Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 670
Filtrar
1.
Nat Commun ; 15(1): 4655, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821922

RESUMO

The human AAA-ATPase Bcs1L translocates the fully assembled Rieske iron-sulfur protein (ISP) precursor across the mitochondrial inner membrane, enabling respiratory Complex III assembly. Exactly how the folded substrate is bound to and released from Bcs1L has been unclear, and there has been ongoing debate as to whether subunits of Bcs1L act in sequence or in unison hydrolyzing ATP when moving the protein cargo. Here, we captured Bcs1L conformations by cryo-EM during active ATP hydrolysis in the presence or absence of ISP substrate. In contrast to the threading mechanism widely employed by AAA proteins in substrate translocation, subunits of Bcs1L alternate uniformly between ATP and ADP conformations without detectable intermediates that have different, co-existing nucleotide states, indicating that the subunits act in concert. We further show that the ISP can be trapped by Bcs1 when its subunits are all in the ADP-bound state, which we propose to be released in the apo form.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Difosfato de Adenosina , Trifosfato de Adenosina , Microscopia Crioeletrônica , Complexo III da Cadeia de Transporte de Elétrons , Trifosfato de Adenosina/metabolismo , Hidrólise , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Humanos , Difosfato de Adenosina/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química , Conformação Proteica , Dobramento de Proteína , Modelos Moleculares , Transporte Proteico
2.
Nature ; 615(7954): 934-938, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949187

RESUMO

Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.


Assuntos
Microscopia Crioeletrônica , Complexo III da Cadeia de Transporte de Elétrons , Complexo II de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons , Complexo I de Transporte de Elétrons , Mitocôndrias , Membranas Mitocondriais , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/ultraestrutura , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/ultraestrutura , Mitocôndrias/química , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/ultraestrutura , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/ultraestrutura , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Simulação de Dinâmica Molecular , Sítios de Ligação , Evolução Molecular
3.
J Exp Zool A Ecol Integr Physiol ; 339(2): 153-162, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36285344

RESUMO

Management of fish populations for conservation in thermally variable systems requires an understanding of the fish's underlying physiology and responses to thermal stress. Physiological research at the organismal level provides information on the overall effects of stressors such as extreme temperature fluctuations. While experiments with whole organisms provide information as to the overall effects of temperature fluctuations, biochemical assays of thermal stress provide direct results of exposure that are both sensitive and specific. Electron transport system (ETS; Complex III) assays quantify a rate-limiting step of respiratory enzymes. Parameters that can be estimated via this approach include optimum thermal temperature (Topt ) and optimal breadth of thermal performance (Tbreadth ), which can both be related to organismal-level temperature thresholds. We exposed enzymes of seven fish species (native fish chosen to represent a typical community in Alabama streams) to temperatures in the range 11-44°C. The resultant enzymatic thermal performance curves showed that Topt , the lower temperature for enzyme optimal thermal performance (Tlow ), the upper temperature for enzyme optimal thermal performance (Tup ), and Tbreadth differed among species. Relationships between enzymatic activity and temperature for all fish followed a pattern of steadily increasing enzyme activity to Topt before gradually decreasing with increasing temperature. A comparison of our enzyme optimum and upper-temperature limit results versus published critical thermal maxima values supports that ETS Complex III assays may be useful for assessing organismal-level thermal tolerance.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Peixes , Animais , Alabama , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/fisiologia , Peixes/fisiologia , Temperatura , Proteínas de Peixes/química , Proteínas de Peixes/fisiologia
4.
Pest Manag Sci ; 78(6): 2657-2666, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35355395

