Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 14(1): 283, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997258

RESUMO

Return to use, or relapse, is a major challenge in the treatment of opioid use disorder (OUD). Relapse can be precipitated by several factors, including exposure to drug-conditioned cues. Identifying successful treatments to mitigate cue-induced relapse has been challenging, perhaps due to extinction memory recall (EMR) deficits. Previously, inhibition of estradiol (E2) signaling in the basolateral amygdala (BLA) impaired heroin-cue EMR. This effect was recapitulated by antagonism of BLA estrogen receptors (ER) in a sex-specific manner such that blocking ERα in males, but ERß in females, impaired EMR. However, it is unclear whether increased E2 signaling, in the BLA or systemically, enhances heroin-cue EMR. We hypothesized that ERß agonism would enhance heroin-cue EMR in a sex- and region-specific manner. To determine the capacity of E2 signaling to improve EMR, we pharmacologically manipulated ERß across several translationally designed experiments. First, male and female rats acquired heroin or sucrose self-administration. Next, during a cued extinction session, we administered diarylpropionitrile (DPN, an ERß agonist) and tested anxiety-like behavior on an open field. Subsequently, we assessed EMR in a cue-induced reinstatement test and, finally, measured ERß expression in several brain regions. Across all experiments, females took more heroin and sucrose than males and had greater responses during heroin-cued extinction. Administration of DPN in the BLA enhanced EMR in females only, driven by ERß's impacts on memory consolidation. Interestingly, however, systemic DPN administration improved EMR for heroin cues in both sexes across several different tests, but did not impact sucrose-cue EMR. Immunohistochemical analysis of ERß expression across several different brain regions showed that females only had greater expression of ERß in the basal nucleus of the BLA. Here, in several preclinical experiments, we demonstrated that ERß agonism enhances heroin-cue EMR and has potential utility in combatting cue-induced relapse.


Assuntos
Sinais (Psicologia) , Receptor beta de Estrogênio , Extinção Psicológica , Heroína , Rememoração Mental , Animais , Masculino , Feminino , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/metabolismo , Heroína/farmacologia , Ratos , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Rememoração Mental/efeitos dos fármacos , Rememoração Mental/fisiologia , Nitrilas/farmacologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Propionatos/farmacologia , Fatores Sexuais , Autoadministração , Ratos Sprague-Dawley , Dependência de Heroína/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Zhen Ci Yan Jiu ; 49(7): 667-677, 2024 Jul 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39020484

RESUMO

OBJECTIVES: To observe the effect of electroacupuncture (EA) of "Zusanli" (ST36) and "Sanyinjiao" (SP6) on cancer pain and concomitant negative emotion in cancer pain model mice, and to explore its molecular mechanisms in the basolateral amygdala (BLA) by using transcriptomics techniques. METHODS: C57BL/6 mice were randomized into sham operation, model and EA groups, with 10 mice in each group. The cancer pain model was established by injecting PBS suspension containing Lewis lung cancer cells into the femur. The mice in the EA group received EA stimulation(1 mA, 2 Hz) on ST36 and SP6 from the 10th day after modeling, 20 min per day for 12 successive days. The bone damage of the distal femur was observed with X-ray and H.E. staining, respectively. The mechanical pain threshold (MPT) was detected by using von Frey. The depression-like behavior was detected by using sucrose-preference test (sucrose preference index in 12 h), and the immobility (feeling of despair) duration of forced swimming within 4 min. The BLA tissue was extracted for RNA sequencing (RNA library construction, and screening differential gene profiling by transcriptomic sequencing) and bioinformatics analysis. The real-time PCR was used to validate the mRNA expression of differentially expressed genes:tumor necrosis factor superfamily 8 (Tnfsf8), bone marrow stromal cell antigen 1 (Bst1), prodynorphin (Pdyn) and voltage-gated sodium channelß4 (Scn4b). RESULTS: H.E. staining and X-ray showed significant bone damage in the distal femur in cancer pain mice. In contrast to the sham operation group, the MPT on the 1st , 4th, 7th , 10th, 14th and 21st day after modeling and sucrose preference index were significantly decreased (P<0.001, P<0.000 1), and the immobility time of the forced swimming was considerably increased in the model group (P<0.001). In contrast to the model group, the MPT values on the 14th and 21st day and sucrose preference index were obviously increased (P<0.000 1, P<0.05), and the immobility time was strikingly decreased in the EA group (P<0.01). RNA sequencing showed that a total of 404 differentially expressed genes (205 up-regulated, 199 down-regulated) were screened in the model group compared with the sham operation group, and a total of 329 differentially expressed genes (206 up-regulated and 123 down-regulated) were screened in the EA group compared with the model group. Venn diagram analysis of the differentially expressed genes showed that 45 up-regulated and 28 down-regulated genes in the model group were completely reversed by EA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the screened differentially expressed genes revealed that the above differential genes were mainly enriched in the ligand receptor activity, cytokine receptor binding, and cytokine activity related to neuro-inflammation, as well as in neuropeptide signaling pathways related to neuronal excitability, and calcium ion mediated signal transduction. The analysis of KEGG pathway showed that the differentially expressed genes were mainly enriched in the inflammation-related pathways, such as interleukin-17 pathway. Validation analysis of the differentially expressed genes showed that the expression levels of Tnfsf8 and Bst1 were significantly up-regulated in the model group compared with the sham operation group (P<0.01, P<0.05), and down-regulated by EA (P<0.01, P<0.05), while the expression levels of Pdyn and Scn4b were down-regulated in the model group in comparison with the sham operation group (P<0.01), and up-regulated by EA (P<0.05, P<0.01), which was consistent with the changing trend of the gene sequencing results. CONCLUSIONS: Acupuncture of ST36 and SP6 can significantly relieve cancer pain and concomitant negative emotion in cancer pain mice, which may be related to its functions in alleviating neuro-inflammation and relieving the abnormal activities of specific neurons in the BLA.


Assuntos
Dor do Câncer , Depressão , Eletroacupuntura , Camundongos Endogâmicos C57BL , Animais , Camundongos , Depressão/terapia , Depressão/metabolismo , Depressão/genética , Depressão/etiologia , Humanos , Dor do Câncer/terapia , Dor do Câncer/metabolismo , Dor do Câncer/genética , Masculino , Complexo Nuclear Basolateral da Amígdala/metabolismo , Transcriptoma , Feminino , Pontos de Acupuntura , Encefalinas/metabolismo , Encefalinas/genética
3.
PLoS Biol ; 22(7): e3002646, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012916

RESUMO

Autism spectrum disorders (ASDs) are considered neural dysconnectivity syndromes. To better understand ASD and uncover potential treatments, it is imperative to know and dissect the connectivity deficits under conditions of autism. Here, we apply a whole-brain immunostaining and quantification platform to demonstrate impaired structural and functional connectivity and aberrant whole-brain synchronization in a Tbr1+/- autism mouse model. We express a channelrhodopsin variant oChIEF fused with Citrine at the basolateral amygdala (BLA) to outline the axonal projections of BLA neurons. By activating the BLA under blue light theta-burst stimulation (TBS), we then evaluate the effect of BLA activation on C-FOS expression at a whole brain level to represent neural activity. We show that Tbr1 haploinsufficiency almost completely disrupts contralateral BLA axonal projections and results in mistargeting in both ipsilateral and contralateral hemispheres, thereby globally altering BLA functional connectivity. Based on correlated C-FOS expression among brain regions, we further show that Tbr1 deficiency severely disrupts whole-brain synchronization in the absence of salient stimulation. Tbr1+/- and wild-type (WT) mice exhibit opposing responses to TBS-induced amygdalar activation, reducing synchronization in WT mice but enhancing it in Tbr1+/- mice. Whole-brain modular organization and intermodule connectivity are also affected by Tbr1 deficiency and amygdalar activation. Following BLA activation by TBS, the synchronizations of the whole brain and the default mode network, a specific subnetwork highly relevant to ASD, are enhanced in Tbr1+/- mice, implying a potential ameliorating effect of amygdalar stimulation on brain function. Indeed, TBS-mediated BLA activation increases nose-to-nose social interactions of Tbr1+/- mice, strengthening evidence for the role of amygdalar connectivity in social behaviors. Our high-resolution analytical platform reveals the inter- and intrahemispheric connectopathies arising from ASD. Our study emphasizes the defective synchronization at a whole-brain scale caused by Tbr1 deficiency and implies a potential beneficial effect of deep brain stimulation at the amygdala for TBR1-linked autism.


Assuntos
Transtorno do Espectro Autista , Complexo Nuclear Basolateral da Amígdala , Estimulação Encefálica Profunda , Modelos Animais de Doenças , Comportamento Social , Proteínas com Domínio T , Animais , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Camundongos , Estimulação Encefálica Profunda/métodos , Masculino , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Camundongos Endogâmicos C57BL , Vias Neurais/fisiopatologia , Vias Neurais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
4.
Theranostics ; 14(9): 3653-3673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948066

RESUMO

Rationale: Recent evidence highlights the pivotal role of mitochondrial dysfunction in mood disorders, but the mechanism involved remains unclear. We studied whether the Hippo/YAP/14-3-3η signaling pathway mediates mitochondrial abnormalities that result in the onset of major depressive disorder (MDD) in a mouse model. Methods: The ROC algorithm was used to identify a subpopulation of mice that were exposed to chronic unpredictable mild stress (CUMS) and exhibited the most prominent depressive phenotype (Dep). Electron microscopy, biochemical assays, quantitative PCR, and immunoblotting were used to evaluate synaptic and mitochondrial changes in the basolateral amygdala (BLA). RNA sequencing was used to explore changes in the Hippo pathway and downstream target genes. In vitro pharmacological inhibition and immunoprecipitation was used to confirm YAP/14-3-3η interaction and its role in neuronal mitochondrial dysfunction. We used virus-mediated gene overexpression and knockout in YAP transgenic mice to verify the regulatory effect of the Hippo/YAP/14-3-3η pathway on depressive-like behavior. Results: Transcriptomic data identified a large number of genes and signaling pathways that were specifically altered from the BLA of Dep mice. Dep mice showed notable synaptic impairment in BLA neurons, as well as mitochondrial damage characterized by abnormal mitochondrial morphology, compromised function, impaired biogenesis, and alterations in mitochondrial marker proteins. The Hippo signaling pathway was activated in Dep mice during CUMS, and the transcriptional regulatory activity of YAP was suppressed by phosphorylation of its Ser127 site. 14-3-3η was identified as an important co-regulatory factor of the Hippo/YAP pathway, as it can respond to chronic stress and regulate cytoplasmic retention of YAP. Importantly, the integrated Hippo/YAP/14-3-3η pathway mediated neuronal mitochondrial dysfunction and depressive behavior in Dep mice. Conclusion: The integrated Hippo/YAP/14-3-3η pathway in the BLA neuron is critical in mediating depressive-like behaviors in mice, suggesting a causal role for this pathway in susceptibility to chronic stress-induced depression. This pathway therefore may present a therapeutic target against mitochondrial dysfunction and synaptic impairment in MDD.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Modelos Animais de Doenças , Via de Sinalização Hippo , Mitocôndrias , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Camundongos , Mitocôndrias/metabolismo , Proteínas de Sinalização YAP/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Masculino , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/patologia , Depressão/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Camundongos Transgênicos
5.
Neurobiol Dis ; 199: 106595, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972360

RESUMO

Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by neuronal α-synuclein (α-syn) inclusions termed Lewy Pathology, which are abundant in the amygdala. The basolateral amygdala (BLA), in particular, receives projections from the thalamus and cortex. These projections play a role in cognition and emotional processing, behaviors which are impaired in α-synucleinopathies. To understand if and how pathologic α-syn impacts the BLA requires animal models of α-syn aggregation. Injection of α-syn pre-formed fibrils (PFFs) into the striatum induces robust α-syn aggregation in excitatory neurons in the BLA that corresponds with reduced contextual fear conditioning. At early time points after aggregate formation, cortico-amygdala excitatory transmission is abolished. The goal of this project was to determine if α-syn inclusions in the BLA induce synaptic degeneration and/or morphological changes. In this study, we used C57BL/6 J mice injected bilaterally with PFFs in the dorsal striatum to induce α-syn aggregate formation in the BLA. A method was developed using immunofluorescence and three-dimensional reconstruction to analyze excitatory cortico-amygdala and thalamo-amygdala presynaptic terminals closely juxtaposed to postsynaptic densities. The abundance and morphology of synapses were analyzed at 6- or 12-weeks post-injection of PFFs. α-Syn aggregate formation in the BLA did not cause a significant loss of synapses, but cortico-amygdala and thalamo-amygdala presynaptic terminals and postsynaptic densities with aggregates of α-syn show increased volumes, similar to previous findings in human DLB cortex, and in non-human primate models of PD. Transmission electron microscopy showed that asymmetric synapses in mice with PFF-induced α-syn aggregates have reduced synaptic vesicle intervesicular distances, similar to a recent study showing phospho-serine-129 α-syn increases synaptic vesicle clustering. Thus, pathologic α-syn causes major alterations to synaptic architecture in the BLA, potentially contributing to behavioral impairment and amygdala dysfunction observed in synucleinopathies.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Camundongos Endogâmicos C57BL , Sinapses , alfa-Sinucleína , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/patologia , alfa-Sinucleína/metabolismo , Sinapses/patologia , Sinapses/metabolismo , Camundongos , Masculino
6.
Neuroscience ; 553: 160-171, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38960089

RESUMO

Early life stress may lead to lifelong impairments in psychophysiological functions, including emotional and reward systems. Unpredicted decrease in reward magnitude generates a negative emotional state (frustration) that may be involved with susceptibility to psychiatric disorders. We evaluated, in adolescents and adult rats of both sexes, whether maternal separation (MS) alters the ability to cope with an unexpected reduction of reward later in life. Litters of Wistar rats were divided into controls (non handled - NH) or subjected to MS. Animals were trained to find sugary cereal pellets; later the amount was reduced. Increased latency to reach the reward-associated area indicates higher inability to regulate frustration. The dorsal hippocampus (dHC) and basolateral amygdala (BLA) were evaluated for protein levels of NMDA receptor subunits (GluN2A/GluN2B), synaptophysin, PSD95, SNAP-25 and CRF1. We found that adult MS males had greater vulnerability to reward reduction, together with decreased GluN2A and increased GluN2B immunocontent in the dHC. MS females and adolescents did not differ from controls. We concluded that MS enhances the response to frustration in adult males. The change in the ratio of GluN2A and GluN2B subunits in dHC could be related to a stronger, more difficult to update memory of the aversive experience.


Assuntos
Privação Materna , Ratos Wistar , Recompensa , Estresse Psicológico , Animais , Masculino , Feminino , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Adaptação Psicológica/fisiologia , Frustração , Ratos , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Caracteres Sexuais , Fatores Etários , Complexo Nuclear Basolateral da Amígdala/metabolismo
7.
Cell Mol Life Sci ; 81(1): 277, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913115

RESUMO

Many brain diseases lead to a reduction in the number of functional neurons and it would be of value to be able to increase the number of neurons in the affected brain areas. In this study, we examined whether we can promote neural stem cells to produce mature neurons and whether an increase in the mature neurons can affect cognitive performance. We detected that the EphB2 receptor is localized in immature basolateral amygdala (BLA) neurons. We therefore aimed to increase the level of EphB2 activity in neural stem cells (NSCs) in the BLA and examine the effects on the production of mature neurons and cognition. Toward that end, we utilized a photoactivatable EphB2 construct (optoEphB2) to increase EphB2 forward signaling in NSCs in the BLA. We revealed that the activation of optoEphB2 in NSCs in the BLA increased the level of immature and mature neurons in the BLA. We further found that activation of optoEphB2 in BLA NSCs enhanced auditory, but not contextual, long-term fear memory formation. Impairing EphB2 forward signaling did not affect the level of immature and mature neurons in the BLA. This study provides evidence that NSCs can be promoted to produce mature neurons by activating EphB2 to enhance specific brain functions.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Memória de Longo Prazo , Células-Tronco Neurais , Neurogênese , Receptor EphB2 , Animais , Receptor EphB2/metabolismo , Receptor EphB2/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Memória de Longo Prazo/fisiologia , Masculino , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/citologia , Camundongos , Neurônios/metabolismo , Neurônios/citologia , Camundongos Endogâmicos C57BL , Medo/fisiologia , Transdução de Sinais
8.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928281

RESUMO

The pivotal role of the basolateral amygdala (BLA) in the emotional modulation of hippocampal plasticity and memory consolidation is well-established. Specifically, multiple studies have demonstrated that the activation of the noradrenergic (NA) system within the BLA governs these modulatory effects. However, most current evidence has been obtained by direct infusion of synthetic NA or beta-adrenergic agonists. In the present study, we aimed to investigate the effect of endogenous NA release in the BLA, induced by a natural aversive stimulus (coyote urine), on memory consolidation for a low-arousing, hippocampal-dependent task. Our experiments combined a weak object location task (OLT) version with subsequent mild predator odor exposure (POE). To investigate the role of endogenous NA in the BLA in memory modulation, a subset of the animals (Wistar rats) was treated with the non-selective beta-blocker propranolol at the end of the behavioral procedures. Hippocampal tissue was collected 90 min after drug infusion or after the OLT test, which was performed 24 h later. We used the obtained samples to estimate the levels of phosphorylated CREB (pCREB) and activity-regulated cytoskeleton-associated protein (Arc)-two molecular markers of experience-dependent changes in neuronal activity. The result suggests that POE has the potential to become a valuable behavioral paradigm for studying the interaction between BLA and the hippocampus in memory prioritization and selectivity.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Emoções , Hipocampo , Consolidação da Memória , Norepinefrina , Odorantes , Ratos Wistar , Animais , Consolidação da Memória/fisiologia , Consolidação da Memória/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Masculino , Ratos , Norepinefrina/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Hipocampo/efeitos dos fármacos , Emoções/fisiologia , Emoções/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Propranolol/farmacologia
9.
Biomed Pharmacother ; 176: 116937, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870632

RESUMO

The advent of general anesthesia (GA) has significant implications for clinical practice. However, the exact mechanisms underlying GA-induced transitions in consciousness remain elusive. Given some similarities between GA and sleep, the sleep-arousal neural nuclei and circuits involved in sleep-arousal, including the 5-HTergic system, could be implicated in GA. Herein, we utilized pharmacology, optogenetics, chemogenetics, fiber photometry, and retrograde tracing to demonstrate that both endogenous and exogenous activation of the 5-HTergic neural circuit between the dorsal raphe nucleus (DR) and basolateral amygdala (BLA) promotes arousal and facilitates recovery of consciousness from sevoflurane anesthesia. Notably, the 5-HT1A receptor within this pathway holds a pivotal role. Our findings will be conducive to substantially expanding our comprehension of the neural circuit mechanisms underlying sevoflurane anesthesia and provide a potential target for modulating consciousness, ultimately leading to a reduction in anesthetic dose requirements and side effects.


Assuntos
Anestésicos Inalatórios , Complexo Nuclear Basolateral da Amígdala , Estado de Consciência , Núcleo Dorsal da Rafe , Sevoflurano , Sevoflurano/farmacologia , Animais , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Estado de Consciência/efeitos dos fármacos , Anestésicos Inalatórios/farmacologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serotonina/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Optogenética
10.
Nat Commun ; 15(1): 4945, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858386

RESUMO

Single administration of low-dose ketamine has both acute and sustained anti-depressant effects. Sustained effect is associated with restoration of glutamatergic synapses in medial prefrontal cortic (mFPC) neurons. Ketamine induced profound changes in a number of molecular pathways in a mouse model for chronic stress. Cell-cell communication analyses predicted that planar-cell-polarity (PCP) signaling was decreased after chronic administration of corticosterone but increased following ketamine administration in most of the excitatory neurons. Similar decrease of PCP signaling in excitatory neurons was predicted in dorsolateral prefrontal cortical (dl-PFC) neurons of patients with major depressive disorder (MDD). We showed that the basolateral amygdala (BLA)-projecting infralimbic prefrontal cortex (IL PFC) neurons regulate immobility time in the tail suspension test and food consumption. Conditionally knocking out Celsr2 and Celsr3 or Prickle2 in the BLA-projecting IL PFC neurons abolished ketamine-induced synapse restoration and behavioral remission. Therefore, PCP proteins in IL PFC-BLA neurons mediate synapse restoration induced by of low-dose ketamine.


Assuntos
Modelos Animais de Doenças , Ketamina , Neurônios , Córtex Pré-Frontal , Sinapses , Animais , Ketamina/farmacologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos , Masculino , Humanos , Polaridade Celular/efeitos dos fármacos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Camundongos Knockout , Estresse Psicológico , Corticosterona , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Ácido Glutâmico/metabolismo , Antidepressivos/farmacologia
11.
Neuropharmacology ; 257: 110033, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38866066

RESUMO

The anteroventral bed nucleus of stria terminalis (avBNST) is a limbic forebrain region involved in the regulation of anxiety, and expresses GABAB receptors, which are located at both pre- and post-synaptic sites. However, it is unclear how blockade of these receptors affects anxiety-like behaviors, particularly in Parkinson's disease (PD)-related anxiety. In the present study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, and increased GABA release and decreased glutamate release in the avBNST, as well as decreased level of dopamine (DA) in the basolateral amygdala (BLA). Intra-avBNST injection of pre-synaptic GABAB receptor antagonist CGP36216 produced anxiolytic-like effects, while the injection of post-synaptic GABAB receptor antagonist CGP35348 induced anxiety-like responses in both sham and 6-OHDA rats. Intra-avBNST injection of CGP36216 inhibited the GABAergic neurons and increased GABA/glutamate ratio in the avBNST and increased levels of DA and serotonin (5-HT) in the BLA; conversely, CGP35348 produced opposite effects on the firing activity of avBNST GABAergic neurons and levels of the neurotransmitters in the avBNST and BLA. Moreover, the doses of the antagonists producing significant behavioral effects in 6-OHDA rats were lower than those in sham rats, and the duration of action of the antagonists on the firing rate of the neurons and release of the neurotransmitters was prolonged in 6-OHDA rats. Altogether, these findings suggest that pre- and post-synaptic GABAB receptors in the avBNST are implicated in PD-related anxiety-like behaviors, and degeneration of the nigrostriatal pathway enhances functions and/or upregulates expression of these receptors.


Assuntos
Ansiolíticos , Ansiedade , Antagonistas de Receptores de GABA-B , Oxidopamina , Transtornos Parkinsonianos , Receptores de GABA-B , Núcleos Septais , Animais , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Masculino , Ansiedade/metabolismo , Antagonistas de Receptores de GABA-B/farmacologia , Ansiolíticos/farmacologia , Ratos , Receptores de GABA-B/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/psicologia , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ratos Sprague-Dawley , Serotonina/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Compostos Organofosforados
12.
Neurobiol Learn Mem ; 213: 107952, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906243

RESUMO

The ability to learn and remember, which is fundamental for behavioral adaptation, is susceptible to stressful experiences during the early postnatal period, such as abnormal levels of maternal care. The exact mechanisms underlying these effects still remain elusive. This study examined whether early life stress (ELS) alters memory and brain activation patterns in male mice. Therefore, we examined the expression of the immediate early genes (IEGs) c-Fos and Arc in the dentate gyrus (DG) and basolateral amygdala (BLA) after training and memory retrieval in a fear conditioning task. Furthermore, we examined the potential of RU38486 (RU486), a glucocorticoid receptor antagonist, to mitigate ELS-induced memory deficits by blocking stress signalling during adolescence. Arc::dVenus reporter mice, which allow investigating experience-dependent expression of the immediate early gene Arc also at more remote time points, were exposed to ELS by housing dams and offspring with limited bedding and nesting material (LBN) between postnatal days (PND) 2-9 and trained in a fear conditioning task at adult age. We found that ELS reduced both fear acquisition and contextual memory retrieval. RU486 did not prevent these effects. ELS reduced the number of Arc::dVenus+ cells in DG and BLA after training, while the number of c-Fos+ cells were left unaffected. After memory retrieval, ELS decreased c-Fos+ cells in the ventral DG and BLA. ELS also altered the colocalization of c-Fos+ cells with Arc::dVenus+ cells in the ventral DG, possibly indicating impaired engram allocation in the ventral DG after memory retrieval. In conclusion, this study shows that ELS alters neuronal activation patterns after fear acquisition and retrieval, which may provide mechanistic insights into enduring impact of ELS on the processing of fear memories, possibly via changes in cell (co-) activation and engram cell allocation.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Giro Denteado , Medo , Mifepristona , Estresse Psicológico , Animais , Medo/fisiologia , Masculino , Estresse Psicológico/metabolismo , Camundongos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Giro Denteado/metabolismo , Mifepristona/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Feminino , Memória/fisiologia , Condicionamento Clássico/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Genes Precoces/fisiologia , Proteínas do Citoesqueleto/metabolismo , Rememoração Mental/fisiologia , Camundongos Endogâmicos C57BL
13.
J Neurosci ; 44(30)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38830765

RESUMO

Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism spectrum disorder. The mesocorticolimbic system, which includes the prefrontal cortex (PFC), basolateral amygdala (BLA), and nucleus accumbens core (NAcC), is essential for regulating socioemotional behaviors. We employed optogenetics to compare the functional properties of the BLA→NAcC, PFC→NAcC, and reciprocal PFC↔BLA pathways in Fmr1-/y::Drd1a-tdTomato male mice. In FXS mice, the PFC↔BLA reciprocal pathway was unaffected, while significant synaptic modifications occurred in the BLA/PFC→NAcC pathways. We observed distinct changes in D1 striatal projection neurons (SPNs) and separate modifications in D2 SPNs. In FXS mice, the BLA/PFC→NAcC-D2 SPN pathways demonstrated heightened synaptic strength. Focusing on the BLA→NAcC pathway, linked to autistic symptoms, we found increased AMPAR and NMDAR currents and elevated spine density in D2 SPNs. Conversely, the amplified firing probability of BLA→NAcC-D1 SPNs was not accompanied by increased synaptic strength, AMPAR and NMDAR currents, or spine density. These pathway-specific alterations resulted in an overall enhancement of excitatory-to-spike coupling, a physiologically relevant index of how efficiently excitatory inputs drive neuronal firing, in both BLA→NAcC-D1 and BLA→NAcC-D2 pathways. Finally, the absence of fragile X messenger ribonucleoprotein 1 (FMRP) led to impaired long-term depression specifically in BLA→D1 SPNs. These distinct alterations in synaptic transmission and plasticity within circuits targeting the NAcC highlight the potential role of postsynaptic mechanisms in selected SPNs in the observed circuit-level changes. This research underscores the heightened vulnerability of the NAcC in the context of FMRP deficiency, emphasizing its pivotal role in the pathophysiology of FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Núcleo Accumbens , Animais , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/genética , Camundongos , Masculino , Núcleo Accumbens/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Vias Neurais/fisiopatologia , Optogenética , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Camundongos Endogâmicos C57BL , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Camundongos Knockout , Neurônios/metabolismo , Neurônios/fisiologia , Plasticidade Neuronal/fisiologia
14.
Behav Brain Res ; 471: 115116, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38897419

RESUMO

The neural mechanisms underlying paternal care in biparental mammals are not well understood. The California mouse (Peromyscus californicus) is a biparental rodent in which virtually all fathers are attracted to pups, while virgin males vary widely in their behavior toward unrelated infants, ranging from attacking to avoiding to huddling and grooming pups. We previously showed that pharmacologically inhibiting the synthesis of the neurotransmitter norepinephrine (NE) with the dopamine ß-hydroxylase inhibitor nepicastat reduced the propensity of virgin male and female California mice to interact with pups. The current study tested the hypothesis that nepicastat would reduce pup-induced c-Fos immunoreactivity, a cellular marker of neural activity, in the medial preoptic area (MPOA), medial amygdala (MeA), basolateral amygdala (BLA), and bed nucleus of the stria terminalis (BNST), brain regions implicated in the control of parental behavior and/or anxiety. Virgin males were injected with nepicastat (75 mg/kg, i.p.) or vehicle 2 hours prior to exposure to either an unrelated pup or novel object for 60 minutes (n = 4-6 mice per group). Immediately following the 60-minute stimulus exposure, mice were euthanized and their brains were collected for c-Fos immunohistochemistry. Nepicastat reduced c-Fos expression in the MeA and MPOA of pup-exposed virgin males compared to vehicle-injected controls. In contrast, nepicastat did not alter c-Fos expression in any of the above brain regions following exposure to a novel object. Overall, these results suggest that the noradrenergic system might influence MeA and MPOA function to promote behavioral interactions with pups in virgin males.


Assuntos
Dopamina beta-Hidroxilase , Comportamento Paterno , Peromyscus , Área Pré-Óptica , Núcleos Septais , Animais , Masculino , Dopamina beta-Hidroxilase/metabolismo , Dopamina beta-Hidroxilase/antagonistas & inibidores , Comportamento Paterno/fisiologia , Comportamento Paterno/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Área Pré-Óptica/metabolismo , Área Pré-Óptica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Feminino , Inibidores Enzimáticos/farmacologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Corticomedial/efeitos dos fármacos , Complexo Nuclear Corticomedial/metabolismo , Norepinefrina/metabolismo , Imidazóis , Tionas
15.
Biochem Biophys Res Commun ; 720: 150076, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772224

RESUMO

Chronic morphine withdrawal memory formation is a complex process influenced by various molecular mechanisms. In this study, we aimed to investigate the contributions of the basolateral amygdala (BLA) and complement component 1, q subcomponent-like 3 (C1QL3), a secreted and presynaptically targeted protein, to the formation of chronic morphine (repeat dosing of morphine) withdrawal memory using conditioned place aversion (CPA) and chemogenetic methods. We conducted experiments involving the inhibition of the BLA during naloxone-induced withdrawal to assess its impact on CPA scores, providing insights into the significance of the BLA in the chronic morphine memory formation process. We also examined changes in C1ql3/C1QL3 expression within the BLA following conditioning. Immunofluorescence analysis revealed the colocalization of C1QL3 and the G protein-coupled receptor, brain-specific angiogenesis inhibitor 3 (BAI3) in the BLA, supporting their involvement in synaptic development. Moreover, we downregulated C1QL3 expression in the BLA to investigate its role in chronic morphine withdrawal memory formation. Our findings revealed that BLA inhibition during naloxone-induced withdrawal led to a significant reduction in CPA scores, confirming the critical role of the BLA in this memory process. Additionally, the upregulation of C1ql3 expression within the BLA postconditioning suggested its participation in withdrawal memory formation. The colocalization of C1QL3 and BAI3 in the BLA further supported their involvement in synaptic development. Furthermore, downregulation of C1QL3 in the BLA effectively hindered chronic morphine withdrawal memory formation, emphasizing its pivotal role in this process. Notably, we identified postsynaptic density protein 95 (PSD95) as a potential downstream effector of C1QL3 during chronic morphine withdrawal memory formation. Blocking PSD95 led to a significant reduction in the CPA score, and it appeared that C1QL3 modulated the ubiquitination-mediated degradation of PSD95, resulting in decreased PSD95 protein levels. This study underscores the importance of the BLA, C1QL3 and PSD95 in chronic morphine withdrawal memory formation. It provides valuable insights into the underlying molecular mechanisms, emphasizing their significance in this intricate process.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Proteína 4 Homóloga a Disks-Large , Memória , Morfina , Síndrome de Abstinência a Substâncias , Animais , Morfina/farmacologia , Síndrome de Abstinência a Substâncias/metabolismo , Masculino , Camundongos , Memória/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complemento C1q/metabolismo , Camundongos Endogâmicos C57BL , Naloxona/farmacologia
16.
Sci Prog ; 107(2): 368504241253692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38780474

RESUMO

The brain regulates every physiological process in the body, including metabolism. Studies investigating brain metabolism have shown that stress can alter major metabolic processes, and that these processes can vary between regions. However, no study has investigated how metabolic pathways may be altered by stressor perception, or whether stress-responsive brain regions can also regulate metabolism. The basolateral amygdala (BLA), a region important for stress and fear, has reciprocal connections to regions responsible for metabolic regulation. In this study, we investigated how BLA influences regional metabolic profiles within the hippocampus (HPC) and medial prefrontal cortex (mPFC), regions involved in regulating the stress response and stress perception, using optogenetics in male C57BL/6 mice during footshock presentation in a yoked shuttlebox paradigm based on controllable (ES) and uncontrollable (IS) stress. RNA extracted from HPC and mPFC were loaded into NanoString® Mouse Neuroinflammation Panels, which also provides a broad view of metabolic processes, for compilation of gene expression profiles. Results showed differential regulation of carbohydrate and lipid metabolism, and insulin signaling gene expression pathways in HPC and mPFC following ES and IS, and that these differences were altered in response to optogenetic excitation or inhibition of the BLA. These findings demonstrate for the first time that individual brain regions can utilize metabolites in a way that are unique to their needs and function in response to a stressor, and that vary based on stressor controllability and influence by BLA.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Hipocampo , Camundongos Endogâmicos C57BL , Optogenética , Córtex Pré-Frontal , Estresse Psicológico , Animais , Masculino , Complexo Nuclear Basolateral da Amígdala/metabolismo , Camundongos , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Metabolismo dos Lipídeos
17.
Dev Psychobiol ; 66(5): e22501, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38807259

RESUMO

Selective serotonin reuptake inhibitors, such as fluoxetine (Prozac), are commonly prescribed pharmacotherapies for anxiety. Fluoxetine may be a useful adjunct because it can reduce the expression of learned fear in adult rodents. This effect is associated with altered expression of perineuronal nets (PNNs) in the amygdala and hippocampus, two brain regions that regulate fear. However, it is unknown whether fluoxetine has similar effects in adolescents. Here, we investigated the effect of fluoxetine exposure during adolescence or adulthood on context fear memory and PNNs in the basolateral amygdala (BLA), the CA1 subregion of the hippocampus, and the medial prefrontal cortex in rats. Fluoxetine impaired context fear memory in adults but not in adolescents. Further, fluoxetine increased the number of parvalbumin (PV)-expressing neurons surrounded by a PNN in the BLA and CA1, but not in the medial prefrontal cortex, at both ages. Contrary to previous reports, fluoxetine did not shift the percentage of PNNs toward non-PV cells in either the BLA or CA1 in the adults, or adolescents. These findings demonstrate that fluoxetine differentially affects fear memory in adolescent and adult rats but does not appear to have age-specific effects on PNNs.


Assuntos
Medo , Fluoxetina , Memória , Córtex Pré-Frontal , Inibidores Seletivos de Recaptação de Serotonina , Fluoxetina/farmacologia , Fluoxetina/administração & dosagem , Animais , Medo/efeitos dos fármacos , Medo/fisiologia , Masculino , Ratos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Memória/efeitos dos fármacos , Memória/fisiologia , Fatores Etários , Ratos Sprague-Dawley , Parvalbuminas/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos
18.
J Alzheimers Dis ; 99(4): 1303-1316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759018

RESUMO

Background: Anxiety and social withdrawal are highly prevalent among patients with Alzheimer's disease (AD). However, the neural circuit mechanisms underlying these symptoms remain elusive, and there is a need for effective prevention strategies. Objective: This study aims to elucidate the neural circuitry mechanisms underlying social anxiety in AD. Methods: We utilized 5xFAD mice and conducted a series of experiments including optogenetic manipulation, Tandem Mass Tag-labeled proteome analysis, behavioral assessments, and immunofluorescence staining. Results: In 5xFAD mice, we observed significant amyloid-ß (Aß) accumulation in the anterior part of basolateral amygdala (aBLA). Behaviorally, 6-month-old 5xFAD mice displayed excessive social avoidance during social interaction. Concurrently, the pathway from aBLA to ventral hippocampal CA1 (vCA1) was significantly activated and exhibited a disorganized firing patterns during social interaction. By optogenetically inhibiting the aBLA-vCA1 pathway, we effectively improved the social ability of 5xFAD mice. In the presence of Aß accumulation, we identified distinct changes in the protein network within the aBLA. Following one month of administration of Urolithin A (UA), we observed significant restoration of the abnormal protein network within the aBLA. UA treatment also attenuated the disorganized firings of the aBLA-vCA1 pathway, leading to an improvement in social ability. Conclusions: The aBLA-vCA1 circuit is a vulnerable pathway in response to Aß accumulation during the progression of AD and plays a crucial role in Aß-induced social anxiety. Targeting the aBLA-vCA1 circuit and UA administration are both effective strategies for improving the Aß-impaired social ability.


Assuntos
Peptídeos beta-Amiloides , Complexo Nuclear Basolateral da Amígdala , Região CA1 Hipocampal , Cumarínicos , Camundongos Transgênicos , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Cumarínicos/farmacologia , Doença de Alzheimer/metabolismo , Masculino , Comportamento Social , Modelos Animais de Doenças , Ansiedade/metabolismo , Interação Social/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Optogenética
19.
Brain Res Bull ; 213: 110975, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734185

RESUMO

Chronic restraint stress induces cognitive abnormalities through changes in synapses and oxidant levels in the amygdala and hippocampus. Given the neuroprotective effects of fruit of Terminalia chebula (Halileh) in different experimental models, the present investigation aimed to address whether Terminalia chebula is able to reduce chronic restraint stress-induced behavioral, synaptic and oxidant markers in the rat model. Thirty-two male Wistar rats were randomly divided into four groups as follows: control (did not receive any treatment and were not exposed to stress), stress (restraint stress for 2 h a day for 14 consecutive days), Terminalia chebula (received 200 mg/kg hydroalcoholic extract of Terminalia chebula), and stress + Terminalia chebula groups (received 200 mg/kg extract of Terminalia chebula twenty minutes before stress) (n = 8 in each group). We used the shuttle box test to assess learning and memory, Golgi-Cox staining to examine dendritic spine density in the dentate gyrus region of the hippocampus and the basolateral and central nuclei of the amygdala, and total antioxidant capacity (TAC) and total oxidant status (TOS) in the brain. The shuttle box test results demonstrated that Terminalia chebula treatment had a profound positive effect on memory parameters, including step-through latency (STL) and time spent in the dark room, when compared to the stress group. Daily oral treatment with Terminalia chebula effectively suppressed the loss of neural spine density in the dentate gyrus region of the hippocampus and the basolateral and central nuclei of the amygdala caused by chronic restraint stress, as demonstrated by Golgi-Cox staining. Additionally, the results indicate that Terminalia chebula significantly reduced the TOS and increased TAC in the brain compared to the stress group. In conclusion, our results suggest that Terminalia chebula improved memory impairment and synaptic loss in the dentate gyrus of the hippocampus and the basolateral and central nuclei of the amygdala induced by restraint stress via inhibiting oxidative damage.


Assuntos
Giro Denteado , Transtornos da Memória , Estresse Oxidativo , Extratos Vegetais , Ratos Wistar , Restrição Física , Estresse Psicológico , Terminalia , Animais , Terminalia/química , Masculino , Estresse Psicológico/metabolismo , Ratos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Giro Denteado/metabolismo , Extratos Vegetais/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Núcleo Central da Amígdala/metabolismo , Núcleo Central da Amígdala/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo
20.
Schizophr Bull ; 50(4): 913-923, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38811350

RESUMO

BACKGROUND AND HYPOTHESIS: This study investigated the role of the medial prefrontal cortex (mPFC)-basolateral amygdala (BLA) pathway in schizophrenia (SCZ)-related cognitive impairments using various techniques. STUDY DESIGN: This study utilized clinical scales, magnetic resonance imaging, single-cell RNA sequencing, and optogenetics to investigate the mPFC-BLA pathway in SCZ patients. In the mouse model, 6-week-old methylazoxymethanol acetate-induced mice demonstrated significant cognitive deficits, which were addressed through stereotaxic injections of an adeno-associated viral vector to unveil the neural connection between the mPFC and BLA. STUDY RESULTS: Significant disparities in brain volume and neural activity, particularly in the dorsolateral prefrontal cortex (DLPFC) and BLA regions, were found between SCZ patients and healthy controls. Additionally, we observed correlations indicating that reduced volumes of the DLPFC and BLA were associated with lower cognitive function scores. Activation of the mPFC-BLA pathway notably improved cognitive performance in the SCZ model mice, with the targeting of excitatory or inhibitory neurons alone failing to replicate this effect. Single-cell transcriptomic profiling revealed gene expression differences in excitatory and inhibitory neurons in the BLA of SCZ model mice. Notably, genes differentially expressed in the BLA of these model mice were also found in the blood exosomes of SCZ patients. CONCLUSIONS: Our research provides a comprehensive understanding of the role of the PFC-BLA pathway in SCZ, underscoring its significance in cognitive impairment and offering novel diagnostic and therapeutic avenues. Additionally, our research highlights the potential of blood exosomal mRNAs as noninvasive biomarkers for SCZ diagnosis, underscoring the clinical feasibility and utility of this method.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Disfunção Cognitiva , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Esquizofrenia , Animais , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/metabolismo , Camundongos , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem , Masculino , Humanos , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/diagnóstico por imagem , Feminino , Adulto , Vias Neurais/fisiopatologia , Pessoa de Meia-Idade , Optogenética , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...