synaptosomes but amplified in cortical gliosomes. These adaptations are paralleled by decreased density of the EAAT2 protein in synaptosomes and increased EAAT1 staining in gliosomes. Concomitantly, PSD95, GFAP, and CD11b, but not SNAP25, proteins are overexpressed in the cortex of the EAE mice. Similarly, C1q and C3 protein immunostaining is increased in EAE cortical synaptosomes and gliosomes, although signs of ongoing apoptosis or altered viability are not detectable. CONCLUSION AND IMPLICATIONS: Our results unveil a new noncanonical role of complement in the CNS of EAE mice relevant to disease progression and central synaptopathy that suggests new therapeutic targets for the management of MS.


Assuntos
Complemento C1q , Complemento C3 , Encefalomielite Autoimune Experimental , Ácido Glutâmico , Camundongos Endogâmicos C57BL , Sinaptossomos , Animais , Ácido Glutâmico/metabolismo , Sinaptossomos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Complemento C1q/metabolismo , Complemento C3/metabolismo , Camundongos , Sinapses/metabolismo , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/metabolismo , Apoptose , Astrócitos/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia
20.
Mol Cell Endocrinol ; 584: 112161, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280475

RESUMO

BACKGROUND: Atherosclerosis (AS) is commonly regarded as a key driver accounted for the leading causes of morbidity and mortality among cardiovascular and cerebrovascular diseases. A growing body of evidence indicates that autophagy in macrophages involved in AS might be a potential therapeutic target. C1q/TNF-related protein 9 (CTRP9) has been proven to delay the progression of cardiovascular diseases. However, the relations between CTRP9 and Sirt1, as well as their effects on macrophages autophagy have not been fully explored. METHODS: Macrophages were differentiated from mononuclear cells collected from peripheral blood samples of healthy donors. The in vitro AS models were constructed by ox-LDL treatment. Cell viability was determined by CCK-8 assay. Immunofluorescence assay of LC3 was implemented for evaluating autophagy activity. Oil Red O staining was performed for lipid accumulation detection. ELISA, cholesterol concentration assay and cholesterol efflux analysis were conducted using commercial kits. Cycloheximide assay was implemented for revealing protein stability. RT-qPCR was used for mRNA expression detection, and western blotting was performed for protein level monitoring. RESULTS: CTRP9 attenuated impaired cell viability, autophagy inhibition and increased lipid accumulation induced by ox-LDL. Moreover, CTRP9 maintained Sirt1 protein level through enhancing its stability through de-ubiquitination, which was mediated by upregulated USP22 level. CRTP9 exerted its protective role in promoting autophagy and reducing lipid accumulation through the USP22/Sirt1 axis. CONCLUSION: Collectively, CTRP9 alleviates lipid accumulation and facilitated the macrophages autophagy by upregulating USP22 level and maintaining Sirt1 protein expression, thereby exerting a protective role in AS progression in vitro.


Assuntos
Aterosclerose , Sirtuína 1 , Humanos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Complemento C1q/genética , Complemento C1q/metabolismo , Complemento C1q/farmacologia , Macrófagos/metabolismo , Lipoproteínas LDL/farmacologia , Colesterol/metabolismo , Aterosclerose/metabolismo , Autofagia , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...