Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.297
Filtrar
1.
Mol Cell ; 84(11): 2011-2013, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848689

RESUMO

In this issue of Molecular Cell, Yi et al.1 demonstrate that reduced mTORC1 activity induces the CTLH E3 ligase-dependent degradation of HMGCS1, an enzyme in the mevalonate pathway, thus revealing a unique connection between mTORC1 signaling and the degradation of a specific metabolic enzyme via the ubiquitin-proteasome system.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Complexo de Endopeptidases do Proteassoma , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteólise , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Animais , Ácido Mevalônico/metabolismo , Ubiquitina/metabolismo
2.
Biochemistry ; 63(13): 1647-1662, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38869079

RESUMO

In growing E. coli cells, the transcription-translation complexes (TTCs) form characteristic foci; however, the exact molecular composition of these superstructures is not known with certainty. Herein, we report that, during our recently developed "fast" procedures for purification of E. coli RNA polymerase (RP), a fraction of the RP's α/RpoA subunits is displaced from the core RP complexes and copurifies with multiprotein superstructures carrying the nucleic acid-binding protein Hfq and the ribosomal protein S6. We show that the main components of these large multiprotein assemblies are fixed protein copy-number (Hfq6)n≥8 complexes; these complexes have a high level of structural uniformity and are distinctly unlike the previously described (Hfq6)n "head-to-tail" polymers. We describe purification of these novel, structurally uniform (Hfq6)n≥8 complexes to near homogeneity and show that they also contain small nonprotein molecules and accessory S6. We demonstrate that Hfq, S6, and RP have similar solubility profiles and present evidence pointing to a role of the Hfq C-termini in superstructure formation. Taken together, our data offer new insights into the composition of the macromolecular assemblies likely acting as scaffolds for transcription complexes and ribosomes during bacterial cells' active growth.


Assuntos
RNA Polimerases Dirigidas por DNA , Proteínas de Escherichia coli , Escherichia coli , Transcrição Gênica , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Fator Proteico 1 do Hospedeiro/química , Fator Proteico 1 do Hospedeiro/genética , Biossíntese de Proteínas , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo
3.
Nat Genet ; 56(6): 1213-1224, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38802567

RESUMO

During mitosis, condensin activity is thought to interfere with interphase chromatin structures. To investigate genome folding principles in the absence of chromatin loop extrusion, we codepleted condensin I and condensin II, which triggered mitotic chromosome compartmentalization in ways similar to that in interphase. However, two distinct euchromatic compartments, indistinguishable in interphase, emerged upon condensin loss with different interaction preferences and dependencies on H3K27ac. Constitutive heterochromatin gradually self-aggregated and cocompartmentalized with facultative heterochromatin, contrasting with their separation during interphase. Notably, some cis-regulatory element contacts became apparent even in the absence of CTCF/cohesin-mediated structures. Heterochromatin protein 1 (HP1) proteins, which are thought to partition constitutive heterochromatin, were absent from mitotic chromosomes, suggesting, surprisingly, that constitutive heterochromatin can self-aggregate without HP1. Indeed, in cells traversing from M to G1 phase in the combined absence of HP1α, HP1ß and HP1γ, constitutive heterochromatin compartments are normally re-established. In sum, condensin-deficient mitotic chromosomes illuminate forces of genome compartmentalization not identified in interphase cells.


Assuntos
Adenosina Trifosfatases , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Heterocromatina , Mitose , Complexos Multiproteicos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Mitose/genética , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Interfase/genética , Cromossomos/genética , Homólogo 5 da Proteína Cromobox , Cromatina/metabolismo , Cromatina/genética
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 761-768, 2024 Jun 10.
Artigo em Chinês | MEDLINE | ID: mdl-38818566

RESUMO

Structural maintenance of chromosomes (SMC), including cohesin, condensin and the SMC5/6 complex, are protein complexes which maintain the higher structure and dynamic stability of chromatin. Such circular complexes, with similar structures, play pivotal roles in chromatid cohesion, chromosomal condensation, DNA replication and repair, as well as gene transcription. Despite extensive research on the functions of the SMCs, our understanding of the SMC5/6 complex has remained limited compared with the other two complexes. This article has reviewed the architecture and crucial physiological roles of the SMCs, and explored the associated phenotypes resulting from mutations of the SMC components such as Cornelia de Lange syndrome (CdLS) and microcephaly, with an aim to provide insights into their functions in eukaryotic cells and implications for human diseases.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Humanos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/genética , Coesinas , Complexos Multiproteicos/genética , Proteínas de Ligação a DNA/genética , Adenosina Trifosfatases/genética , Animais , Síndrome de Cornélia de Lange/genética , Mutação
5.
Mol Cell ; 84(11): 2166-2184.e9, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38788716

RESUMO

Mammalian target of rapamycin (mTOR) senses changes in nutrient status and stimulates the autophagic process to recycle amino acids. However, the impact of nutrient stress on protein degradation beyond autophagic turnover is incompletely understood. We report that several metabolic enzymes are proteasomal targets regulated by mTOR activity based on comparative proteome degradation analysis. In particular, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) synthase 1 (HMGCS1), the initial enzyme in the mevalonate pathway, exhibits the most significant half-life adaptation. Degradation of HMGCS1 is regulated by the C-terminal to LisH (CTLH) E3 ligase through the Pro/N-degron motif. HMGCS1 is ubiquitylated on two C-terminal lysines during mTORC1 inhibition, and efficient degradation of HMGCS1 in cells requires a muskelin adaptor. Importantly, modulating HMGCS1 abundance has a dose-dependent impact on cell proliferation, which is restored by adding a mevalonate intermediate. Overall, our unbiased degradomics study provides new insights into mTORC1 function in cellular metabolism: mTORC1 regulates the stability of limiting metabolic enzymes through the ubiquitin system.


Assuntos
Proliferação de Células , Hidroximetilglutaril-CoA Sintase , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteólise , Ubiquitina-Proteína Ligases , Ubiquitinação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Ácido Mevalônico/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Transdução de Sinais , Degrons , Proteínas Adaptadoras de Transdução de Sinal
6.
Nat Commun ; 15(1): 4358, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778058

RESUMO

3C-based methods have significantly advanced our understanding of 3D genome organization. However, it remains a formidable task to precisely capture long-range chromosomal interactions between individual loci, such as those between promoters and distal enhancers. Here, we present Methyltransferase Targeting-based chromosome Architecture Capture (MTAC), a method that maps the contacts between a target site (viewpoint) and the rest of the genome in budding yeast with high resolution and sensitivity. MTAC detects hundreds of intra- and inter-chromosomal interactions within nucleosome-depleted regions (NDRs) that cannot be captured by 4C, Hi-C, or Micro-C. By applying MTAC to various viewpoints, we find that (1) most long-distance chromosomal interactions detected by MTAC reflect tethering by the nuclear pore complexes (NPCs), (2) genes co-regulated by methionine assemble into inter-chromosomal clusters near NPCs upon activation, (3) mediated by condensin, the mating locus forms a highly specific interaction with the recombination enhancer (RE) in a mating-type specific manner, and (4) correlation of MTAC signals among NDRs reveal spatial mixing and segregation of the genome. Overall, these results demonstrate MTAC as a powerful tool to resolve fine-scale long-distance chromosomal interactions and provide insights into the 3D genome organization.


Assuntos
Cromossomos Fúngicos , Metilação de DNA , Nucleossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Nucleossomos/metabolismo , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mapeamento Cromossômico/métodos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Genoma Fúngico , Regiões Promotoras Genéticas/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Poro Nuclear/metabolismo , Poro Nuclear/genética , Metiltransferases/metabolismo , Metiltransferases/genética
7.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673778

RESUMO

Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage. Additionally, we investigated the role of this complex in regulating the splicing of factors involved in DNA damage repair. Our findings reveal that the deletion of any component within the Gpl1-Gih35-Wdr83 complex leads to a significant accumulation of unspliced pre-mRNAs of DNA repair factors. Consequently, mutant cells lacking this complex exhibit increased sensitivity to DNA-damaging agents. These results highlight the importance of the Gpl1-Gih35-Wdr83 complex in regulating the expression of DNA repair factors, thereby protecting the stability of the genome following DNA damage.


Assuntos
Dano ao DNA , Reparo do DNA , Fatores de Processamento de RNA , Splicing de RNA , Dano ao DNA/genética , Reparo do DNA/genética , Regulação Fúngica da Expressão Gênica , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo
8.
mBio ; 15(5): e0285023, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564676

RESUMO

Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites are yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H-deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites. IMPORTANCE: Mitosis is a fundamental process for Plasmodium parasites, which plays a vital role in their survival within two distinct hosts-human and Anopheles mosquitoes. Despite its great significance, our comprehension of mitosis and its regulation remains limited. In eukaryotes, mitosis is regulated by one of the pivotal complexes known as condensin complexes. The condensin complexes are responsible for chromosome condensation, ensuring the faithful distribution of genetic material to daughter cells. While condensin complexes have recently been identified in Plasmodium spp., our understanding of how this complex is assembled and its precise functions during the blood stage development of Plasmodium falciparum remains largely unexplored. In this study, we investigate the role of a central protein, PfCAP-H, during the blood stage development of P. falciparum. Our findings reveal that PfCAP-H is essential and plays a pivotal role in upholding the structure of condensin I and facilitating karyokinesis.


Assuntos
Adenosina Trifosfatases , Divisão do Núcleo Celular , Proteínas de Ligação a DNA , Mitose , Plasmodium falciparum , Humanos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Eritrócitos/parasitologia , Técnicas de Inativação de Genes , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Divisão do Núcleo Celular/genética
9.
Nucleic Acids Res ; 52(10): 5596-5609, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38520405

RESUMO

Chromosome pairing constitutes an important level of genome organization, yet the mechanisms that regulate pairing in somatic cells and the impact on 3D chromatin organization are still poorly understood. Here, we address these questions in Drosophila, an organism with robust somatic pairing. In Drosophila, pairing preferentially occurs at loci consisting of numerous architectural protein binding sites (APBSs), suggesting a role of architectural proteins (APs) in pairing regulation. Amongst these, the anti-pairing function of the condensin II subunit CAP-H2 is well established. However, the factors that regulate CAP-H2 localization and action at APBSs remain largely unknown. Here, we identify two factors that control CAP-H2 occupancy at APBSs and, therefore, regulate pairing. We show that Z4, interacts with CAP-H2 and is required for its localization at APBSs. We also show that hyperosmotic cellular stress induces fast and reversible unpairing in a Z4/CAP-H2 dependent manner. Moreover, by combining the opposite effects of Z4 depletion and osmostress, we show that pairing correlates with the strength of intrachromosomal 3D interactions, such as active (A) compartment interactions, intragenic gene-loops, and polycomb (Pc)-mediated chromatin loops. Altogether, our results reveal new players in CAP-H2-mediated pairing regulation and the intimate interplay between inter-chromosomal and intra-chromosomal 3D interactions.


Assuntos
Adenosina Trifosfatases , Cromatina , Pareamento Cromossômico , Proteínas de Ligação a DNA , Proteínas de Drosophila , Animais , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Sítios de Ligação , Cromatina/metabolismo , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Pressão Osmótica , Ligação Proteica , Dedos de Zinco
10.
Biochim Biophys Acta Gene Regul Mech ; 1867(1): 195005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242428

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.


Assuntos
Complexos Multiproteicos , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Expressão Gênica
11.
Nature ; 626(8000): 874-880, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297121

RESUMO

Stress response pathways detect and alleviate adverse conditions to safeguard cell and tissue homeostasis, yet their prolonged activation induces apoptosis and disrupts organismal health1-3. How stress responses are turned off at the right time and place remains poorly understood. Here we report a ubiquitin-dependent mechanism that silences the cellular response to mitochondrial protein import stress. Crucial to this process is the silencing factor of the integrated stress response (SIFI), a large E3 ligase complex mutated in ataxia and in early-onset dementia that degrades both unimported mitochondrial precursors and stress response components. By recognizing bifunctional substrate motifs that equally encode protein localization and stability, the SIFI complex turns off a general stress response after a specific stress event has been resolved. Pharmacological stress response silencing sustains cell survival even if stress resolution failed, which underscores the importance of signal termination and provides a roadmap for treating neurodegenerative diseases caused by mitochondrial import defects.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Mutação , Doenças Neurodegenerativas , Estresse Fisiológico , Ubiquitina-Proteína Ligases , Apoptose/efeitos dos fármacos , Ataxia/genética , Sobrevivência Celular/efeitos dos fármacos , Demência/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
12.
Mol Biol Cell ; 35(2): ar21, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088875

RESUMO

In vertebrates, two distinct condensin complexes, condensin I and condensin II, cooperate to drive mitotic chromosome assembly. It remains largely unknown how the two complexes differentially contribute to this process at a mechanistic level. We have previously dissected the role of individual subunits of condensin II by introducing recombinant complexes into Xenopus egg extracts. Here we extend these efforts by introducing a modified functional assay using extracts depleted of topoisomerase IIα (topo IIα), which allows us to further elucidate the functional similarities and differences between condensin I and condensin II. The intrinsically disordered C-terminal region of the CAP-D3 subunit (the D3 C-tail) is a major target of Cdk1 phosphorylation, and phosphorylation-deficient mutations in this region impair condensin II functions. We also identify a unique helical structure in CAP-D3 (the D3 HEAT docker) that is predicted to directly interact with CAP-G2. Deletion of the D3 HEAT docker, along with the D3 C-tail, enhances the ability of condensin II to assemble mitotic chromosomes. Taken together, we propose a self-suppression mechanism unique to condensin II that is released by mitotic phosphorylation. Evolutionary implications of our findings are also discussed.


Assuntos
Cromossomos , Proteínas de Ligação a DNA , Animais , Proteínas de Ligação a DNA/fisiologia , Complexos Multiproteicos/genética , Adenosina Trifosfatases/genética , Mitose
13.
J Mol Biol ; 436(4): 168382, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061625

RESUMO

Most factors that regulate gene transcription in eukaryotic cells are multimeric, often large, protein complexes. The understanding of the biogenesis pathways of such large and heterogeneous protein assemblies, as well as the dimerization partner choice among transcription factors, is crucial to interpret and control gene expression programs and consequent cell fate decisions. Co-translational assembly (Co-TA) is thought to play key roles in the biogenesis of protein complexes by directing complex formation during protein synthesis. In this review we discuss the principles of Co-TA with a special focus for the assembly of transcription regulatory complexes. We outline the expected molecular advantages of establishing co-translational interactions, pointing at the available, or missing, evidence for each of them. We hypothesize different molecular mechanisms based on Co-TA to explain the allocation "dilemma" of paralog proteins and subunits shared by different transcription complexes. By taking as a paradigm the different assembly pathways employed by three related transcription regulatory complexes (TFIID, SAGA and ATAC), we discuss alternative Co-TA strategies for nuclear multiprotein complexes and the widespread - yet specific - use of Co-TA for the formation of nuclear complexes involved in gene transcription. Ultimately, we outlined a series of open questions which demand well-defined lines of research to investigate the principles of gene regulation that rely on the coordinated assembly of protein complexes.


Assuntos
Regulação Enzimológica da Expressão Gênica , Complexos Multiproteicos , Biossíntese de Proteínas , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas/genética , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Humanos
14.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976091

RESUMO

Eukaryotic chromosomes compact during mitosis into elongated cylinders-and not the spherical globules expected of self-attracting long flexible polymers. This process is mainly driven by condensin-like proteins. Here, we present Brownian-dynamic simulations involving two types of such proteins with different activities. One, which we refer to as looping condensins, anchors long-lived chromatin loops to create bottlebrush structures. The second, referred to as bridging condensins, forms multivalent bridges between distant parts of these loops. We show that binding of bridging condensins leads to the formation of shorter and stiffer mitotic-like cylinders without requiring any additional energy input. These cylinders have several features matching experimental observations. For instance, the axial condensin backbone breaks up into clusters as found by microscopy, and cylinder elasticity qualitatively matches that seen in chromosome pulling experiments. Additionally, simulating global condensin depletion or local faulty condensin loading gives phenotypes seen experimentally and points to a mechanistic basis for the structure of common fragile sites in mitotic chromosomes.


Assuntos
Adenosina Trifosfatases , Cromossomos , Proteínas de Ligação a DNA , Complexos Multiproteicos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cromatina/genética , Cromossomos/genética , Cromossomos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mitose , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo
15.
Mol Cell ; 83(21): 3787-3800.e9, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37820734

RESUMO

Condensin is a structural maintenance of chromosomes (SMC) complex family member thought to build mitotic chromosomes by DNA loop extrusion. However, condensin variants unable to extrude loops, yet proficient in chromosome formation, were recently described. Here, we explore how condensin might alternatively build chromosomes. Using bulk biochemical and single-molecule experiments with purified fission yeast condensin, we observe that individual condensins sequentially and topologically entrap two double-stranded DNAs (dsDNAs). Condensin loading transitions through a state requiring DNA bending, as proposed for the related cohesin complex. While cohesin then favors the capture of a second single-stranded DNA (ssDNA), second dsDNA capture emerges as a defining feature of condensin. We provide complementary in vivo evidence for DNA-DNA capture in the form of condensin-dependent chromatin contacts within, as well as between, chromosomes. Our results support a "diffusion capture" model in which condensin acts in mitotic chromosome formation by sequential dsDNA-dsDNA capture.


Assuntos
Proteínas de Ligação a DNA , Schizosaccharomyces , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/química , DNA/genética , Cromossomos , Proteínas de Ciclo Celular/genética , Schizosaccharomyces/genética , Mitose
16.
PLoS Genet ; 19(9): e1010938, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37721956

RESUMO

mTORC1 (mechanistic target of rapamycin complex 1) is a metabolic sensor that promotes growth when nutrients are abundant. Ubiquitous inhibition of mTORC1 extends lifespan in multiple organisms but also disrupts several anabolic processes resulting in stunted growth, slowed development, reduced fertility, and disrupted metabolism. However, it is unclear if these pleiotropic effects of mTORC1 inhibition can be uncoupled from longevity. Here, we utilize the auxin-inducible degradation (AID) system to restrict mTORC1 inhibition to C. elegans neurons. We find that neuron-specific degradation of RAGA-1, an upstream activator of mTORC1, or LET-363, the ortholog of mammalian mTOR, is sufficient to extend lifespan in C. elegans. Unlike raga-1 loss of function genetic mutations or somatic AID of RAGA-1, neuronal AID of RAGA-1 robustly extends lifespan without impairing body size, developmental rate, brood size, or neuronal function. Moreover, while degradation of RAGA-1 in all somatic tissues alters the expression of thousands of genes, demonstrating the widespread effects of mTORC1 inhibition, degradation of RAGA-1 in neurons only results in around 200 differentially expressed genes with a specific enrichment in metabolism and stress response. Notably, our work demonstrates that targeting mTORC1 specifically in the nervous system in C. elegans uncouples longevity from growth and reproductive impairments, and that many canonical effects of low mTORC1 activity are not required to promote healthy aging. These data challenge previously held ideas about the mechanisms of mTORC1 lifespan extension and underscore the potential of promoting longevity by neuron-specific mTORC1 modulation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Caenorhabditis elegans/metabolismo , Longevidade/genética , Complexos Multiproteicos/genética , Reprodução/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mamíferos/metabolismo
17.
Nat Struct Mol Biol ; 30(5): 619-628, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012407

RESUMO

Three distinct structural maintenance of chromosomes (SMC) complexes facilitate chromosome folding and segregation in eukaryotes, presumably by DNA loop extrusion. How SMCs interact with DNA to extrude loops is not well understood. Among the SMC complexes, Smc5/6 has dedicated roles in DNA repair and preventing a buildup of aberrant DNA junctions. In the present study, we describe the reconstitution of ATP-dependent DNA loading by yeast Smc5/6 rings. Loading strictly requires the Nse5/6 subcomplex which opens the kleisin neck gate. We show that plasmid molecules are topologically entrapped in the kleisin and two SMC subcompartments, but not in the full SMC compartment. This is explained by the SMC compartment holding a looped DNA segment and by kleisin locking it in place when passing between the two flanks of the loop for neck-gate closure. Related segment capture events may provide the power stroke in subsequent DNA extrusion steps, possibly also in other SMC complexes, thus providing a unifying principle for DNA loading and extrusion.


Assuntos
Complexos Multiproteicos , Proteínas de Saccharomyces cerevisiae , Complexos Multiproteicos/genética , DNA/química , Cromossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Reparo do DNA , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cromossômicas não Histona/metabolismo
18.
Genet Med ; 25(7): 100838, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37057673

RESUMO

PURPOSE: Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to the mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene. METHODS: Genetic testing via trio exome sequencing was applied to identify the underlying disease cause in 3 infants with dilated cardiomyopathy, hepatopathy, and brain abnormalities, including pachygyria, polymicrogyria, and septo-optic dysplasia. Studies in patient-derived skin fibroblasts and in a HEK293 cell model were performed to investigate the cellular consequences. RESULTS: We identified 3 de novo missense variants in RRAGC (NM_022157.4: c.269C>A, p.(Thr90Asn), c.353C>T, p.(Pro118Leu), and c.343T>C, p.(Trp115Arg)), which were previously reported as occurring somatically in follicular lymphoma. Studies of patient-derived fibroblasts carrying the p.(Thr90Asn) variant revealed increased cell size, as well as dysregulation of mTOR-related p70S6K (ribosomal protein S6 kinase 1) and transcription factor EB signaling. Moreover, subcellular localization of mTOR was decoupled from metabolic state. We confirmed the key findings for all RRAGC variants described in this study in a HEK293 cell model. CONCLUSION: The above results are in line with a constitutive overactivation of the mTORC1 pathway. Our study establishes de novo missense variants in RRAGC as cause of an early-onset mTORopathy with unfavorable prognosis.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP , Serina-Treonina Quinases TOR , Humanos , Lactente , Fibroblastos/metabolismo , Doenças Genéticas Inatas/genética , Células HEK293 , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
19.
J Biol Chem ; 299(6): 104736, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086784

RESUMO

Mitotic spindles are composed of microtubules (MTs) that must nucleate at the right place and time. Ran regulates this process by directly controlling the release of spindle assembly factors (SAFs) from nucleocytoplasmic shuttle proteins importin-αß and subsequently forms a biochemical gradient of SAFs localized around chromosomes. The majority of spindle MTs are generated by branching MT nucleation, which has been shown to require an eight-subunit protein complex known as augmin. In Xenopus laevis, Ran can control branching through a canonical SAF, TPX2, which is nonessential in Drosophila melanogaster embryos and HeLa cells. Thus, how Ran regulates branching MT nucleation when TPX2 is not required remains unknown. Here, we use in vitro pulldowns and total internal reflection fluorescence microscopy to show that augmin is a Ran-regulated SAF. We demonstrate that augmin directly interacts with both importin-α and importin-ß through two nuclear localization sequences on the Haus8 subunit, which overlap with the MT-binding site. Moreover, we show that Ran controls localization of augmin to MTs in both Xenopus egg extract and in vitro. Our results demonstrate that RanGTP directly regulates augmin, which establishes a new way by which Ran controls branching MT nucleation and spindle assembly both in the absence and presence of TPX2.


Assuntos
Proteínas Associadas aos Microtúbulos , Complexos Multiproteicos , Proteínas de Xenopus , Proteína ran de Ligação ao GTP , Animais , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila melanogaster , Células HeLa , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Fuso Acromático/metabolismo , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , alfa Carioferinas , beta Carioferinas
20.
Mol Cell ; 83(1): 6-8, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608671

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) senses cellular leucine levels through the GATOR1/2-Rag axis. Jiang et al. show that the Ring domains of GATOR2 subunits maintain the integrity of the complex and promote ubiquitination and inhibition of GATOR1, thereby leading to mTORC1 activation.


Assuntos
Complexos Multiproteicos , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Serina-Treonina Quinases TOR/genética , Complexos Multiproteicos/genética , Leucina , Lisossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...