Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.654
Filtrar
1.
Pak J Pharm Sci ; 37(2(Special)): 435-442, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38822547

RESUMO

Depression is a common non-motor symptom of Parkinson's disease. Previous studies demonstrated that hydroxysafflor yellow A had properties of improving motor symptoms of Parkinson's disease. The effect of hydroxysafflor yellow A on depression in Parkinson's disease mice is investigated in this study. To induce Parkinson's disease model, male Swiss mice were exposed to rotenone (30 mg/kg) for 6 weeks. The chronic unpredictable mild stress was employed to induce depression from week 3 to week 6. Sucrose preference, tail suspension, and forced swimming tests were conducted. Golgi and Nissl staining of hippocampus were carried out. The levels of dopamine, 5-hydroxytryptamine and the expression of postsynaptic density protein 95, brain-derived neurotrophic factor in hippocampus were assayed. It showed that HSYA improved the depression-like behaviors of Parkinson's disease mice. Hydroxysafflor yellow A attenuated the injury of nerve and elevated contents of dopamine, 5-hydroxytryptamine in hippocampus. Treatment with hydroxysafflor yellow A also augmented the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor. These findings suggest that hydroxysafflor yellow A ameliorates depression-like behavior in Parkinson's disease mice through regulating the contents of postsynaptic density protein 95 and brain-derived neurotrophic factor, therefore protecting neurons and neuronal dendrites of the hippocampus.


Assuntos
Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo , Chalcona , Depressão , Hipocampo , Quinonas , Serotonina , Animais , Quinonas/farmacologia , Quinonas/uso terapêutico , Chalcona/análogos & derivados , Chalcona/farmacologia , Chalcona/uso terapêutico , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Comportamento Animal/efeitos dos fármacos , Serotonina/metabolismo , Dopamina/metabolismo , Rotenona/farmacologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/psicologia
2.
Gut Microbes ; 16(1): 2359501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841895

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting over 1% of the global population. Individuals with ASD often exhibit complex behavioral conditions, including significant social difficulties and repetitive behaviors. Moreover, ASD often co-occurs with several other conditions, including intellectual disabilities and anxiety disorders. The etiology of ASD remains largely unknown owing to its complex genetic variations and associated environmental risks. Ultimately, this poses a fundamental challenge for the development of effective ASD treatment strategies. Previously, we demonstrated that daily supplementation with the probiotic Lactiplantibacillus plantarum PS128 (PS128) alleviates ASD symptoms in children. However, the mechanism underlying this improvement in ASD-associated behaviors remains unclear. Here, we used a well-established ASD mouse model, induced by prenatal exposure to valproic acid (VPA), to study the physiological roles of PS128 in vivo. Overall, we showed that PS128 selectively ameliorates behavioral abnormalities in social and spatial memory in VPA-induced ASD mice. Morphological examination of dendritic architecture further revealed that PS128 facilitated the restoration of dendritic arborization and spine density in the hippocampus and prefrontal cortex of ASD mice. Notably, PS128 was crucial for restoring oxytocin levels in the paraventricular nucleus and oxytocin receptor signaling in the hippocampus. Moreover, PS128 alters the gut microbiota composition and increases the abundance of Bifidobacterium spp. and PS128-induced changes in Bifidobacterium abundance positively correlated with PS128-induced behavioral improvements. Together, our results show that PS128 treatment can effectively ameliorate ASD-associated behaviors and reinstate oxytocin levels in VPA-induced mice, thereby providing a promising strategy for the future development of ASD therapeutics.


Assuntos
Transtorno do Espectro Autista , Modelos Animais de Doenças , Probióticos , Comportamento Social , Animais , Transtorno do Espectro Autista/terapia , Transtorno do Espectro Autista/microbiologia , Camundongos , Probióticos/administração & dosagem , Feminino , Masculino , Ácido Valproico , Microbioma Gastrointestinal , Comportamento Animal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Gravidez , Ocitocina/metabolismo , Córtex Pré-Frontal/metabolismo , Lactobacillus plantarum/fisiologia , Humanos
3.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 48-53, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836677

RESUMO

The study aimed to determine the effects of probiotic consumption during pregnancy and lactation and post-weaning on acute stress-induced anxiety and gut beneficial microbiota of the female offspring mice.The female offspring mice were divided into several groups: intact, control (only stressed), PBS/dam (dams gavaged with PBS), PRO/dam (dams gavaged with probiotics), PRO/dam+off (both dams and offspring gavaged with probiotics), and PBS/dam+off (both dams and offspring gavaged with PBS)The probiotics chosen are mainly L. rhamnosus, B.breve, and B. longum (108 CFU/ml). Foot shock stress will be applied for one hour on the 43rd day after birth. Behavioral tests were conducted using the open field and elevated plus-maze. Corticosterone was measured by ELISA kit, and intestinal microflora with qPCR.The data showed that PRO/dam+off had more entries into open arms compared to the control group and decreased move distance and time spent in closed arms compared to the control group. However, there was no significant difference between the PRO/dam group and the control group. In the open field test, the control group spent less time in the inner zone compared to the intact group and in PRO/dam+off group. Corticosterone hormone was increased in the control group and was decreased in the PRO/dam+off. Bifidobacteria and Lactobacilli decreased in the control group in comparison to the intact group, and in the PRO/dam+off group increased compared with other groups. Maternal and filial supplementation with a multi-strain probiotic mixture increased levels of beneficial bacteria and reduced stress-induced anxiety in mice.


Assuntos
Ansiedade , Corticosterona , Microbioma Gastrointestinal , Probióticos , Estresse Psicológico , Probióticos/administração & dosagem , Probióticos/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Gravidez , Camundongos , Estresse Psicológico/complicações , Corticosterona/sangue , Lactação , Comportamento Animal/efeitos dos fármacos
4.
Folia Biol (Praha) ; 70(1): 45-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38830122

RESUMO

Effective treatment of patients with autism spectrum disorder (ASD) is still absent so far. Taurine exhibits therapeutic effects towards the autism-like behaviour in ASD model animals. Here, we determined the mechanism of taurine effect on hippocampal neurogenesis in genetically inbred BTBR T+ tf/J (BTBR) mice, a proposed model of ASD. In this ASD mouse model, we explored the effect of oral taurine supplementation on ASD-like behaviours in an open field test, elevated plus maze, marble burying test, self-grooming test, and three-chamber test. The mice were divided into four groups of normal controls (WT) and models (BTBR), who did or did not receive 6-week taurine supplementation in water (WT, WT+ Taurine, BTBR, and BTBR+Taurine). Neurogenesis-related effects were determined by Ki67 immunofluorescence staining. Western blot analysis was performed to detect the expression of phosphatase and tensin homologue deleted from chromosome 10 (PTEN)/mTOR/AKT pathway-associated proteins. Our results showed that taurine improved the autism-like behaviour, increased the proliferation of hippocampal cells, promoted PTEN expression, and reduced phosphorylation of mTOR and AKT in hippocampal tissue of the BTBR mice. In conclusion, taurine reduced the autism-like behaviour in partially inherited autism model mice, which may be associa-ted with improving the defective neural precursor cell proliferation and enhancing the PTEN-associated pathway in hippocampal tissue.


Assuntos
Transtorno Autístico , Hipocampo , Neurogênese , PTEN Fosfo-Hidrolase , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Taurina , Animais , Taurina/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Transtorno Autístico/metabolismo , Transtorno Autístico/tratamento farmacológico , Masculino , Comportamento Animal/efeitos dos fármacos , Camundongos , Modelos Animais de Doenças , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos
5.
Methods Mol Biol ; 2799: 243-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727911

RESUMO

Zebrafish are a powerful system to study brain development and to dissect the activity of complex circuits. One advantage is that they display complex behaviors, including prey capture, learning, responses to photic and acoustic stimuli, and social interaction (Dreosti et al., Front Neural Circuits 9:39, 2015; Bruckner et al., PLoS Biol 20:e3001838, 2022; Zoodsma et al., Mol Autism 13:38, 2022) that can be probed to assess brain function. Many of these behaviors are easily assayed at early larval stages, offering a noninvasive and high-throughput readout of nervous system function. Additionally, larval zebrafish readily uptake small molecules dissolved in water making them ideal for behavioral-based drug screens. Together, larval zebrafish and their behavioral repertoire offer a means to rapidly dissect brain circuitry and can serve as a template for high-throughput small molecule screens.NMDA receptor subunits are highly conserved in zebrafish compared to mammals (Zoodsma et al., Mol Autism 13:38, 2022; Cox et al., Dev Dyn 234:756-766, 2005; Zoodsma et al., J Neurosci 40:3631-3645, 2020). High amino acid and domain structure homology between humans and zebrafish underlie conserved functional similarities. Here we describe a set of behavioral assays that are useful to study the NMDA receptor activity in brain function.


Assuntos
Comportamento Animal , Receptores de N-Metil-D-Aspartato , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Comportamento Animal/efeitos dos fármacos , Larva/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos
6.
Elife ; 122024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700991

RESUMO

The discovery of rapid-acting antidepressant, ketamine has opened a pathway to a new generation of treatments for depression, and inspired neuroscientific investigation based on a new perspective that non-adaptive changes in the intrinsic excitatory and inhibitory circuitry might underlie the pathophysiology of depression. Nevertheless, it still remains largely unknown how the hypothesized molecular and synaptic levels of changes in the circuitry might mediate behavioral and neuropsychological changes underlying depression, and how ketamine might restore adaptive behavior. Here, we used computational models to analyze behavioral changes induced by therapeutic doses of ketamine, while rhesus macaques were iteratively making decisions based on gains and losses of tokens. When administered intramuscularly or intranasally, ketamine reduced the aversiveness of undesirable outcomes such as losses of tokens without significantly affecting the evaluation of gains, behavioral perseveration, motivation, and other cognitive aspects of learning such as temporal credit assignment and time scales of choice and outcome memory. Ketamine's potentially antidepressant effect was separable from other side effects such as fixation errors, which unlike outcome evaluation, was readily countered with strong motivation to avoid errors. We discuss how the acute effect of ketamine to reduce the initial impact of negative events could potentially mediate longer-term antidepressant effects through mitigating the cumulative effect of those events produced by slowly decaying memory, and how the disruption-resistant affective memory might pose challenges in treating depression. Our study also invites future investigations on ketamine's antidepressant action over diverse mood states and with affective events exerting their impacts at diverse time scales.


Assuntos
Tomada de Decisões , Ketamina , Macaca mulatta , Ketamina/administração & dosagem , Ketamina/farmacologia , Animais , Tomada de Decisões/efeitos dos fármacos , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem , Masculino , Injeções Intramusculares , Administração Intranasal , Comportamento Animal/efeitos dos fármacos
7.
Front Endocrinol (Lausanne) ; 15: 1374825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742194

RESUMO

Increasing evidence suggests that female individuals have a higher Alzheimer's disease (AD) risk associated with post-menopausal loss of circulating estradiol (E2). However, clinical data are conflicting on whether E2 lowers AD risk. One potential contributing factor is APOE. The greatest genetic risk factor for AD is APOE4, a factor that is pronounced in female individuals post-menopause. Clinical data suggests that APOE impacts the response of AD patients to E2 replacement therapy. However, whether APOE4 prevents, is neutral, or promotes any positive effects of E2 is unclear. Therefore, our goal was to determine whether APOE modulates the impact of E2 on behavior and AD pathology in vivo. To that end, mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß42 were ovariectomized at either 4 months (early) or 8 months (late) and treated with vehicle or E2 for 4 months. In E3FAD mice, we found that E2 mitigated the detrimental effect of ovariectomy on memory, with no effect on Aß in the early paradigm and only improved learning in the late paradigm. Although E2 lowered Aß in E4FAD mice in the early paradigm, there was no impact on learning or memory, possibly due to higher Aß pathology compared to E3FAD mice. In the late paradigm, there was no effect on learning/memory and Aß pathology in E4FAD mice. Collectively, these data support the idea that, in the presence of Aß pathology, APOE impacts the response to E2 supplementation post-menopause.


Assuntos
Doença de Alzheimer , Apolipoproteína E3 , Apolipoproteína E4 , Estradiol , Camundongos Transgênicos , Ovariectomia , Animais , Estradiol/farmacologia , Feminino , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Camundongos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Humanos , Comportamento Animal/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
8.
Pak J Pharm Sci ; 37(1): 53-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741400

RESUMO

The study focused on the neuroprotective role of Sorghum bicolor and vitamin C in the amelioration of oxidative stress and anxiety-like behavoiur induced by tramadol in male albino rats. The study design involved 7 groups and a control group with 5 male albino rats in each group. Tramadol (40 mg/kg) treatment was administered for 21 days. Tramadol 40mg/kg was administered in all groups. Pretreatment with varying doses of Sorghum bicolor and Vitamin C was done in three of the groups. Behavioral assessment of anxiety and locomotors actions of the groups were compared using Elevated Plus Maze (EPM) and Open Field Test (OFT). In conclusion, Sorghum bicolor and Vitamin C tramadol ameliorated oxidative stress and anxiety-like behaviour induced by tramadol. Pretreatment with Sorghum bicolor or vitamin C (100mg) can also reduced anxiogenic responses in male albino rats that are induced by chronic tramadol use.


Assuntos
Ansiedade , Ácido Ascórbico , Comportamento Animal , Estresse Oxidativo , Sorghum , Tramadol , Animais , Tramadol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Masculino , Ácido Ascórbico/farmacologia , Ansiedade/prevenção & controle , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ratos , Comportamento Animal/efeitos dos fármacos , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Ratos Wistar , Analgésicos Opioides/farmacologia , Ansiolíticos/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos
9.
Pak J Pharm Sci ; 37(1): 129-137, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741409

RESUMO

Stress is described as a noxious stimulus that affects the health of an individual and alters body homeostasis resulting in changes the individual behavioural and metabolic condition. Synthesis of drug from plants has main interest due the significant medicinal values. The recent investigation was designed to examine the pharmacological impacts of Ficus carica leaves extract on stress. In this experiment, the rodents were randomly distributed as (n=6) control rats were kept at standard condition, second group of rats were exposed with different stressors and Third group of rodents was exposed to stress and treated with extract of ficus carica leaves at the dose of 100 mg/kg. Acute behavioural alteration was observed after 7 days and prolonged impact was monitored after the 28 days. The current finding showed that administration of Ficus carica leaves extract produced anxiolytic behaviours and decreased depression like symptoms in CUMS treated rats. It also increased stimulatory, ambulatory, locomotor activity and enhanced spatial working memory and recognition memory in CUMS exposed rats. So, it can be concluded from recent study that leaves of Ficus carica can be utilized as secure drug for curing physiological stress with less side effect profile.


Assuntos
Comportamento Animal , Modelos Animais de Doenças , Ficus , Extratos Vegetais , Folhas de Planta , Estresse Psicológico , Animais , Ficus/química , Extratos Vegetais/farmacologia , Comportamento Animal/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Masculino , Ratos , Ratos Wistar , Ansiolíticos/farmacologia , Depressão/tratamento farmacológico
10.
Zool Res ; 45(3): 663-678, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38766748

RESUMO

A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment. Davunetide, an active fragment of the activity-dependent neuroprotective protein (ADNP), has been implicated in social and cognitive protection. However, the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood. In this study, ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice. The neuropathological basis was also explored using Golgi staining, morphological analysis, western blotting, electrophysiological analysis, and behavioral analysis. Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane. In adulthood, anterior cingulate cortex (ACC) neurons exposed to sevoflurane exhibited a decrease in dendrite number, total dendrite length, and spine density. Furthermore, the expression levels of Homer, PSD95, synaptophysin, and vglut2 were significantly reduced in the sevoflurane group. Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). Notably, davunetide significantly ameliorated the synaptic defects, social behavior deficits, and cognitive impairments induced by sevoflurane. Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca 2+ activity via the Wnt/ß-catenin signaling, resulting in decreased expression of synaptic proteins. Suppression of Wnt signaling was restored in the davunetide-treated group. Thus, ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics. This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.


Assuntos
Animais Recém-Nascidos , Disfunção Cognitiva , Proteoma , Sevoflurano , Comportamento Social , Animais , Sevoflurano/efeitos adversos , Camundongos , Disfunção Cognitiva/induzido quimicamente , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Anestésicos Inalatórios/efeitos adversos , Anestésicos Inalatórios/toxicidade , Anestésicos Inalatórios/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Masculino , Comportamento Animal/efeitos dos fármacos
11.
Eur Rev Med Pharmacol Sci ; 28(9): 3330-3346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766791

RESUMO

OBJECTIVE: Malvidin is a natural, biologically active polyphenol found in several fruits. It exhibits several therapeutic benefits; however, limited studies are available on its effects on neurodegenerative clinical conditions, including Parkinson's disease. The study aimed to investigate the therapeutic properties of malvidin on rotenone-triggered Parkinson's disease in an animal model. MATERIALS AND METHODS: To determine the effects of malvidin, rotenone (1.5 mg/kg) was injected subcutaneously into Wistar rats for 21 days, followed by a dose of malvidin (200 and 100 mg/kg). Behavioral tests were performed on the experimental animals before sacrifice. On the 22nd day of the experiment, biochemical tests were performed, including superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and catalase (CAT). The activity of neurotransmitters and their metabolites, including acetylcholine (ACh), acetylcholinesterase (AChE), dopamine (DA), norepinephrine (NE), serotonin (5-HT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) along with neuroinflammatory markers including interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor- α (TNF-α), and nuclear factor erythroid 2-related factor 2 (Nrf-2) were estimated. Moreover, the level of the apoptotic marker, caspase-3, was also estimated. In addition, molecular docking was performed. RESULTS: The administration of rotenone resulted in oxidative stress, cholinergic imbalances, dopaminergic alternations, and increased expression of inflammatory compounds. The docking analysis revealed that malvidin displayed a favorable binding affinity for AChE, showcasing a binding energy of -9.329 Kcal/mol. CONCLUSIONS: The investigation concludes that malvidin exhibits neuroprotective effects due to its curative effects against inflammation and oxidative stress. These findings suggest that malvidin possesses therapeutic potential against rotenone-triggered behavioral, oxidative, and inflammatory abnormalities in rodents.


Assuntos
Caspase 3 , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Ratos Wistar , Rotenona , Fator de Necrose Tumoral alfa , Animais , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Caspase 3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças
12.
Pak J Pharm Sci ; 37(2): 349-356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38767102

RESUMO

Evidence suggests that surgical procedures can effect the central nervous system and lead to changes in mood and behavior, rarely understood about the role of acute inflammation in promoting acute anxiety postoperatively. This study was designed to explore the possible mechanism of dexmedetomidine (DEX, a2-adrenergic receptor agonist) for reducing acute postoperative anxiety, which may be related to the activation of nuclear factor kappa B (NF-κB) and downstream signal pathway in the hippocampus. Experiments were conducted with rat, the elevated plus-maze and open field test were performed to evaluate anxiety-like behavior. Inhibit DEX with Atipamezole (AT, α2-adrenergic receptor antagonist) and inhibit NF-κB with Pyrrolidinedithiocarbamate (PDTC, inhibit phosphorylation of IκB, prevent the activation of NF-κB), the level of interleukin-6 (IL-6), IL-1ß, IL-10 and Tumor necrosis factor-α (TNF-α); the nuclear translocation of NF-κB in the hippocampus and anxiety-like behavior were measured. Rats exhibited anxiety-like behavior at 6h and 12h after surgery. Preoperative administration of DEX significantly alleviated postoperative anxiety-like behavior. DEX premedication inhibited the nuclear translocation of NF-κB alleviate acute postoperative anxiety. These findings are the first to show that acute postoperative anxiety may be related to NF-κB nuclear translocation in the hippocampus in rats, which can be alleviated by DEX premedication.


Assuntos
Ansiedade , Dexmedetomidina , Hipocampo , NF-kappa B , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Dexmedetomidina/farmacologia , NF-kappa B/metabolismo , Masculino , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Transdução de Sinais/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Comportamento Animal/efeitos dos fármacos , Ansiolíticos/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Imidazóis
13.
J Environ Sci Health B ; 59(6): 341-349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709203

RESUMO

The increased consumption of pesticides can have a negative environmental impact by increasing the essential metals to toxic levels. Bordasul® is a commonly used fungicide in Brazil and it is composed of 20% Cu, 10% sulfur, and 3.0% calcium. The study of fungicides in vivo in non-target model organisms can predict their environmental impact more broadly. The Drosophila melanogaster is a unique model due to its ease of handling and maintenance. Here, the potential toxicity of Bordasul® was investigated by assessing the development, survival, and behavior of exposed flies. Exposure to Bordasul® impaired the development (p < 0.01) and caused a significant reduction in memory retention (p < 0.05) and locomotor ability (p < 0.001). Fungicides are needed to assure the world's food demand; however, Bordasul® was highly toxic to D. melanogaster. Therefore, Bordasul® may be potentially toxic to non-target invertebrates and new environmentally-safe biofertilizers have to be developed to preserve the biota.


Assuntos
Cobre , Drosophila melanogaster , Fungicidas Industriais , Animais , Drosophila melanogaster/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Fungicidas Industriais/farmacologia , Cobre/toxicidade , Brasil , Feminino , Masculino , Comportamento Animal/efeitos dos fármacos
14.
J Toxicol Environ Health A ; 87(15): 616-629, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38721962

RESUMO

Agriculture has gained increasing importance in response to the continuous growth of the world population and constant need for food. To avoid production losses, farmers commonly use pesticides. Mancozeb is a fungicide used in agriculture as this compound is effective in combating fungi that harm crops. However, this fungicide may also produce damage to non-target organisms present in soil and water. Therefore, this study aimed to investigate the influence of exposure to mancozeb on survival rate, locomotor activity, behavior, and oxidative status utilizing adult zebrafish (Danio rerio) as a model following exposure to environmentally relevant concentrations of this pesticide. The experimental groups were negative control, positive control, and mancozeb (0.3; 1.02; 3.47; 11.8 or 40 µg/L). Zebrafish were exposed to the respective treatments for 96 hr. Exposure to mancozeb did not markedly alter survival rate and oxidative status of Danio rerio. At a concentration of 11.8 µg/L, the fungicide initiated changes in locomotor pattern of the animals. The results obtained suggest that the presence of mancozeb in the environment might produce locomotor alterations in adult zebrafish, which subsequently disrupt the animals' innate defense mechanisms. In nature, this effect attributed to mancozeb on non-target organisms might result in adverse population impacts and ecological imbalance.


Assuntos
Fungicidas Industriais , Maneb , Peixe-Zebra , Zineb , Animais , Maneb/toxicidade , Zineb/toxicidade , Fungicidas Industriais/toxicidade , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga
15.
Aquat Toxicol ; 271: 106941, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723469

RESUMO

OBJECTIVE: To characterise and compare the toxicity of estetrol (E4) and 17α-ethinylestradiol (EE2), and their respective mixture with the progestin drospirenone (DRSP) in zebrafish (Danio rerio) embryos. METHODS: Zebrafish embryos were exposed to E4, EE2, DRSP, E4+DRSP, and EE2+DRSP in a fish embryo acute toxicity (FET) test. A second test examined behavioural responses and, using label-free proteomics, identified changes in protein expression in response to hormonal treatments, across a range of concentrations, including those that are considered to be environmentally relevant. RESULTS: In the FET test, no effects were found from E4 at concentrations ≤100 mg/L, while EE2 induced mortality and morphological abnormalities at concentrations of 1-2 mg/L. In the behavioural test, exposure to 30 ng/L EE2 (∼200 × predicted environmental concentration - PEC) resulted in hypoactivity in fish larvae and exposure to 0.3 ng/L EE2 (∼2 × PEC) led to quantitative changes in protein abundance, revealing potential impacts on RNA processing and protein synthesis machinery. Exposure to E4 did not alter behaviour, but several groups of proteins were modulated, mainly at 710 ng/L (∼200 × PEC), including proteins involved in oxidative phosphorylation. When combined with DRSP, EE2 induced reduced effects on behaviour and proteomic responses, suggesting an antagonistic effect of DRSP. E4+DRSP induced no significant effects on behaviour or proteomic profiles at tested concentrations. CONCLUSIONS: These findings suggest that E4-based combined oral contraceptives present a more favourable environmental profile than EE2-based contraceptives, particularly during the early developmental stages of fish.


Assuntos
Androstenos , Comportamento Animal , Etinilestradiol , Larva , Proteômica , Poluentes Químicos da Água , Peixe-Zebra , Animais , Etinilestradiol/toxicidade , Poluentes Químicos da Água/toxicidade , Androstenos/toxicidade , Comportamento Animal/efeitos dos fármacos , Larva/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos
16.
Neurosci Lett ; 832: 137815, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38723759

RESUMO

Recent studies have demonstrated that stress during the critical windows of development can evoke a cascade of neurological changes that can result in neuropsychiatric disorders later in life. In this study, we examined the effect of early-life inflammation on ethanol consumption in adolescent mice. C57BL/6J mice were assigned to either the control or Lipopolysaccharide (LPS) group on postnatal day 14 (P14). In the latter group, LPS at a dose of 50 µg/kg was injected intraperitoneally. The mice were weaned at P21, and behavior tests were performed at P45. Ethanol consumption was assessed using a two-bottle choice drinking paradigm. Anxiety-like behaviors were assessed by marble burying test (MBT), open field (OF), and elevated plus maze (EPM). Ethanol-induced loss of righting reflex (LORR), hypothermia and ethanol metabolism were assessed to evaluate ethanol intoxication. P14 LPS-injected adolescent male mice exhibited significantly increased ethanol preference and consumption, with a similar taste preference for saccharin and avoidance of quinine. The adolescent male mice showed increased anxiety-like behaviors in the OF and EPM tests, and an increased duration of LORR, without affecting the hypothermic effects of ethanol and ethanol metabolism. Interestingly, these behavioral changes were not obvious in female mice. In conclusion, our data indicate that early-life inflammation may be a risk factor for ethanol consumption in adolescents with greater changes observed in male mice. SIGNIFICANCE STATEMENT: Our study is the first preclinical model to report the enhancement effect of early-life inflammation on ethanol consumption in adolescent male mice and our findings provide a valuable mouse model to examine the neurobiological mechanisms mediating the long-lasting effects of early-life inflammation on alcohol use disorders vulnerability.


Assuntos
Consumo de Bebidas Alcoólicas , Ansiedade , Etanol , Inflamação , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , Inflamação/induzido quimicamente , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/toxicidade , Etanol/administração & dosagem , Consumo de Bebidas Alcoólicas/psicologia , Feminino , Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Reflexo de Endireitamento/efeitos dos fármacos
17.
Sci Rep ; 14(1): 11174, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750129

RESUMO

Current treatments for anxiety and depression show limited efficacy in many patients, indicating the need for further research into the underlying mechanisms. JNK1 has been shown to regulate anxiety- and depressive-like behaviours in mice, however the effectors downstream of JNK1 are not known. Here we compare the phosphoproteomes from wild-type and Jnk1-/- mouse brains and identify JNK1-regulated signalling hubs. We next employ a zebrafish (Danio rerio) larvae behavioural assay to identify an antidepressant- and anxiolytic-like (AA) phenotype based on 2759 measured stereotypic responses to clinically proven antidepressant and anxiolytic (AA) drugs. Employing machine learning, we classify an AA phenotype from extracted features measured during and after a startle battery in fish exposed to AA drugs. Using this classifier, we demonstrate that structurally independent JNK inhibitors replicate the AA phenotype with high accuracy, consistent with findings in mice. Furthermore, pharmacological targeting of JNK1-regulated signalling hubs identifies AKT, GSK-3, 14-3-3 ζ/ε and PKCε as downstream hubs that phenocopy clinically proven AA drugs. This study identifies AKT and related signalling molecules as mediators of JNK1-regulated antidepressant- and anxiolytic-like behaviours. Moreover, the assay shows promise for early phase screening of compounds with anti-stress-axis properties and for mode of action analysis.


Assuntos
Ansiolíticos , Ansiedade , Comportamento Animal , Larva , Proteína Quinase 8 Ativada por Mitógeno , Transdução de Sinais , Peixe-Zebra , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/genética , Larva/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ansiolíticos/farmacologia , Fenótipo , Antidepressivos/farmacologia , Modelos Animais de Doenças , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Sci Rep ; 14(1): 11435, 2024 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-38763939

RESUMO

Autism spectrum disorder (ASD) exhibits a gender bias, with boys more frequently affected than girls. Similarly, in mouse models induced by prenatal exposure to valproic acid (VPA), males typically display reduced sociability, while females are less affected. Although both males and females exhibit VPA effects on neuroinflammatory parameters, these effects are sex-specific. Notably, females exposed to VPA show increased microglia and astrocyte density during the juvenile period. We hypothesized that these distinct neuroinflammatory patterns contribute to the resilience of females to VPA. To investigate this hypothesis, we treated juvenile animals with intraperitoneal bacterial lipopolysaccharides (LPS), a treatment known to elicit brain neuroinflammation. We thus evaluated the impact of juvenile LPS-induced inflammation on adult sociability and neuroinflammation in female mice prenatally exposed to VPA. Our results demonstrate that VPA-LPS females exhibit social deficits in adulthood, overriding the resilience observed in VPA-saline littermates. Repetitive behavior and anxiety levels were not affected by either treatment. We also evaluated whether the effect on sociability was accompanied by heightened neuroinflammation in the cerebellum and hippocampus. Surprisingly, we observed reduced astrocyte and microglia density in the cerebellum of VPA-LPS animals. These findings shed light on the complex interactions between prenatal insults, juvenile inflammatory stimuli, and sex-specific vulnerability in ASD-related social deficits, providing insights into potential therapeutic interventions for ASD.


Assuntos
Transtorno do Espectro Autista , Lipopolissacarídeos , Efeitos Tardios da Exposição Pré-Natal , Comportamento Social , Ácido Valproico , Animais , Feminino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Gravidez , Camundongos , Ácido Valproico/efeitos adversos , Masculino , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/etiologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Animais de Doenças , Comportamento Animal/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Camundongos Endogâmicos C57BL
19.
Gen Physiol Biophys ; 43(3): 263-271, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774925

RESUMO

Lithium (Li) is a mood-stabilizing drug. Although one of the potential mechanisms underlying the neuroprotective effects of lithium is related to its antioxidative effect, its mechanisms of action are not fully understood. Herein we aimed to investigate the impact of varied dosages of long-term lithium therapy on oxidative stress parameters in the brains of healthy rats, and on anxiety-like behaviors, and whether any changes in behavior can be attributed to modifications in oxidative stress levels within the brain. Thirty-two adult Wistar albino male rats were randomly assigned to four treatment groups. While the control (C) group was fed with a standard diet, low Li (1.4 g/kg/diet), moderate Li (1.8 g/kg/diet), and high Li (2.2 g/kg/diet) groups were fed with lithium bicarbonate (Li2CO3) for 30 days. Malondialdehyde increased, while superoxide dismutase and catalase levels decreased in the brains of the high Li group animals. In addition, anxiety-like behaviors of animals increased in the high Li group considering fewer entries to and less time spent in the open arms of the elevated plus maze test. Our findings underscore the potential adverse effects of prolonged lithium treatment, especially at doses approaching the upper therapeutic range. The induction of toxicity, manifested through heightened oxidative stress, appears to be a key mechanism contributing to the observed increase in anxiety-like behaviors. Consequently, caution is warranted when considering extended lithium therapy at higher doses, emphasizing the need for further research to delineate the precise mechanisms underlying these effects and to inform safer therapeutic practices.


Assuntos
Ansiedade , Encéfalo , Relação Dose-Resposta a Droga , Estresse Oxidativo , Ratos Wistar , Animais , Estresse Oxidativo/efeitos dos fármacos , Masculino , Ratos , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Lítio/farmacologia , Lítio/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Esquema de Medicação , Compostos de Lítio/farmacologia , Compostos de Lítio/administração & dosagem
20.
Sci Rep ; 14(1): 11557, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773352

RESUMO

Juvenile loneliness is a risk factor for psychopathology in later life. Deprivation of early social experience due to peer rejection has a detrimental impact on emotional and cognitive brain function in adulthood. Accumulating evidence indicates that soy peptides have many positive effects on higher brain function in rodents and humans. However, the effects of soy peptide use on juvenile social isolation are unknown. Here, we demonstrated that soy peptides reduced the deterioration of behavioral and cellular functions resulting from juvenile socially-isolated rearing. We found that prolonged social isolation post-weaning in male C57BL/6J mice resulted in higher aggression and impulsivity and fear memory deficits at 7 weeks of age, and that these behavioral abnormalities, except impulsivity, were mitigated by ingestion of soy peptides. Furthermore, we found that daily intake of soy peptides caused upregulation of postsynaptic density 95 in the medial prefrontal cortex and phosphorylation of the cyclic adenosine monophosphate response element binding protein in the hippocampus of socially isolated mice, increased phosphorylation of the adenosine monophosphate-activated protein kinase in the hippocampus, and altered the microbiota composition. These results suggest that soy peptides have protective effects against juvenile social isolation-induced behavioral deficits via synaptic maturation and cellular functionalization.


Assuntos
Agressão , Suplementos Nutricionais , Medo , Hipocampo , Camundongos Endogâmicos C57BL , Isolamento Social , Animais , Isolamento Social/psicologia , Masculino , Medo/efeitos dos fármacos , Agressão/efeitos dos fármacos , Camundongos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Proteínas de Soja/farmacologia , Memória/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA