Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Transl Psychiatry ; 14(1): 283, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997258

RESUMO

Return to use, or relapse, is a major challenge in the treatment of opioid use disorder (OUD). Relapse can be precipitated by several factors, including exposure to drug-conditioned cues. Identifying successful treatments to mitigate cue-induced relapse has been challenging, perhaps due to extinction memory recall (EMR) deficits. Previously, inhibition of estradiol (E2) signaling in the basolateral amygdala (BLA) impaired heroin-cue EMR. This effect was recapitulated by antagonism of BLA estrogen receptors (ER) in a sex-specific manner such that blocking ERα in males, but ERß in females, impaired EMR. However, it is unclear whether increased E2 signaling, in the BLA or systemically, enhances heroin-cue EMR. We hypothesized that ERß agonism would enhance heroin-cue EMR in a sex- and region-specific manner. To determine the capacity of E2 signaling to improve EMR, we pharmacologically manipulated ERß across several translationally designed experiments. First, male and female rats acquired heroin or sucrose self-administration. Next, during a cued extinction session, we administered diarylpropionitrile (DPN, an ERß agonist) and tested anxiety-like behavior on an open field. Subsequently, we assessed EMR in a cue-induced reinstatement test and, finally, measured ERß expression in several brain regions. Across all experiments, females took more heroin and sucrose than males and had greater responses during heroin-cued extinction. Administration of DPN in the BLA enhanced EMR in females only, driven by ERß's impacts on memory consolidation. Interestingly, however, systemic DPN administration improved EMR for heroin cues in both sexes across several different tests, but did not impact sucrose-cue EMR. Immunohistochemical analysis of ERß expression across several different brain regions showed that females only had greater expression of ERß in the basal nucleus of the BLA. Here, in several preclinical experiments, we demonstrated that ERß agonism enhances heroin-cue EMR and has potential utility in combatting cue-induced relapse.


Assuntos
Sinais (Psicologia) , Receptor beta de Estrogênio , Extinção Psicológica , Heroína , Rememoração Mental , Animais , Masculino , Feminino , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/metabolismo , Heroína/farmacologia , Ratos , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Rememoração Mental/efeitos dos fármacos , Rememoração Mental/fisiologia , Nitrilas/farmacologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Propionatos/farmacologia , Fatores Sexuais , Autoadministração , Ratos Sprague-Dawley , Dependência de Heroína/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928281

RESUMO

The pivotal role of the basolateral amygdala (BLA) in the emotional modulation of hippocampal plasticity and memory consolidation is well-established. Specifically, multiple studies have demonstrated that the activation of the noradrenergic (NA) system within the BLA governs these modulatory effects. However, most current evidence has been obtained by direct infusion of synthetic NA or beta-adrenergic agonists. In the present study, we aimed to investigate the effect of endogenous NA release in the BLA, induced by a natural aversive stimulus (coyote urine), on memory consolidation for a low-arousing, hippocampal-dependent task. Our experiments combined a weak object location task (OLT) version with subsequent mild predator odor exposure (POE). To investigate the role of endogenous NA in the BLA in memory modulation, a subset of the animals (Wistar rats) was treated with the non-selective beta-blocker propranolol at the end of the behavioral procedures. Hippocampal tissue was collected 90 min after drug infusion or after the OLT test, which was performed 24 h later. We used the obtained samples to estimate the levels of phosphorylated CREB (pCREB) and activity-regulated cytoskeleton-associated protein (Arc)-two molecular markers of experience-dependent changes in neuronal activity. The result suggests that POE has the potential to become a valuable behavioral paradigm for studying the interaction between BLA and the hippocampus in memory prioritization and selectivity.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Emoções , Hipocampo , Consolidação da Memória , Norepinefrina , Odorantes , Ratos Wistar , Animais , Consolidação da Memória/fisiologia , Consolidação da Memória/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Masculino , Ratos , Norepinefrina/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Hipocampo/efeitos dos fármacos , Emoções/fisiologia , Emoções/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Propranolol/farmacologia
3.
Biomed Pharmacother ; 176: 116937, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870632

RESUMO

The advent of general anesthesia (GA) has significant implications for clinical practice. However, the exact mechanisms underlying GA-induced transitions in consciousness remain elusive. Given some similarities between GA and sleep, the sleep-arousal neural nuclei and circuits involved in sleep-arousal, including the 5-HTergic system, could be implicated in GA. Herein, we utilized pharmacology, optogenetics, chemogenetics, fiber photometry, and retrograde tracing to demonstrate that both endogenous and exogenous activation of the 5-HTergic neural circuit between the dorsal raphe nucleus (DR) and basolateral amygdala (BLA) promotes arousal and facilitates recovery of consciousness from sevoflurane anesthesia. Notably, the 5-HT1A receptor within this pathway holds a pivotal role. Our findings will be conducive to substantially expanding our comprehension of the neural circuit mechanisms underlying sevoflurane anesthesia and provide a potential target for modulating consciousness, ultimately leading to a reduction in anesthetic dose requirements and side effects.


Assuntos
Anestésicos Inalatórios , Complexo Nuclear Basolateral da Amígdala , Estado de Consciência , Núcleo Dorsal da Rafe , Sevoflurano , Sevoflurano/farmacologia , Animais , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Estado de Consciência/efeitos dos fármacos , Anestésicos Inalatórios/farmacologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serotonina/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Optogenética
4.
Nat Commun ; 15(1): 4945, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858386

RESUMO

Single administration of low-dose ketamine has both acute and sustained anti-depressant effects. Sustained effect is associated with restoration of glutamatergic synapses in medial prefrontal cortic (mFPC) neurons. Ketamine induced profound changes in a number of molecular pathways in a mouse model for chronic stress. Cell-cell communication analyses predicted that planar-cell-polarity (PCP) signaling was decreased after chronic administration of corticosterone but increased following ketamine administration in most of the excitatory neurons. Similar decrease of PCP signaling in excitatory neurons was predicted in dorsolateral prefrontal cortical (dl-PFC) neurons of patients with major depressive disorder (MDD). We showed that the basolateral amygdala (BLA)-projecting infralimbic prefrontal cortex (IL PFC) neurons regulate immobility time in the tail suspension test and food consumption. Conditionally knocking out Celsr2 and Celsr3 or Prickle2 in the BLA-projecting IL PFC neurons abolished ketamine-induced synapse restoration and behavioral remission. Therefore, PCP proteins in IL PFC-BLA neurons mediate synapse restoration induced by of low-dose ketamine.


Assuntos
Modelos Animais de Doenças , Ketamina , Neurônios , Córtex Pré-Frontal , Sinapses , Animais , Ketamina/farmacologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos , Masculino , Humanos , Polaridade Celular/efeitos dos fármacos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Camundongos Knockout , Estresse Psicológico , Corticosterona , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Ácido Glutâmico/metabolismo , Antidepressivos/farmacologia
5.
Neuropharmacology ; 257: 110033, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38866066

RESUMO

The anteroventral bed nucleus of stria terminalis (avBNST) is a limbic forebrain region involved in the regulation of anxiety, and expresses GABAB receptors, which are located at both pre- and post-synaptic sites. However, it is unclear how blockade of these receptors affects anxiety-like behaviors, particularly in Parkinson's disease (PD)-related anxiety. In the present study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, and increased GABA release and decreased glutamate release in the avBNST, as well as decreased level of dopamine (DA) in the basolateral amygdala (BLA). Intra-avBNST injection of pre-synaptic GABAB receptor antagonist CGP36216 produced anxiolytic-like effects, while the injection of post-synaptic GABAB receptor antagonist CGP35348 induced anxiety-like responses in both sham and 6-OHDA rats. Intra-avBNST injection of CGP36216 inhibited the GABAergic neurons and increased GABA/glutamate ratio in the avBNST and increased levels of DA and serotonin (5-HT) in the BLA; conversely, CGP35348 produced opposite effects on the firing activity of avBNST GABAergic neurons and levels of the neurotransmitters in the avBNST and BLA. Moreover, the doses of the antagonists producing significant behavioral effects in 6-OHDA rats were lower than those in sham rats, and the duration of action of the antagonists on the firing rate of the neurons and release of the neurotransmitters was prolonged in 6-OHDA rats. Altogether, these findings suggest that pre- and post-synaptic GABAB receptors in the avBNST are implicated in PD-related anxiety-like behaviors, and degeneration of the nigrostriatal pathway enhances functions and/or upregulates expression of these receptors.


Assuntos
Ansiolíticos , Ansiedade , Antagonistas de Receptores de GABA-B , Oxidopamina , Transtornos Parkinsonianos , Receptores de GABA-B , Núcleos Septais , Animais , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Masculino , Ansiedade/metabolismo , Antagonistas de Receptores de GABA-B/farmacologia , Ansiolíticos/farmacologia , Ratos , Receptores de GABA-B/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/psicologia , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ratos Sprague-Dawley , Serotonina/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Compostos Organofosforados
6.
Artigo em Inglês | MEDLINE | ID: mdl-38901759

RESUMO

The ventral pallidum (VP) receives its primary inputs from the nucleus accumbens (NAC) and the basolateral amygdala (BLA). We demonstrated recently that in the VP, the D2 DA receptor (D2R) agonist quinpirole dose-dependently facilitates memory consolidation in inhibitory avoidance and spatial learning. In the VP, D2R can be found both on NAC and BLA terminals. According to our hypothesis, quinpirole microinjected into the VP can facilitate memory consolidation via modulation of synaptic plasticity on NAC and/or BLA terminals. The effect of intra-VP quinpirole on BLA-VP and NAC shell-VP synapses was investigated via a high frequency stimulation (HFS) protocol. Quinpirole was administered in three doses into the VP of male Sprague-Dawley rats after HFS; controls received vehicle. To examine whether an interaction between the NAC shell and the BLA at the level of the VP was involved, tetrodotoxin (TTX) was microinjected into one of the nuclei while stimulating the other nucleus. Our results showed that quinpirole dose-dependently modulates BLA-VP and NAC shell-VP synapses, similar to those observed in inhibitory avoidance and spatial learning, respectively. The lower dose inhibits BLA inputs, while the larger doses facilitates NAC shell inputs. The experiments with TTX demonstrates that the two nuclei do not influence each others' evoked responses in the VP. Power spectral density analysis demonstrated that independent from the synaptic facilitation, intra-VP quinpirole increases the amplitude of gamma frequency band after NAC HFS, and BLA tonically suppresses the NAC's HFS-induced gamma facilitation. In contrast, HFS of the BLA results in a delayed, transient increase in the amplitude of the gamma frequency band correlating with the LTP of the P1 component of the VP response to BLA stimulation. Furthermore, our results demonstrate that the BLA plays a prominent role in the generation of the delta oscillations: HFS of the BLA leads to a gradually increasing delta frequency band facilitation over time, while BLA inhibition blocks the NAC's HFS induced strong delta facilitation. These findings demonstrate that there is a complex interaction between the NAC shell region and the VP, as well as the BLA and the VP, and support the important role of VP D2Rs in the regulation of limbic information flow.


Assuntos
Prosencéfalo Basal , Agonistas de Dopamina , Relação Dose-Resposta a Droga , Microinjeções , Quimpirol , Ratos Sprague-Dawley , Receptores de Dopamina D2 , Animais , Quimpirol/farmacologia , Masculino , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/fisiologia , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/efeitos dos fármacos , Ratos , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/fisiologia , Estimulação Elétrica , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/fisiologia
7.
Behav Brain Res ; 471: 115116, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38897419

RESUMO

The neural mechanisms underlying paternal care in biparental mammals are not well understood. The California mouse (Peromyscus californicus) is a biparental rodent in which virtually all fathers are attracted to pups, while virgin males vary widely in their behavior toward unrelated infants, ranging from attacking to avoiding to huddling and grooming pups. We previously showed that pharmacologically inhibiting the synthesis of the neurotransmitter norepinephrine (NE) with the dopamine ß-hydroxylase inhibitor nepicastat reduced the propensity of virgin male and female California mice to interact with pups. The current study tested the hypothesis that nepicastat would reduce pup-induced c-Fos immunoreactivity, a cellular marker of neural activity, in the medial preoptic area (MPOA), medial amygdala (MeA), basolateral amygdala (BLA), and bed nucleus of the stria terminalis (BNST), brain regions implicated in the control of parental behavior and/or anxiety. Virgin males were injected with nepicastat (75 mg/kg, i.p.) or vehicle 2 hours prior to exposure to either an unrelated pup or novel object for 60 minutes (n = 4-6 mice per group). Immediately following the 60-minute stimulus exposure, mice were euthanized and their brains were collected for c-Fos immunohistochemistry. Nepicastat reduced c-Fos expression in the MeA and MPOA of pup-exposed virgin males compared to vehicle-injected controls. In contrast, nepicastat did not alter c-Fos expression in any of the above brain regions following exposure to a novel object. Overall, these results suggest that the noradrenergic system might influence MeA and MPOA function to promote behavioral interactions with pups in virgin males.


Assuntos
Dopamina beta-Hidroxilase , Comportamento Paterno , Peromyscus , Área Pré-Óptica , Núcleos Septais , Animais , Masculino , Dopamina beta-Hidroxilase/metabolismo , Dopamina beta-Hidroxilase/antagonistas & inibidores , Comportamento Paterno/fisiologia , Comportamento Paterno/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Área Pré-Óptica/metabolismo , Área Pré-Óptica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Feminino , Inibidores Enzimáticos/farmacologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Corticomedial/efeitos dos fármacos , Complexo Nuclear Corticomedial/metabolismo , Norepinefrina/metabolismo , Imidazóis , Tionas
8.
Biochem Biophys Res Commun ; 720: 150076, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772224

RESUMO

Chronic morphine withdrawal memory formation is a complex process influenced by various molecular mechanisms. In this study, we aimed to investigate the contributions of the basolateral amygdala (BLA) and complement component 1, q subcomponent-like 3 (C1QL3), a secreted and presynaptically targeted protein, to the formation of chronic morphine (repeat dosing of morphine) withdrawal memory using conditioned place aversion (CPA) and chemogenetic methods. We conducted experiments involving the inhibition of the BLA during naloxone-induced withdrawal to assess its impact on CPA scores, providing insights into the significance of the BLA in the chronic morphine memory formation process. We also examined changes in C1ql3/C1QL3 expression within the BLA following conditioning. Immunofluorescence analysis revealed the colocalization of C1QL3 and the G protein-coupled receptor, brain-specific angiogenesis inhibitor 3 (BAI3) in the BLA, supporting their involvement in synaptic development. Moreover, we downregulated C1QL3 expression in the BLA to investigate its role in chronic morphine withdrawal memory formation. Our findings revealed that BLA inhibition during naloxone-induced withdrawal led to a significant reduction in CPA scores, confirming the critical role of the BLA in this memory process. Additionally, the upregulation of C1ql3 expression within the BLA postconditioning suggested its participation in withdrawal memory formation. The colocalization of C1QL3 and BAI3 in the BLA further supported their involvement in synaptic development. Furthermore, downregulation of C1QL3 in the BLA effectively hindered chronic morphine withdrawal memory formation, emphasizing its pivotal role in this process. Notably, we identified postsynaptic density protein 95 (PSD95) as a potential downstream effector of C1QL3 during chronic morphine withdrawal memory formation. Blocking PSD95 led to a significant reduction in the CPA score, and it appeared that C1QL3 modulated the ubiquitination-mediated degradation of PSD95, resulting in decreased PSD95 protein levels. This study underscores the importance of the BLA, C1QL3 and PSD95 in chronic morphine withdrawal memory formation. It provides valuable insights into the underlying molecular mechanisms, emphasizing their significance in this intricate process.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Proteína 4 Homóloga a Disks-Large , Memória , Morfina , Síndrome de Abstinência a Substâncias , Animais , Morfina/farmacologia , Síndrome de Abstinência a Substâncias/metabolismo , Masculino , Camundongos , Memória/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complemento C1q/metabolismo , Camundongos Endogâmicos C57BL , Naloxona/farmacologia
9.
Dev Psychobiol ; 66(5): e22501, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38807259

RESUMO

Selective serotonin reuptake inhibitors, such as fluoxetine (Prozac), are commonly prescribed pharmacotherapies for anxiety. Fluoxetine may be a useful adjunct because it can reduce the expression of learned fear in adult rodents. This effect is associated with altered expression of perineuronal nets (PNNs) in the amygdala and hippocampus, two brain regions that regulate fear. However, it is unknown whether fluoxetine has similar effects in adolescents. Here, we investigated the effect of fluoxetine exposure during adolescence or adulthood on context fear memory and PNNs in the basolateral amygdala (BLA), the CA1 subregion of the hippocampus, and the medial prefrontal cortex in rats. Fluoxetine impaired context fear memory in adults but not in adolescents. Further, fluoxetine increased the number of parvalbumin (PV)-expressing neurons surrounded by a PNN in the BLA and CA1, but not in the medial prefrontal cortex, at both ages. Contrary to previous reports, fluoxetine did not shift the percentage of PNNs toward non-PV cells in either the BLA or CA1 in the adults, or adolescents. These findings demonstrate that fluoxetine differentially affects fear memory in adolescent and adult rats but does not appear to have age-specific effects on PNNs.


Assuntos
Medo , Fluoxetina , Memória , Córtex Pré-Frontal , Inibidores Seletivos de Recaptação de Serotonina , Fluoxetina/farmacologia , Fluoxetina/administração & dosagem , Animais , Medo/efeitos dos fármacos , Medo/fisiologia , Masculino , Ratos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Memória/efeitos dos fármacos , Memória/fisiologia , Fatores Etários , Ratos Sprague-Dawley , Parvalbuminas/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos
10.
J Alzheimers Dis ; 99(4): 1303-1316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759018

RESUMO

Background: Anxiety and social withdrawal are highly prevalent among patients with Alzheimer's disease (AD). However, the neural circuit mechanisms underlying these symptoms remain elusive, and there is a need for effective prevention strategies. Objective: This study aims to elucidate the neural circuitry mechanisms underlying social anxiety in AD. Methods: We utilized 5xFAD mice and conducted a series of experiments including optogenetic manipulation, Tandem Mass Tag-labeled proteome analysis, behavioral assessments, and immunofluorescence staining. Results: In 5xFAD mice, we observed significant amyloid-ß (Aß) accumulation in the anterior part of basolateral amygdala (aBLA). Behaviorally, 6-month-old 5xFAD mice displayed excessive social avoidance during social interaction. Concurrently, the pathway from aBLA to ventral hippocampal CA1 (vCA1) was significantly activated and exhibited a disorganized firing patterns during social interaction. By optogenetically inhibiting the aBLA-vCA1 pathway, we effectively improved the social ability of 5xFAD mice. In the presence of Aß accumulation, we identified distinct changes in the protein network within the aBLA. Following one month of administration of Urolithin A (UA), we observed significant restoration of the abnormal protein network within the aBLA. UA treatment also attenuated the disorganized firings of the aBLA-vCA1 pathway, leading to an improvement in social ability. Conclusions: The aBLA-vCA1 circuit is a vulnerable pathway in response to Aß accumulation during the progression of AD and plays a crucial role in Aß-induced social anxiety. Targeting the aBLA-vCA1 circuit and UA administration are both effective strategies for improving the Aß-impaired social ability.


Assuntos
Peptídeos beta-Amiloides , Complexo Nuclear Basolateral da Amígdala , Região CA1 Hipocampal , Cumarínicos , Camundongos Transgênicos , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Cumarínicos/farmacologia , Doença de Alzheimer/metabolismo , Masculino , Comportamento Social , Modelos Animais de Doenças , Ansiedade/metabolismo , Interação Social/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Optogenética
11.
Brain Res Bull ; 213: 110975, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734185

RESUMO

Chronic restraint stress induces cognitive abnormalities through changes in synapses and oxidant levels in the amygdala and hippocampus. Given the neuroprotective effects of fruit of Terminalia chebula (Halileh) in different experimental models, the present investigation aimed to address whether Terminalia chebula is able to reduce chronic restraint stress-induced behavioral, synaptic and oxidant markers in the rat model. Thirty-two male Wistar rats were randomly divided into four groups as follows: control (did not receive any treatment and were not exposed to stress), stress (restraint stress for 2 h a day for 14 consecutive days), Terminalia chebula (received 200 mg/kg hydroalcoholic extract of Terminalia chebula), and stress + Terminalia chebula groups (received 200 mg/kg extract of Terminalia chebula twenty minutes before stress) (n = 8 in each group). We used the shuttle box test to assess learning and memory, Golgi-Cox staining to examine dendritic spine density in the dentate gyrus region of the hippocampus and the basolateral and central nuclei of the amygdala, and total antioxidant capacity (TAC) and total oxidant status (TOS) in the brain. The shuttle box test results demonstrated that Terminalia chebula treatment had a profound positive effect on memory parameters, including step-through latency (STL) and time spent in the dark room, when compared to the stress group. Daily oral treatment with Terminalia chebula effectively suppressed the loss of neural spine density in the dentate gyrus region of the hippocampus and the basolateral and central nuclei of the amygdala caused by chronic restraint stress, as demonstrated by Golgi-Cox staining. Additionally, the results indicate that Terminalia chebula significantly reduced the TOS and increased TAC in the brain compared to the stress group. In conclusion, our results suggest that Terminalia chebula improved memory impairment and synaptic loss in the dentate gyrus of the hippocampus and the basolateral and central nuclei of the amygdala induced by restraint stress via inhibiting oxidative damage.


Assuntos
Giro Denteado , Transtornos da Memória , Estresse Oxidativo , Extratos Vegetais , Ratos Wistar , Restrição Física , Estresse Psicológico , Terminalia , Animais , Terminalia/química , Masculino , Estresse Psicológico/metabolismo , Ratos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Giro Denteado/metabolismo , Extratos Vegetais/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Núcleo Central da Amígdala/metabolismo , Núcleo Central da Amígdala/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo
12.
Behav Brain Res ; 468: 115017, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679145

RESUMO

Growing evidence indicates a critical role of astrocytes in learning and memory. However, little is known about the role of basolateral amygdala complex (BLA-C) astrocytes in contextual fear conditioning (CFC), a paradigm relevant to understand and generate treatments for fear- and anxiety-related disorders. To get insights on the involvement of BLA-C astrocytes in fear memory, fluorocitrate (FLC), a reversible astroglial metabolic inhibitor, was applied at critical moments of the memory processing in order to target the acquisition, consolidation, retrieval and reconsolidation process of the fear memory. Adult Wistar male rats were bilaterally cannulated in BLA-C. Ten days later they were infused with different doses of FLC (0.5 or 1 nmol/0.5 µl) or saline before or after CFC and before or after retrieval. FLC impaired fear memory expression when administered before and shortly after CFC, but not one hour later. Infusion of FLC prior and after retrieval did not affect the memory. Our findings suggest that BLA-C astrocytes are critically involved in the acquisition/early consolidation of fear memory but not in the retrieval and reconsolidation. Furthermore, the extinction process was presumably not affected (considering that peri-retrieval administration could also affect this process).


Assuntos
Astrócitos , Complexo Nuclear Basolateral da Amígdala , Medo , Memória , Ratos Wistar , Animais , Medo/fisiologia , Medo/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Masculino , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Ratos , Memória/fisiologia , Memória/efeitos dos fármacos , Citratos/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Consolidação da Memória/fisiologia , Consolidação da Memória/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia
13.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38438258

RESUMO

Acetylcholine (ACh) is released from basal forebrain cholinergic neurons in response to salient stimuli and engages brain states supporting attention and memory. These high ACh states are associated with theta oscillations, which synchronize neuronal ensembles. Theta oscillations in the basolateral amygdala (BLA) in both humans and rodents have been shown to underlie emotional memory, yet their mechanism remains unclear. Here, using brain slice electrophysiology in male and female mice, we show large ACh stimuli evoke prolonged theta oscillations in BLA local field potentials that depend upon M3 muscarinic receptor activation of cholecystokinin (CCK) interneurons (INs) without the need for external glutamate signaling. Somatostatin (SOM) INs inhibit CCK INs and are themselves inhibited by ACh, providing a functional SOM→CCK IN circuit connection gating BLA theta. Parvalbumin (PV) INs, which can drive BLA oscillations in baseline states, are not involved in the generation of ACh-induced theta, highlighting that ACh induces a cellular switch in the control of BLA oscillatory activity and establishes an internally BLA-driven theta oscillation through CCK INs. Theta activity is more readily evoked in BLA over the cortex or hippocampus, suggesting preferential activation of the BLA during high ACh states. These data reveal a SOM→CCK IN circuit in the BLA that gates internal theta oscillations and suggest a mechanism by which salient stimuli acting through ACh switch the BLA into a network state enabling emotional memory.


Assuntos
Acetilcolina , Colecistocinina , Camundongos Endogâmicos C57BL , Ritmo Teta , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/fisiologia , Animais , Masculino , Camundongos , Feminino , Acetilcolina/farmacologia , Acetilcolina/metabolismo , Colecistocinina/farmacologia , Colecistocinina/metabolismo , Interneurônios/fisiologia , Interneurônios/efeitos dos fármacos , Somatostatina/metabolismo , Somatostatina/farmacologia , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Rede Nervosa/fisiologia , Rede Nervosa/efeitos dos fármacos , Receptor Muscarínico M3/fisiologia , Receptor Muscarínico M3/metabolismo , Parvalbuminas/metabolismo
14.
Mol Psychiatry ; 29(3): 730-741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38221548

RESUMO

Remote memory usually decreases over time, whereas remote drug-cue associated memory exhibits enhancement, increasing the risk of relapse during abstinence. Memory system consolidation is a prerequisite for remote memory formation, but neurobiological underpinnings of the role of consolidation in the enhancement of remote drug memory are unclear. Here, we found that remote cocaine-cue associated memory was enhanced in rats that underwent self-administration training, together with a progressive increase in the response of prelimbic cortex (PrL) CaMKII neurons to cues. System consolidation was required for the enhancement of remote cocaine memory through PrL CaMKII neurons during the early period post-training. Furthermore, dendritic spine maturation in the PrL relied on the basolateral amygdala (BLA) input during the early period of consolidation, contributing to remote memory enhancement. These findings indicate that memory consolidation drives the enhancement of remote cocaine memory through a time-dependent increase in activity and maturation of PrL CaMKII neurons receiving a sustained BLA input.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Cocaína , Consolidação da Memória , Neurônios , Córtex Pré-Frontal , Animais , Consolidação da Memória/efeitos dos fármacos , Consolidação da Memória/fisiologia , Cocaína/farmacologia , Masculino , Ratos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Sinais (Psicologia) , Ratos Sprague-Dawley , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Autoadministração , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Memória/efeitos dos fármacos , Memória/fisiologia
15.
J Neurosci ; 43(47): 7902-7912, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739795

RESUMO

Chronic alcohol exposure leads to a neuroinflammatory response involving activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome and proinflammatory cytokine production. Acute ethanol (EtOH) exposure activates GABAergic synapses in the central and basolateral amygdala (BLA) ex vivo, but whether this rapid modulation of synaptic inhibition is because of an acute inflammatory response and alters anxiety-like behavior in male and female animals is not known. Here, we tested the hypotheses that acute EtOH facilitates inhibitory synaptic transmission in the BLA by activating the NLRP3 inflammasome-dependent acute inflammatory response, that the alcohol-induced increase in inhibition is cell type and sex dependent, and that acute EtOH in the BLA reduces anxiety-like behavior. Acute EtOH application at a binge-like concentration (22-44 mm) stimulated synaptic GABA release from putative parvalbumin (PV) interneurons onto BLA principal neurons in ex vivo brain slices from male, but not female, rats. The EtOH facilitation of synaptic inhibition was blocked by antagonists of the Toll-like receptor 4 (TLR4), the NLRP3 inflammasome, and interleukin-1 receptors, suggesting it was mediated by a rapid local neuroinflammatory response in the BLA. In vivo, bilateral injection of EtOH directly into the BLA produced an acute concentration-dependent reduction in anxiety-like behavior in male but not female rats. These findings demonstrate that acute EtOH in the BLA regulates anxiety-like behavior in a sex-dependent manner and suggest that this effect is associated with presynaptic facilitation of parvalbumin-expressing interneuron inputs to BLA principal neurons via a local NLRP3 inflammasome-dependent neuroimmune response.SIGNIFICANCE STATEMENT Chronic alcohol exposure produces a neuroinflammatory response, which contributes to alcohol-associated pathologies. Acute alcohol administration increases inhibitory synaptic signaling in the brain, but the mechanism for the rapid alcohol facilitation of inhibitory circuits is unknown. We found that acute ethanol at binge-like concentrations in the basolateral amygdala (BLA) facilitates GABA release from parvalbumin-expressing (PV) interneuron synapses onto principal neurons in ex vivo brain slices from male rats and that intra-BLA ethanol reduces anxiety-like behavior in vivo in male rats, but not female rats. The ethanol (EtOH) facilitation of inhibition in the BLA is mediated by Toll-like receptor 4 (TLR4) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation and proinflammatory IL-1ß signaling, which suggests a rapid NLRP3 inflammasome-dependent neuroimmune cascade that plays a critical role in acute alcohol intoxication.


Assuntos
Ansiedade , Complexo Nuclear Basolateral da Amígdala , Etanol , Animais , Feminino , Masculino , Ratos , Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Etanol/toxicidade , Ácido gama-Aminobutírico/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , Parvalbuminas/metabolismo , Receptor 4 Toll-Like/metabolismo
16.
Psychopharmacology (Berl) ; 240(6): 1261-1273, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37055596

RESUMO

RATIONALE: The development and progression of alcohol use disorder (AUD) are widely viewed as maladaptive neuroplasticity. The transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) regulatory protein γ8 (TARP γ-8) is a molecular mechanism of neuroplasticity that has not been evaluated in AUD or other addictions. OBJECTIVE: To address this gap in knowledge, we evaluated the mechanistic role of TARP γ-8 bound AMPAR activity in the basolateral amygdala (BLA) and ventral hippocampus (vHPC) in the positive reinforcing effects of alcohol, which drive repetitive alcohol use throughout the course of AUD, in male C57BL/6 J mice. These brain regions were selected because they exhibit high levels of TARP γ-8 expression and send glutamate projections to the nucleus accumbens (NAc), which is a key nucleus in the brain reward pathway. METHODS AND RESULTS: Site-specific pharmacological inhibition of AMPARs bound to TARP γ-8 in the BLA via bilateral infusion of the selective negative modulator JNJ-55511118 (0-2 µg/µl/side) significantly decreased operant alcohol self-administration with no effect on sucrose self-administration in behavior-matched controls. Temporal analysis showed that reductions in alcohol-reinforced response rate occurred > 25 min after the onset of responding, consistent with a blunting of the positive reinforcing effects of alcohol in the absence of nonspecific behavioral effects. In contrast, inhibition of TARP γ-8 bound AMPARs in the vHPC selectively decreased sucrose self-administration with no effect on alcohol. CONCLUSIONS: This study reveals a novel brain region-specific role of TARP γ-8 bound AMPARs as a molecular mechanism of the positive reinforcing effects of alcohol and non-drug rewards.


Assuntos
Alcoolismo , Complexo Nuclear Basolateral da Amígdala , Canais de Cálcio , Etanol , Hipocampo , Receptores de AMPA , Sacarose , Animais , Masculino , Camundongos , Alcoolismo/etiologia , Alcoolismo/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Canais de Cálcio/metabolismo , Etanol/administração & dosagem , Etanol/farmacologia , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Locomoção/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Reforço Psicológico , Recompensa , Sacarose/administração & dosagem , Sacarose/farmacologia
17.
Proc Natl Acad Sci U S A ; 119(22): e2203680119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35622887

RESUMO

Noradrenergic activation of the basolateral amygdala (BLA) by emotional arousal enhances different forms of recognition memory via functional interactions with the insular cortex (IC). Human neuroimaging studies have revealed that the anterior IC (aIC), as part of the salience network, is dynamically regulated during arousing situations. Emotional stimulation first rapidly increases aIC activity but suppresses it in a delayed fashion. Here, we investigated in male Sprague-Dawley rats whether the BLA influence on recognition memory is associated with an increase or suppression of aIC activity during the postlearning consolidation period. We first employed anterograde and retrograde viral tracing and found that the BLA sends dense monosynaptic projections to the aIC. Memory-enhancing norepinephrine administration into the BLA following an object training experience suppressed aIC activity 1 h later, as determined by a reduced expression of the phosphorylated form of the transcription factor cAMP response element-binding (pCREB) protein and neuronal activity marker c-Fos. In contrast, the number of perisomatic γ-aminobutyric acid (GABA)ergic inhibitory synapses per pCREB-positive neuron was significantly increased, suggesting a dynamic up-regulation of GABAergic tone. In support of this possibility, pharmacological inhibition of aIC activity with a GABAergic agonist during consolidation enhanced object recognition memory. Norepinephrine administration into the BLA did not affect neuronal activity within the posterior IC, which receives sparse innervation from the BLA. The evidence that noradrenergic activation of the BLA enhances the consolidation of object recognition memory via a mechanism involving a suppression of aIC activity provides insight into the broader brain network dynamics underlying emotional regulation of memory.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Emoções , Córtex Insular , Inibição Neural , Reconhecimento Psicológico , Percepção Visual , Animais , Nível de Alerta , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Emoções/efeitos dos fármacos , Emoções/fisiologia , Agonistas GABAérgicos/farmacologia , Córtex Insular/efeitos dos fármacos , Córtex Insular/fisiologia , Masculino , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Norepinefrina/administração & dosagem , Norepinefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Percepção Visual/fisiologia
18.
Neurosci Lett ; 766: 136353, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793899

RESUMO

On the basis of amyloid ß (Aß) peptides as triggers in atrophy of structures in the limbic system, here we postulated that Aß1-42-induced intracellular Zn2+ toxicity in the basolateral amygdala contributes to conditioned fear memory. Aß1-42 increased intracellular Zn2+ level in the amygdala after local injection of Aß1-42 into the basolateral amygdala, resulting in conditioned fear memory deficit via attenuated LTP at perforant pathway-basolateral amygdala synapses. Co-injection of isoproterenol, a beta-adrenergic receptor agonist, reduced Aß1-42-mediated increase in intracellular Zn2+, resulting in rescue of the memory deficit and attenuated LTP. The present study suggests that beta-adrenergic activity induced by isoproterenol in the basolateral amygdala rescues the impairment of conditioned fear memory by Aß1-42. The rescuing effect may be linked with reducing Aß1-42-induced intracellular Zn2+ toxicity. Furthermore, Aß1-42 injection into the basolateral amygdala also attenuated LTP at perforant pathway-dentate granule cell synapses, while co-injection of isoproterenol rescued it, suggesting that Aß1-42 toxicity in the basolateral amygdala also affects hippocampus-dependent memory. It is likely that beta-adrenergic receptor activation in the basolateral amygdala rescues the limbic system exposed to Aß1-42 toxicity.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Isoproterenol/farmacologia , Zinco/metabolismo , Animais , Condicionamento Clássico , Medo , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Neurônios/metabolismo , Ratos , Ratos Wistar
19.
Artigo em Inglês | MEDLINE | ID: mdl-34929324

RESUMO

Drug-related memory can be transiently destabilized by memory retrieval, after which memories are reconsolidated. Neurons in the basolateral amygdala (BLA) that are activated by emotional information may be one of the key mechanisms underlying this destabilization. However, the specific neural circuits underlying this destabilization process remain unknown. Because BLA receives noradrenergic inputs from the nucleus tractus solitarius (NTS) and locus coeruleus (LC), we studied the role of afferent projections into the BLA in the destabilization of morphine self-administration memory in rats. We first showed that morphine (unconditioned stimulus, US) + morphine-associated conditioned stimuli (CS) exposure, rather than CS exposure alone, destabilized morphine self-administration memory. Then, we measured projection-specific activation after the US + CS or CS retrieval test using c-fos (activity marker)-labeling in projection areas. Compared with CS exposure, we found that US + CS exposure induced more neuronal activation in the BLA and NTS but not in the LC. Next, we determined the effects of chemogenetic inactivation or activation of NTS or LC projections to BLA (NTS â†’ BLA or LC â†’ BLA) on this destabilization. We found that NTS â†’ BLA, but not LC â†’ BLA inactivation during memory retrieval, prevented memory destabilization induced by US + CS exposure. Furthermore, NTS â†’ BLA, but not LC â†’ BLA activation during CS retrieval induced destabilization. Thus, our results identify a specific neural circuit underlying the transformation of a stable opiate-associated memory into an unstable memory and subsequently guide reconsolidation.


Assuntos
Analgésicos Opioides/farmacologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Locus Cerúleo/fisiologia , Memória/efeitos dos fármacos , Morfina/farmacologia , Núcleo Solitário/fisiologia , Animais , Condicionamento Clássico/efeitos dos fármacos , Masculino , Norepinefrina , Ratos , Autoadministração
20.
Acta Pharmacol Sin ; 43(2): 260-272, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33927360

RESUMO

Individual differences in the development of uncontrollable fear in response to traumatic stressors have been observed in clinic, but the underlying mechanisms remain unknown. In the present study we first conducted a meta-analysis of published clinical data and found that malondialdehyde, an oxidative stress biomarker, was significantly elevated in the blood of patients with fear-related anxiety disorders. We then carried out experimental study in rats subjected to fear conditioning. We showed that reestablishing redox homeostasis in basolateral amygdale (BLA) after exposure to fear stressors determined the capacity of learned fear inhibition. Intra-BLA infusion of buthionine sulfoximine (BSO) to deplete the most important endogenous antioxidant glutathione (GSH) blocked fear extinction, whereas intra-BLA infusion of dithiothreitol or N-acetylcysteine (a precursor of GSH) facilitated extinction. In electrophysiological studies conducted on transverse slices, we showed that fear stressors induced redox-dependent inhibition of NMDAR-mediated synaptic function, which was rescued by extinction learning or reducing agents. Our results reveal a novel pharmacological strategy for reversing impaired fear inhibition and highlight the role of GSH in the treatment of psychiatric disorders.


Assuntos
Acetilcisteína/farmacologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Glutationa/metabolismo , Memória/efeitos dos fármacos , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Butionina Sulfoximina/farmacologia , Condicionamento Clássico , Sinais (Psicologia) , Ditiotreitol/farmacologia , Glutationa/fisiologia , Homeostase/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...