RESUMO

BACKGROUND: Fenpicoxamid and florylpicoxamid are picolinamide fungicides targeting the Qi site of the cytochrome bc1 complex, via their primary metabolites UK-2A and CAS-649, respectively. We explore binding interactions and resistance mechanisms for picolinamides, antimycin A and ilicicolin H in yeast by testing effects of cytochrome b amino acid changes on fungicide sensitivity and interpreting results using molecular docking. RESULTS: Effects of amino acid changes on sensitivity to UK-2A and CAS-649 were similar, with highest resistance associated with exchanges involving G37 and substitutions N31K and L198F. These changes, as well as K228M, also affected antimycin A, while ilicicolin H was affected by changes at G37 and L198, as well as Q22E. N31 substitution patterns suggest that a lysine at position 31 introduces an electrostatic interaction with neighbouring D229, causing disruption of a key salt-bridge interaction with picolinamides. Changes involving G37 and L198 imply resistance primarily through steric interference. G37 changes also showed differences between CAS-649 and UK-2A or antimycin A with respect to branched versus unbranched amino acids. N31K and substitution of G37 by large amino acids reduced growth rate substantially while L198 substitutions showed little effect on growth. CONCLUSION: Binding of UK-2A and CAS-649 at the Qi site involves similar interactions such that general cross-resistance between fenpicoxamid and florylpicoxamid is anticipated in target pathogens. Some resistance mutations reduced growth rate and could carry a fitness penalty in pathogens. However, certain changes involving G37 and L198 carry little or no growth penalty and may pose the greatest risk for resistance development in the field. © 2022 Society of Chemical Industry.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Fungicidas Industriais , Ácidos Picolínicos , Aminoácidos , Antimicina A/farmacologia , Citocromos , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Lactonas/química , Lactonas/metabolismo , Simulação de Acoplamento Molecular , Mutação , Ácidos Picolínicos/metabolismo , Piridinas/química , Piridinas/metabolismo , Saccharomyces cerevisiae/genética
5.
J Mol Model ; 28(2): 35, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35022913

RESUMO

The escalating burden of tuberculosis disease and drastic effects of current medicine has stimulated a search for alternative drugs. A medicinal plant Warburgia salutaris has been reported to possess inhibitory properties against M. tuberculosis. In this study, we apply computational methods to investigate the probability of W. salutaris compounds as potential inhibitors of M. tuberculosis QcrB protein. We performed molecular docking, molecular dynamics simulations, radius of gyration, principal component analysis (PCA), and molecular mechanics-generalized born surface area (MM-GBSA) binding-free energy calculations in explicit solvent to achieve our objective. The results suggested that ursolic acid (UA) and ursolic acid acetate (UAA) could serve as preferred potential inhibitors of mycobacterial QcrB compared to lansoprazole sulphide (LSPZ) and telacebec (Q203)-UA and UAA have a higher binding affinity to QcrB compared to LSPZ and Q203 drugs. UA binding affinity is attributed to hydrogen bond formation with Val120, Arg364 and Arg366, and largely resonated from van der Waals forces resulting from UA interactions with hydrophobic amino acids in its vicinity. UAA binds to the porphyrin ring binding site with higher binding affinity compared to LSPZ. The binding affinity results primarily from van der Waals forces between UAA and hydrophobic residues of QcrB in the porphyrin ring binding site where UAA binds competitively. UA and UAA formed stable complexes with the protein with reduced overall residue mobility, consequently supporting the magnitude of binding affinity of the respective ligands. UAA could potentially compete with the porphyrin ring for the binding site and deprive the mycobacterial cell from oxygen, consequently disturbing mycobacterial oxygen-dependent metabolic processes. Therefore, discovery of a compound that competes with porphyrin ring for the binding site may be useful in QcrB pharmocological studies. UA proved to be a superior compound, although its estimated toxicity profile revealed UA to be hepatotoxic within acceptable parameters. Although preliminary findings of this report still warrant experimental validation, they could serve as a baseline for the development of new anti-tubercular drugs from natural resources that target QcrB.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/química , Complexo III da Cadeia de Transporte de Elétrons/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Triterpenos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Ligantes , Conformação Molecular , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Ligação Proteica , Relação Estrutura-Atividade , Triterpenos/farmacologia , Ácido Ursólico
6.
Nat Commun ; 13(1): 545, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087070

RESUMO

Proton-translocating respiratory complexes assemble into supercomplexes that are proposed to increase the efficiency of energy conversion and limit the production of harmful reactive oxygen species during aerobic cellular respiration. Cytochrome bc complexes and cytochrome aa3 oxidases are major drivers of the proton motive force that fuels ATP generation via respiration, but how wasteful electron- and proton transfer is controlled to enhance safety and efficiency in the context of supercomplexes is not known. Here, we address this question with the 2.8 Å resolution cryo-EM structure of the cytochrome bcc-aa3 (III2-IV2) supercomplex from the actinobacterium Corynebacterium glutamicum. Menaquinone, substrate mimics, lycopene, an unexpected Qc site, dioxygen, proton transfer routes, and conformational states of key protonable residues are resolved. Our results show how safe and efficient energy conversion is achieved in a respiratory supercomplex through controlled electron and proton transfer. The structure may guide the rational design of drugs against actinobacteria that cause diphtheria and tuberculosis.


Assuntos
Actinobacteria/metabolismo , Corynebacterium glutamicum/metabolismo , Citocromos/química , Citocromos/metabolismo , Oxirredutases/metabolismo , Benzoquinonas/química , Sítios de Ligação , Microscopia Crioeletrônica , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Modelos Moleculares , Oxigênio/metabolismo , Força Próton-Motriz
7.
Structure ; 30(1): 129-138.e4, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34525326

RESUMO

Electron transfer between respiratory complexes drives transmembrane proton translocation, which powers ATP synthesis and membrane transport. The homodimeric respiratory complex III (CIII2) oxidizes ubiquinol to ubiquinone, transferring electrons to cytochrome c and translocating protons through a mechanism known as the Q cycle. The Q cycle involves ubiquinol oxidation and ubiquinone reduction at two different sites within each CIII monomer, as well as movement of the head domain of the Rieske subunit. We determined structures of Candida albicans CIII2 by cryoelectron microscopy (cryo-EM), revealing endogenous ubiquinone and visualizing the continuum of Rieske head domain conformations. Analysis of these conformations does not indicate cooperativity in the Rieske head domain position or ligand binding in the two CIIIs of the CIII2 dimer. Cryo-EM with the indazole derivative Inz-5, which inhibits fungal CIII2 and is fungicidal when administered with fungistatic azole drugs, showed that Inz-5 inhibition alters the equilibrium of Rieske head domain positions.


Assuntos
Candida albicans/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Indazóis/farmacologia , Microscopia Crioeletrônica , Transporte de Elétrons , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Indazóis/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Ubiquinona/análogos & derivados , Ubiquinona/química
8.
Biochem J ; 478(17): 3253-3263, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402504

RESUMO

The reaction centre light-harvesting 1 (RC-LH1) complex is the core functional component of bacterial photosynthesis. We determined the cryo-electron microscopy (cryo-EM) structure of the RC-LH1 complex from Rhodospirillum rubrum at 2.5 Šresolution, which reveals a unique monomeric bacteriochlorophyll with a phospholipid ligand in the gap between the RC and LH1 complexes. The LH1 complex comprises a circular array of 16 αß-polypeptide subunits that completely surrounds the RC, with a preferential binding site for a quinone, designated QP, on the inner face of the encircling LH1 complex. Quinols, initially generated at the RC QB site, are proposed to transiently occupy the QP site prior to traversing the LH1 barrier and diffusing to the cytochrome bc1 complex. Thus, the QP site, which is analogous to other such sites in recent cryo-EM structures of RC-LH1 complexes, likely reflects a general mechanism for exporting quinols from the RC-LH1 complex.


Assuntos
Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Complexos de Proteínas Captadores de Luz/química , Rhodospirillum rubrum/química , Proteínas de Bactérias/isolamento & purificação , Bacterioclorofilas/química , Benzoquinonas/química , Sítios de Ligação , Cristalização , Complexo III da Cadeia de Transporte de Elétrons/química , Ligação de Hidrogênio , Hidroquinonas/química , Ligantes , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Fosfolipídeos/química , Conformação Proteica em alfa-Hélice
9.
Biochemistry ; 60(46): 3497-3506, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34266238

RESUMO

Two major subclasses of mononuclear non-heme ferrous enzymes use two electron-donating organic cofactors (α-ketoglutarate or pterin) to activate O2 to form FeIV═O intermediates that further react with their substrates through hydrogen atom abstraction or electrophilic aromatic substitution. New spectroscopic methodologies have been developed, enabling the study of the active sites in these enzymes and their oxygen intermediates. Coupled to electronic structure calculations, the results of these spectroscopies provide fundamental insight into mechanism. This Perspective summarizes the results of these studies in elucidating the mechanism of dioxygen activation to form the FeIV═O intermediate and the geometric and electronic structure of this intermediate that enables its high reactivity and selectivity in product formation.


Assuntos
Cisteína Dioxigenase/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigênio/metabolismo , Domínio Catalítico , Cisteína Dioxigenase/química , Complexo III da Cadeia de Transporte de Elétrons/química , Ácidos Cetoglutáricos/química , Pterinas/metabolismo , Superóxidos/metabolismo
10.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34259807

RESUMO

Long-lived proteins (LLPs) have recently emerged as vital components of intracellular structures whose function is coupled to long-term stability. Mitochondria are multifaceted organelles, and their function hinges on efficient proteome renewal and replacement. Here, using metabolic stable isotope labeling of mice combined with mass spectrometry (MS)-based proteomic analysis, we demonstrate remarkable longevity for a subset of the mitochondrial proteome. We discovered that mitochondrial LLPs (mt-LLPs) can persist for months in tissues harboring long-lived cells, such as brain and heart. Our analysis revealed enrichment of mt-LLPs within the inner mitochondrial membrane, specifically in the cristae subcompartment, and demonstrates that the mitochondrial proteome is not turned over in bulk. Pioneering cross-linking experiments revealed that mt-LLPs are spatially restricted and copreserved within protein OXPHOS complexes, with limited subunit exchange throughout their lifetimes. This study provides an explanation for the exceptional mitochondrial protein lifetimes and supports the concept that LLPs provide key structural stability to multiple large and dynamic intracellular structures.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Miocárdio/enzimologia , Proteoma/metabolismo , Animais , Sítios de Ligação , Encéfalo/enzimologia , Ciclo do Ácido Cítrico/genética , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Expressão Gênica , Meia-Vida , Metabolismo dos Lipídeos/genética , Camundongos , Mitocôndrias/genética , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , Modelos Moleculares , Especificidade de Órgãos , Fosforilação Oxidativa , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteoma/química , Proteoma/genética
11.
Molecules ; 26(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299598

RESUMO

In this work we introduce a novel filtering and molecular modeling pipeline based on a fingerprint and descriptor similarity procedure, coupled with molecular docking and molecular dynamics (MD), to select potential novel quoinone outside inhibitors (QoI) of cytochrome bc1 with the aim of determining the same or different chromophores to usual. The study was carried out using the yeast cytochrome bc1 complex with its docked ligand (stigmatellin), using all the fungicides from FRAC code C3 mode of action, 8617 Drugbank compounds and 401,624 COCONUT compounds. The introduced drug repurposing pipeline consists of compound similarity with C3 fungicides and molecular docking (MD) simulations with final QM/MM binding energy determination, while aiming for potential novel chromophores and perserving at least an amide (R1HN(C=O)R2) or ester functional group of almost all up to date C3 fungicides. 3D descriptors used for a similarity test were based on the 280 most stable Padel descriptors. Hit compounds that passed fingerprint and 3D descriptor similarity condition and had either an amide or an ester group were submitted to docking where they further had to satisfy both Chemscore fitness and specific conformation constraints. This rigorous selection resulted in a very limited number of candidates that were forwarded to MD simulations and QM/MM binding affinity estimations by the ORCA DFT program. In this final step, stringent criteria based on (a) sufficiently high frequency of H-bonds; (b) high interaction energy between protein and ligand through the whole MD trajectory; and (c) high enough QM/MM binding energy scores were applied to further filter candidate inhibitors. This elaborate search pipeline led finaly to four Drugbank synthetic lead compounds (DrugBank) and seven natural (COCONUT database) lead compounds-tentative new inhibitors of cytochrome bc1. These eleven lead compounds were additionally validated through a comparison of MM/PBSA free binding energy for new leads against those obtatined for 19 QoIs.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/enzimologia , Avaliação Pré-Clínica de Medicamentos , Complexo III da Cadeia de Transporte de Elétrons/química , Proteínas de Saccharomyces cerevisiae/química
12.
J Mol Cell Cardiol ; 161: 23-38, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34331972

RESUMO

A serious consequence of myocardial ischemia-reperfusion injury (I/R) is oxidative damage, which causes mitochondrial dysfunction. The cascading ROS can propagate and potentially induce heme bleaching and protein cysteine sulfonation (PrSO3H) of the mitochondrial electron transport chain. Herein we studied the mechanism of I/R-mediated irreversible oxidative injury of complex III in mitochondria from rat hearts subjected to 30-min of ischemia and 24-h of reperfusion in vivo. In the I/R region, the catalytic activity of complex III was significantly impaired. Spectroscopic analysis indicated that I/R mediated the destruction of hemes b and c + c1 in the mitochondria, supporting I/R-mediated complex III impairment. However, no significant impairment of complex III activity and heme damage were observed in mitochondria from the risk region of rat hearts subjected only to 30-min ischemia, despite a decreased state 3 respiration. In the I/R mitochondria, carbamidomethylated C122/C125 of cytochrome c1 via alkylating complex III with a down regulation of HCCS was exclusively detected, supporting I/R-mediated thioether defect of heme c1. LC-MS/MS analysis showed that I/R mitochondria had intensely increased complex III PrSO3H levels at the C236 ligand of the [2Fe2S] cluster of the Rieske iron­sulfur protein (uqcrfs1), thus impairing the electron transport activity. MS analysis also indicated increased PrSO3H of the hinge protein at C65 and of cytochrome c1 at C140 and C220, which are confined in the intermembrane space. MS analysis also showed that I/R extensively enhanced the PrSO3H of the core 1 (uqcrc1) and core 2 (uqcrc2) subunits in the matrix compartment, thus supporting the conclusion that complex III releases ROS to both sides of the inner membrane during reperfusion. Analysis of ischemic mitochondria indicated a modest reduction from the basal level of complex III PrSO3H detected in the mitochondria of sham control hearts, suggesting that the physiologic hyperoxygenation and ROS overproduction during reperfusion mediated the enhancement of complex III PrSO3H. In conclusion, reperfusion-mediated heme damage with increased PrSO3H controls oxidative injury to complex III and aggravates mitochondrial dysfunction in the post-ischemic heart.


Assuntos
Cisteína/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Heme/metabolismo , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Derivados de Benzeno/química , Bovinos , Cisteína/química , Citocromos c1/química , Citocromos c1/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Heme/química , Masculino , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Isquemia Miocárdica/metabolismo , Ácido Peroxinitroso/química , Ratos Sprague-Dawley , Superóxido Dismutase/genética
13.
Chem Rev ; 121(15): 9644-9673, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34184881

RESUMO

In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.


Assuntos
Membrana Celular/enzimologia , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Saccharomyces cerevisiae , Transporte de Elétrons , Prótons , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia
14.
Biochim Biophys Acta Bioenerg ; 1862(8): 148433, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932366

RESUMO

Respiration is carried out by a series of membrane-bound complexes in the inner mitochondrial membrane or in the cytoplasmic membrane of bacteria. Increasing evidence shows that these complexes organize into larger supercomplexes. In this work, we identified a supercomplex composed of cytochrome (cyt.) bc1 and aa3-type cyt. c oxidase in Rhodobacter sphaeroides. We purified the supercomplex using a His-tag on either of these complexes. The results from activity assays, native and denaturing PAGE, size exclusion chromatography, electron microscopy, optical absorption spectroscopy and kinetic studies on the purified samples support the formation and coupled quinol oxidation:O2 reduction activity of the cyt. bc1-aa3 supercomplex. The potential role of the membrane-anchored cyt. cy as a component in supercomplexes was also investigated.


Assuntos
Membrana Celular/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hidroquinonas/metabolismo , Rhodobacter sphaeroides/enzimologia , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Cinética , Oxirredução
15.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836592

RESUMO

Energy conversion in aerobic organisms involves an electron current from low-potential donors, such as NADH and succinate, to dioxygen through the membrane-bound respiratory chain. Electron transfer is coupled to transmembrane proton transport, which maintains the electrochemical proton gradient used to produce ATP and drive other cellular processes. Electrons are transferred from respiratory complexes III to IV (CIII and CIV) by water-soluble cytochrome (cyt.) c In Saccharomyces cerevisiae and some other organisms, these complexes assemble into larger CIII2CIV1/2 supercomplexes, the functional significance of which has remained enigmatic. In this work, we measured the kinetics of the S. cerevisiae supercomplex cyt. c-mediated QH2:O2 oxidoreductase activity under various conditions. The data indicate that the electronic link between CIII and CIV is confined to the surface of the supercomplex. Single-particle electron cryomicroscopy (cryo-EM) structures of the supercomplex with cyt. c show the positively charged cyt. c bound to either CIII or CIV or along a continuum of intermediate positions. Collectively, the structural and kinetic data indicate that cyt. c travels along a negatively charged patch on the supercomplex surface. Thus, rather than enhancing electron transfer rates by decreasing the distance that cyt. c must diffuse in three dimensions, formation of the CIII2CIV1/2 supercomplex facilitates electron transfer by two-dimensional (2D) diffusion of cyt. c This mechanism enables the CIII2CIV1/2 supercomplex to increase QH2:O2 oxidoreductase activity and suggests a possible regulatory role for supercomplex formation in the respiratory chain.


Assuntos
Citocromos c/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Citocromos c/química , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Cinética , Mitocôndrias/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876763

RESUMO

Complex II, also known as succinate dehydrogenase (SQR) or fumarate reductase (QFR), is an enzyme involved in both the Krebs cycle and oxidative phosphorylation. Mycobacterial Sdh1 has recently been identified as a new class of respiratory complex II (type F) but with an unknown electron transfer mechanism. Here, using cryoelectron microscopy, we have determined the structure of Mycobacterium smegmatis Sdh1 in the presence and absence of the substrate, ubiquinone-1, at 2.53-Å and 2.88-Å resolution, respectively. Sdh1 comprises three subunits, two that are water soluble, SdhA and SdhB, and one that is membrane spanning, SdhC. Within these subunits we identified a quinone-binding site and a rarely observed Rieske-type [2Fe-2S] cluster, the latter being embedded in the transmembrane region. A mutant, where two His ligands of the Rieske-type [2Fe-2S] were changed to alanine, abolished the quinone reduction activity of the Sdh1. Our structures allow the proposal of an electron transfer pathway that connects the substrate-binding and quinone-binding sites. Given the unique features of Sdh1 and its essential role in Mycobacteria, these structures will facilitate antituberculosis drug discovery efforts that specifically target this complex.


Assuntos
Proteínas de Bactérias/química , Complexo III da Cadeia de Transporte de Elétrons/química , Flavoproteínas/química , Mycobacterium tuberculosis/enzimologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Flavoproteínas/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Ubiquinona/química , Ubiquinona/metabolismo
17.
BMC Cancer ; 21(1): 427, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33865346

RESUMO

BACKGROUND: Associations between mitochondrial genetic abnormalities (variations and copy number, i.e. mtDNAcn, change) and elevated ROS have been reported in cancer compared to normal cells. Since excessive levels of ROS can trigger apoptosis, treating cancer cells with ROS-stimulating agents may enhance their death. This study aimed to investigate the link between baseline ROS levels and mitochondrial genetic abnormalities, and how mtDNA abnormalities might be used to predict cancer cells' response to ROS-stimulating therapy. METHODS: Intracellular and mitochondrial specific-ROS levels were measured using the DCFDA and MitoSOX probes, respectively, in four cancer and one non-cancerous cell lines. Cells were treated with ROS-stimulating agents (cisplatin and dequalinium) and the IC50s were determined using the MTS assay. Sanger sequencing and qPCR were conducted to screen the complete mitochondrial genome for variations and to relatively quantify mtDNAcn, respectively. Non-synonymous variations were subjected to 3-dimensional (3D) protein structural mapping and analysis. RESULTS: Our data revealed novel significant associations between the total number of variations in the mitochondrial respiratory chain (MRC) complex I and III genes, mtDNAcn, ROS levels, and ROS-associated drug response. Furthermore, functional variations in complexes I/III correlated significantly and positively with mtDNAcn, ROS levels and drug resistance, indicating they might mechanistically influence these parameters in cancer cells. CONCLUSIONS: Our findings suggest that mtDNAcn and complexes I/III functional variations have the potential to be efficient biomarkers to predict ROS-stimulating therapy efficacy in the future.


Assuntos
Antineoplásicos/farmacologia , DNA Mitocondrial , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/química , Sítios de Ligação , Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade
18.
PLoS Pathog ; 17(2): e1009211, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524071

RESUMO

The mitochondrion is critical for the survival of apicomplexan parasites. Several major anti-parasitic drugs, such as atovaquone and endochin-like quinolones, act through inhibition of the mitochondrial electron transport chain at the coenzyme Q:cytochrome c oxidoreductase complex (Complex III). Despite being an important drug target, the protein composition of Complex III of apicomplexan parasites has not been elucidated. Here, we undertake a mass spectrometry-based proteomic analysis of Complex III in the apicomplexan Toxoplasma gondii. Along with canonical subunits that are conserved across eukaryotic evolution, we identify several novel or highly divergent Complex III components that are conserved within the apicomplexan lineage. We demonstrate that one such subunit, which we term TgQCR11, is critical for parasite proliferation, mitochondrial oxygen consumption and Complex III activity, and establish that loss of this protein leads to defects in Complex III integrity. We conclude that the protein composition of Complex III in apicomplexans differs from that of the mammalian hosts that these parasites infect.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Toxoplasma/metabolismo , Animais , Western Blotting , Células Cultivadas , Complexo III da Cadeia de Transporte de Elétrons/química , Imunofluorescência , Humanos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Smegmamorpha , Toxoplasma/genética
19.
Nat Commun ; 12(1): 929, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568648

RESUMO

Respiratory electron transport complexes are organized as individual entities or combined as large supercomplexes (SC). Gram-negative bacteria deploy a mitochondrial-like cytochrome (cyt) bc1 (Complex III, CIII2), and may have specific cbb3-type cyt c oxidases (Complex IV, CIV) instead of the canonical aa3-type CIV. Electron transfer between these complexes is mediated by soluble (c2) and membrane-anchored (cy) cyts. Here, we report the structure of an engineered bc1-cbb3 type SC (CIII2CIV, 5.2 Å resolution) and three conformers of native CIII2 (3.3 Å resolution). The SC is active in vivo and in vitro, contains all catalytic subunits and cofactors, and two extra transmembrane helices attributed to cyt cy and the assembly factor CcoH. The cyt cy is integral to SC, its cyt domain is mobile and it conveys electrons to CIV differently than cyt c2. The successful production of a native-like functional SC and determination of its structure illustrate the characteristics of membrane-confined and membrane-external respiratory electron transport pathways in Gram-negative bacteria.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Rhodobacter capsulatus/enzimologia , Proteínas de Bactérias/genética , Domínio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Microscopia Crioeletrônica , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Engenharia Genética , Rhodobacter capsulatus/química , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo
20.
Chem Rev ; 121(4): 2020-2108, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33464892

RESUMO

This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.


Assuntos
Complexo Citocromos b6f/química , Complexo Citocromos b6f/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Animais , Catálise , Humanos , Membranas/química , Membranas/enzimologia , Simulação de Dinâmica Molecular , Fotossíntese , Conformação Proteica , Respiração , Rhodobacter capsulatus , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA