Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.832
Filtrar
1.
Anat Histol Embryol ; 53(4): e13085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965917

RESUMO

At the top of many ecosystems, raptors, also known as birds of prey, hold major influence. They shape their surroundings through their powerful hunting skills and complex interactions with their environment. This study investigates the beak morphology of four prominent raptor species, Golden eagle (Aquila chrysaetos), Common buzzard (Buteo buteo), Peregrine falcon (Falco peregrinus) and Common kestrel (Falco tinnunculus), found in Türkiye. By employing geometric morphometric methods, we investigate shape variations in the beaks of these species to unravel the adaptive significance of their cranial structures. This analysis reveals distinct beak morphologies among the studied raptors, reflecting adaptations to their feeding habits, hunting techniques and ecological niches. The results from Principal component analysis and Canonical variate analysis demonstrate significant differences in beak morphology between the Falconiformes and Accipitriformes clades, as well as among all three groups. The overall mean beak shapes of Golden Eagles are quite similar to Common Buzzards, with both species having longer beaks. In contrast, Falcons exhibit a distinctly different beak morphology, characterized by wider and shorter beaks. Changes in beak shape can lead to changes depending on the skull. It is thought that skull shape variations among predator families may have an impact on beak shape. These findings highlight the importance of integrating morphometric analyses with ecological insights to enhance our understanding of the evolutionary processes shaping raptor beak morphology.


Assuntos
Bico , Falconiformes , Animais , Bico/anatomia & histologia , Falconiformes/anatomia & histologia , Falconiformes/fisiologia , Aves Predatórias/anatomia & histologia , Crânio/anatomia & histologia , Análise de Componente Principal , Águias/anatomia & histologia , Águias/fisiologia , Comportamento Predatório/fisiologia , Especificidade da Espécie
2.
PeerJ ; 12: e17694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952975

RESUMO

Background: Invasive species are the primary threat to island ecosystems globally and are responsible for approximately two-thirds of all island species extinctions in the past 400 years. Non-native mammals-primarily rats, cats, mongooses, goats, sheep, and pigs-have had devastating impacts on at-risk species and are major factors in population declines and extinctions in Hawai'i. With the development of fencing technology that can exclude all mammalian predators, the focus for some locations in Hawai'i shifted from predator control to local eradication. Methods: This article describes all existing and planned full predator exclusion fences in Hawai'i by documenting the size and design of each fence, the outcomes the predator eradications, maintenance issues at each fence, and the resulting native species responses. Results: Twelve predator exclusion fences were constructed in the Hawaiian Islands from 2011-2023 and six more were planned or under construction; all were for the protection of native seabirds and waterbirds. Fences ranged in length from 304-4,877 m and enclosed 1.2-640 ha. One-third of the 18 fences were peninsula-style with open ends; the remaining two-thirds of the fences were complete enclosures. The purpose of twelve of the fences (67%) was to protect existing bird populations, and six (33%) were initiated for mitigation required under the U.S. Endangered Species Act. Of the six mitigation fences, 83% were for the social attraction of seabirds and one fence was for translocation of seabirds; none of the mitigation fences protected existing bird populations. Rats and mice were present in every predator exclusion fence site; mice were eradicated from five of six sites (83%) where they were targeted and rats (three species) were eradicated from eight of 11 sites (72%). Mongoose, cats, pigs, and deer were eradicated from every site where they were targeted. Predator incursions occurred in every fence. Rat and mouse incursions were in many cases chronic or complete reinvasions, but cat and mongoose incursions were occasional and depended on fence type (i.e., enclosed vs. peninsula). The advent of predator exclusion fencing has resulted in great gains for protecting existing seabirds and waterbirds, which demonstrated dramatic increases in reproductive success and colony growth. With threats from invasive species expected to increase in the future, predator exclusion fencing will become an increasingly important tool in protecting island species.


Assuntos
Espécies Introduzidas , Ilhas , Animais , Havaí , Comportamento Predatório , Conservação dos Recursos Naturais , Ecossistema , Aves
3.
Proc Biol Sci ; 291(2026): 20240868, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955327

RESUMO

Biotic interactions play a critical role in shaping patterns of global biodiversity. While several macroecological studies provide evidence for stronger predation in tropical regions compared with higher latitudes, results are variable even within the tropics, and the drivers of this variability are not well understood. We conducted two complementary standardized experiments on communities of sessile marine invertebrate prey and their associated predators to test for spatial and seasonal differences in predation across the tropical Atlantic and Pacific coastlines of Panama. We further tested the prediction that higher predator diversity contributes to stronger impacts of predation, using both direct observations of predators and data from extensive reef surveys. Our results revealed substantially higher predation rates and stronger effects of predators on prey in the Pacific than in the Atlantic, demonstrating striking variation within tropical regions. While regional predator diversity was high in the Atlantic, functional diversity at local scales was markedly low. Peak predation strength in the Pacific occurred during the wet, non-upwelling season when ocean temperatures were warmer and predator communities were more functionally diverse. Our results highlight the importance of regional biotic and abiotic drivers that shape interaction strength and the maintenance of tropical communities, which are experiencing rapid environmental change.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Estações do Ano , Clima Tropical , Animais , Biodiversidade , Panamá , Oceano Atlântico , Oceano Pacífico , Invertebrados/fisiologia
4.
Curr Biol ; 34(13): R625-R628, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981427

RESUMO

The dorsal periaqueductal gray (dPAG) contains a tonically GABAergic network controlling defensive responses. Determining how this intrinsic dPAG inhibitory circuit functions might provide critical insights into how anti-predatory responses are organized.


Assuntos
Substância Cinzenta Periaquedutal , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Reação de Fuga/fisiologia
5.
Biol Lett ; 20(7): 20240177, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982849

RESUMO

While various marine predators form associations, the most commonly studied are those between subsurface predators and seabirds, with gulls, shearwaters or terns frequently co-occurring with dolphins, billfish or tuna. However, the mechanisms underlying these associations remain poorly understood. Three hypotheses have been proposed to explain the prevalence of these associations: (1) subsurface predators herd prey to the surface and make prey accessible to birds, (2) subsurface predators damage prey close to the surface and thereby provide food scraps to birds, and (3) attacks of underwater predators lower the cohesion of prey groups and thereby their collective defences making the prey easier to be captured by birds. Using drone footage, we investigated the interaction between Indo-Pacific sailfish (Istiophorus platypterus) and terns (Onychoprion sp.) preying on schooling fish off the eastern coast of the Malaysian peninsula. Through spatio-temporal analysis of the hunting behaviour of the two predatory species and direct measures of prey cohesion we showed that terns attacked when school cohesion was low, and that this decrease in cohesion was frequently caused by sailfish attacks. Therefore, we propose that sailfish created a by-product benefit for the bird species, lending support to the hypothesis that lowering cohesion can facilitate associations between subsurface predators and seabirds.


Assuntos
Comportamento Predatório , Animais , Charadriiformes/fisiologia , Peixes/fisiologia , Malásia , Cadeia Alimentar , Aves/fisiologia , Comportamento Alimentar
6.
PLoS One ; 19(7): e0303633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38980882

RESUMO

Estimating the densities of marine prey observed in animal-borne video loggers when encountered by foraging predators represents an important challenge for understanding predator-prey interactions in the marine environment. We used video images collected during the foraging trip of one chinstrap penguin (Pygoscelis antarcticus) from Cape Shirreff, Livingston Island, Antarctica to develop a novel approach for estimating the density of Antarctic krill (Euphausia superba) encountered during foraging activities. Using the open-source Video and Image Analytics for a Marine Environment (VIAME), we trained a neural network model to identify video frames containing krill. Our image classifier has an overall accuracy of 73%, with a positive predictive value of 83% for prediction of frames containing krill. We then developed a method to estimate the volume of water imaged, thus the density (N·m-3) of krill, in the 2-dimensional images. The method is based on the maximum range from the camera where krill remain visibly resolvable and assumes that mean krill length is known, and that the distribution of orientation angles of krill is uniform. From 1,932 images identified as containing krill, we manually identified a subset of 124 images from across the video record that contained resolvable and unresolvable krill necessary to estimate the resolvable range and imaged volume for the video sensor. Krill swarm density encountered by the penguins ranged from 2 to 307 krill·m-3 and mean density of krill was 48 krill·m-3 (sd = 61 krill·m-3). Mean krill biomass density was 25 g·m-3. Our frame-level image classifier model and krill density estimation method provide a new approach to efficiently process video-logger data and estimate krill density from 2D imagery, providing key information on prey aggregations that may affect predator foraging performance. The approach should be directly applicable to other marine predators feeding on aggregations of prey.


Assuntos
Euphausiacea , Comportamento Predatório , Spheniscidae , Animais , Spheniscidae/fisiologia , Euphausiacea/fisiologia , Comportamento Predatório/fisiologia , Regiões Antárticas , Densidade Demográfica , Gravação em Vídeo/métodos , Processamento de Imagem Assistida por Computador/métodos
7.
Parasitol Res ; 123(7): 264, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980469

RESUMO

Ticks are ectoparasite vectors of pathogens affecting human and animal health worldwide. Rational integration of different control interventions including plant-derived repellents and acaricides, management of natural predators, and vaccines is required for innovative approaches to reduce the risks associated with ticks and tick-borne diseases. How tick populations are naturally controlled is always a question. Tick interactions with other arthropods including predators evolved from ancient times. In this study, Cretaceous (ca. 100 Mya) Burmese amber inclusions were identified as probably related to Compluriscutula vetulum (Acari: Ixodida: Ixodidae) tick larvae and spider silk. As illustrated in this study, ancient interactions between ticks and spiders may support arthropod predatory behavior as a natural control intervention. Rational integrative management of different tick control interventions including natural predators under a One Health perspective will contribute to effectively and sustainably reducing the risks associated with ticks and tick-borne diseases.


Assuntos
Comportamento Predatório , Aranhas , Animais , Aranhas/fisiologia , Ixodidae/fisiologia , Larva/fisiologia
8.
J Math Biol ; 89(2): 22, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951257

RESUMO

Group defense in prey and hunting cooperation in predators are two important ecological phenomena and can occur concurrently. In this article, we consider cooperative hunting in generalist predators and group defense in prey under a mathematical framework to comprehend the enormous diversity the model could capture. To do so, we consider a modified Holling-Tanner model where we implement Holling type IV functional response to characterize grazing pattern of predators where prey species exhibit group defense. Additionally, we allow a modification in the attack rate of predators to quantify the hunting cooperation among them. The model admits three boundary equilibria and up to three coexistence equilibrium points. The geometry of the nontrivial prey and predator nullclines and thus the number of coexistence equilibria primarily depends on a specific threshold of the availability of alternative food for predators. We use linear stability analysis to determine the types of hyperbolic equilibrium points and characterize the non-hyperbolic equilibrium points through normal form and center manifold theory. Change in the model parameters leading to the occurrences of a series of local bifurcations from non-hyperbolic equilibrium points, namely, transcritical, saddle-node, Hopf, cusp and Bogdanov-Takens bifurcation; there are also occurrences of global bifurcations such as homoclinic bifurcation and saddle-node bifurcation of limit cycles. We observe two interesting closed 'bubble' form induced by global bifurcations due to change in the strength of hunting cooperation and the availability of alternative food for predators. A three dimensional bifurcation diagram, concerning the original system parameters, captures how the alternation in model formulation induces gradual changes in the bifurcation scenarios. Our model highlights the stabilizing effects of group or gregarious behaviour in both prey and predator, hence supporting the predator-herbivore regulation hypothesis. Additionally, our model highlights the occurrence of "saltatory equilibria" in ecological systems and capture the dynamics observed for lion-herbivore interactions.


Assuntos
Ecossistema , Cadeia Alimentar , Conceitos Matemáticos , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório , Animais , Dinâmica Populacional/estatística & dados numéricos , Comportamento Cooperativo , Simulação por Computador , Herbivoria , Modelos Lineares
9.
Braz J Biol ; 84: e283484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985072

RESUMO

The date palm mite, Oligonychus afrasiaticus (McGregor) (Acari: Tetranychidae), is a serious pest of dates in the Middle East and North Africa, inflicting severe economic damage if not controlled early. As predaceous mites are known to be potential biocontrol agents against several pests, so predation capacity, life table, reproduction, and survival of Amblyseius swirskii Athias-Henriot and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae), collected from date palm farms in Qassim Saudi Arabia, were studied under laboratory conditions (25 °C, 30 °C, 35 °C and 50 ± 5% RH) against all motile stages of O. afrasiaticus. For both predators, mean developmental time, oviposition period, and longevity were inversely related to temperature from 25 to 35 °C. Various parameters were studied for A. swirskii and N. cucumeris at 25 °C, 30 °C and 35 °C, i.e. the female developmental time, 9.37, 7.29, 5.56, and 10.67, 8.38, 6.45 d; oviposition period, 19.77, 16.18, 13.94 and 15.90, 13.84, 10.64 d; longevity, 29.39, 24.79, 20.64 and 25.42, 21.94, 17.39 d; fecundity, 31.91, 37.10, 42.16 and 21.75, 26.84, 30.56 eggs per female, respectively. The maximum daily predation rate for both the predators was recorded at 35 °C during the oviposition period. The total predation of A. swirskii and N. cucumeris female was 370.86, 387.54, 405.83, 232.14, 263.32, 248.85 preys at 25 °C, 30 °C and 35 °C respectively. The maximum reproduction rate of A. swirskii and N. cucumeris (3.02, 2.87 eggs/♀/day) was recorded at 35 °C while the minimum (2.00, 1.36 eggs/♀/day) was recorded at 25 °C. The life table parameters were estimated as net reproductive rate (Ro) 21.68, 25.94, 29.52 and 18.95, 20.25, 22.78; the mean generation time (T) 24.92, 21.82, 18.24 and 26.30, 23.60, 20.56 d; the intrinsic rate of increase (rm) 0.181, 0.232, 0.248 and 0.170, 0.185, 0.196; the finite rate of increase (λ) 1.365, 1.551, 1.706 and 1.126, 1.324, 1.428 for A. swirskii and N. cucumeris at 25 °C, 30 °C and 35 °C respectively. The results of this study suggested that the two phytoseiid species are promising biological control agents of O. afrasiaticus at a wide range of temperatures.


Assuntos
Ácaros , Controle Biológico de Vetores , Phoeniceae , Comportamento Predatório , Animais , Feminino , Comportamento Predatório/fisiologia , Masculino , Ácaros/fisiologia , Phoeniceae/parasitologia , Oviposição/fisiologia , Tetranychidae/fisiologia , Reprodução/fisiologia , Longevidade , Estágios do Ciclo de Vida/fisiologia , Características de História de Vida
10.
PeerJ ; 12: e17693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006024

RESUMO

Background: Driven by habitat loss and fragmentation, large carnivores are increasingly navigating human-dominated landscapes, where their activity is restricted and their behaviour altered. This movement, however, raises significant concerns and costs for people living nearby. While intricately linked, studies often isolate human and carnivore impacts, hindering effective management efforts. Hence, in this study, we brought these two into a common framework, focusing on an interface area between the critical tiger habitat and the human-dominated multiple-use buffer area of a central Indian protected area. Methods: We employed a fine-scale camera trap survey complemented by GPS-collar movement data to understand spatio-temporal activity patterns and adjustments of tigers in response to anthropogenic pressures. We used an occupancy framework to evaluate space use, Bayesian circular GLMs to model temporal activity, and home range and step length analyses to assess the movement patterns of tigers. Further, we used predation-risk models to understand conflict patterns as a function of tiger presence and other habitat variables. Results: Despite disturbance, a high proportion of the sampled area was occupied by 17 unique tigers (ψ = 0.76; CI [0.73-0.92]). The distance to villages (ß ± SE = 0.63 ± 0.21) and the relative abundance of large-bodied wild prey (ß ± SE = 0.72 ± 0.37) emerged as key predictors of tiger space use probability, indicating a preference for wild prey by tigers, while human influences constrained their habitat utilisation. Distance to villages was also identified as the most significant predictor of the tigers' temporal activity (µ ± σ = 3.03 ± 0.06 rad) that exhibited higher nocturnality near villages. A total of 11% of tiger home ranges were within village boundaries, accompanied by faster movement in these areas (displacement 40-82% higher). Livestock depredation probability by tigers increased with proximity to villages (P = 0.002) and highway (P = 0.003). Although tiger space use probability (P = 0.056) and wild prey abundance (P = 0.134) were non-significant at the 0.05 threshold, their presence in the best-fit predation-risk model suggests their contextual relevance for understanding conflict risk. The results highlight the importance of appropriately managing livestock near human infrastructures to effectively mitigate conflict. Conclusions: Shared space of carnivores and humans requires dynamic site-specific actions grounded in evidence-based decision-making. This study emphasises the importance of concurrently addressing the intricate interactions between humans and large carnivores, particularly the latter's behavioural adaptations and role in conflict dynamics. Such an integrated approach is essential to unravel cause-effect relationships and promote effective interface management in human-dominated landscapes.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Comportamento Predatório , Tigres , Animais , Tigres/fisiologia , Comportamento Predatório/fisiologia , Humanos , Índia , Teorema de Bayes , Efeitos Antropogênicos
11.
Am Nat ; 204(2): 191-199, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39008836

RESUMO

AbstractThe sub-Antarctic terrestrial ecosystems survive on isolated oceanic islands in the path of circumpolar currents and winds that have raged for more than 30 million years and are shaped by climatic cycles that surpass the tolerance limits of many species. Surprisingly little is known about how these ecosystems assembled their native terrestrial fauna and how such processes have changed over time. Here, we demonstrate the patterns and timing of colonization and speciation in the largest and dominant arthropod predators in the eastern sub-Antarctic: spiders of the genus Myro. Our results indicate that this lineage originated from Australia before the Plio-Pleistocenic glacial cycles and underwent an adaptive radiation on the Crozet archipelago, from where one native species colonized multiple remote archipelagos via the Antarctic circumpolar current across thousands of kilometers. The results indicate limited natural connectivity between terrestrial macroinvertebrate faunas in the eastern sub-Antarctic and partial survival of repeated glaciations in the Plio-Pleistocene. Furthermore, our findings highlight that by integrating arthropod taxa from multiple continents, the climatically more stable volcanic Crozet archipelago played a critical role in the evolution and distribution of arthropod life in the sub-Antarctic.


Assuntos
Distribuição Animal , Evolução Biológica , Aranhas , Animais , Regiões Antárticas , Aranhas/fisiologia , Ecossistema , Comportamento Predatório , Filogenia , Artrópodes/fisiologia
12.
J Math Biol ; 89(3): 28, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009712

RESUMO

This paper aims to establish the existence of traveling wave solutions connecting different equilibria for a spatial eco-epidemiological predator-prey system in advective environments. After applying the traveling wave coordinates, these solutions correspond to heteroclinic orbits in phase space. We investigate the existence of the traveling wave solution connecting from a boundary equilibrium to a co-existence equilibrium by using a shooting method. Different from the techniques introduced by Huang, we directly prove the convergence of the solution to a co-existence equilibrium by constructing a special bounded set. Furthermore, the Lyapunov-type function we constructed does not need the condition of bounded below. Our approach provides a different way to study the existence of traveling wave solutions about the co-existence equilibrium. The existence of traveling wave solutions between co-existence equilibria are proved by utilizing the qualitative theory and the geometric singular perturbation theory. Some other open questions of interest are also discussed in the paper.


Assuntos
Ecossistema , Cadeia Alimentar , Conceitos Matemáticos , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório , Animais , Dinâmica Populacional/estatística & dados numéricos , Simulação por Computador
13.
Harmful Algae ; 137: 102678, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39003029

RESUMO

Raphidiopsis blooms are notorious for cyanotoxin formation and strong invasiveness, threatening the stability of aquatic ecosystems and human health. The protozoa Paramecium can potentially serve as an organism for controlling Raphidiopsis blooms owing to its grazing effect. However, the grazing ability of Paramecium is largely determined by the size of the prey, and the population of Raphidiopsis consists of filaments of varying lengths and sizes. The selective grazing behavior of Paramecium toward short-length or small-sized filaments in the Raphidiopsis population, as opposed to long filaments, remains unclear. Therefore, in this study, we co-cultured the predator Paramecium sp. with different initial abundances and the prey Raphidiopsis raciborskii to explore this knowledge gap. Our results suggested that: (1) the population of R. raciborskii declined under the selective grazing effect of Paramecium sp. on short filaments, whereas R. raciborskii with long filaments survived; (2) the growth of Paramecium sp. feeding on the same abundance of R. raciborskii was reduced at higher initial abundances, whereas its carrying capacity exhibited an opposite trend; (3) under ingestion by Paramecium sp., the morphology of R. raciborskii developed in the direction of becoming larger, and higher initial abundances of Paramecium sp. intensified this process; (4) increasing initial abundance of Paramecium sp. aggravated the decline of R. raciborskii photosynthetic activity. Therefore, the grazing effect of Paramecium sp. on R. raciborskii mainly affects filaments of short length or small size. Collectively, these results clarify the inter-species interaction between the protozoa Paramecium and filamentous cyanobacteria Raphidiopsis, including population dynamics and morphological and physiological changes in the predator and prey. Such insights into the interactions between Paramecium and R. raciborskii may have implications for the biological control of blooms caused by filamentous cyanobacteria.


Assuntos
Paramecium , Paramecium/fisiologia , Cianobactérias/fisiologia , Cadeia Alimentar , Comportamento Predatório/fisiologia
14.
PLoS One ; 19(7): e0304257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959233

RESUMO

An animal's environment contains many risks causing animals to scan their environment for potential predators and threats from conspecifics. How much time they invest in such vigilance depends on environmental and social factors. Most vigilance studies have been conducted in a foraging context with little known about vigilance in other contexts. Here we investigated vigilance of Gouldian finches at waterholes considering environmental and social factors. Gouldian finches are colour polymorphic with two main head colours in both sexes co-occurring in the same population, black-headed and red-headed. Data collection was done on birds sitting in trees surrounding waterholes by measuring the frequency of head movements, which reflects how frequently they change their field of view, i.e., scan different areas in their environment. A higher frequency generally reflects higher vigilance. Gouldian finches had a higher frequency of head movements when at small waterholes and when sitting in open, leafless trees. Moreover, head movements were higher when birds were alone in the tree as compared to groups of birds. Finally, birds in same head colour morph groups had a higher frequency of head movements than birds in mixed head colour groups. Results indicate heightened vigilance with increased perception of predation risk (small waterholes, open exposed perch, when alone) but that social vigilance also played a role (group composition) with particularly the aggressive red-headed birds being more vigilant when together with other red-headed birds. Future research should investigate the effect of smaller waterholes as global warming will cause smaller waterholes to become more common for longer periods of time, which can increase stress in the birds.


Assuntos
Tentilhões , Árvores , Animais , Masculino , Feminino , Tentilhões/fisiologia , Comportamento Animal/fisiologia , Movimentos da Cabeça/fisiologia , Comportamento Predatório/fisiologia
15.
Proc Natl Acad Sci U S A ; 121(30): e2321724121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008672

RESUMO

Social foraging is very common in the animal kingdom. Numerous studies have documented collective foraging in various species and many reported the attraction of various species to foraging conspecifics. It is nonetheless difficult to quantify the benefits and costs of collective foraging, especially in the wild. We examined the benefits and costs of social foraging using on-board microphones mounted on freely foraging Molossus nigricans bats. This allowed us to quantify the bats' attacks on prey and to assess their success as a function of conspecific density. We found that the bats spent most of their time foraging at low conspecific densities, during which their attacks were most successful in terms of prey items captured per time unit. Notably, their capture rate dropped when conspecific density became either too high or too low. Our findings thus demonstrate a clear social foraging trade-off in which the presence of a few conspecifics probably improves foraging success, whereas the presence of too many impairs it.


Assuntos
Quirópteros , Ecolocação , Comportamento Predatório , Comportamento Social , Animais , Quirópteros/fisiologia , Ecolocação/fisiologia , Comportamento Predatório/fisiologia , Comportamento Alimentar/fisiologia
16.
Proc Biol Sci ; 291(2027): 20240953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39013421

RESUMO

The selective factors that shape phenotypic diversity in prey communities with aposematic animals are diverse and coincide with similar diversity in the strength of underlying secondary defences. However, quantitative assessments of colour pattern variation and the strength of chemical defences in assemblages of aposematic species are lacking. We quantified colour pattern diversity using quantitative colour pattern analysis (QCPA) in 13 dorid nudibranch species (Infraorder: Doridoidei) that varied in the strength of their chemical defences. We accounted for the physiological properties of a potential predator's visual system (a triggerfish, Rhinecanthus aculeatus) and modelled the appearance of nudibranchs from multiple viewing distances (2 and 10 cm). We identified distinct colour pattern properties associated with the presence and strength of chemical defences. Specifically, increases in chemical defences indicated increases in colour pattern boldness (i.e. visual contrast elicited via either or potentially coinciding chromatic, achromatic and/or spatial contrast). Colour patterns were also less variable among species with chemical defences when compared to undefended species. Our results indicate correlations between secondary defences and diverse, bold colouration while showing that chemical defences coincide with decreased colour pattern variability among species. Our study suggests that complex spatiochromatic properties of colour patterns perceived by potential predators can be used to make inferences on the presence and strength of chemical defences.


Assuntos
Cor , Gastrópodes , Comportamento Predatório , Animais , Gastrópodes/fisiologia , Pigmentação , Mimetismo Biológico
17.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230136, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913053

RESUMO

Decisions to disperse from a habitat stand out among organismal behaviours as pivotal drivers of ecosystem dynamics across scales. Encounters with other species are an important component of adaptive decision-making in dispersal, resulting in widespread behaviours like tracking resources or avoiding consumers in space. Despite this, metacommunity models often treat dispersal as a function of intraspecific density alone. We show, focusing initially on three-species network motifs, that interspecific dispersal rules generally drive a transition in metacommunities from homogeneous steady states to self-organized heterogeneous spatial patterns. However, when ecologically realistic constraints reflecting adaptive behaviours are imposed-prey tracking and predator avoidance-a pronounced homogenizing effect emerges where spatial pattern formation is suppressed. We demonstrate this effect for each motif by computing master stability functions that separate the contributions of local and spatial interactions to pattern formation. We extend this result to species-rich food webs using a random matrix approach, where we find that eventually, webs become large enough to override the homogenizing effect of adaptive dispersal behaviours, leading once again to predominately pattern-forming dynamics. Our results emphasize the critical role of interspecific dispersal rules in shaping spatial patterns across landscapes, highlighting the need to incorporate adaptive behavioural constraints in efforts to link local species interactions and metacommunity structure. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Distribuição Animal , Cadeia Alimentar , Modelos Biológicos , Animais , Ecossistema , Dinâmica Populacional , Comportamento Predatório
18.
BMC Ecol Evol ; 24(1): 85, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937724

RESUMO

Crop raiding and livestock predation negatively impact the views of the local community towards wildlife conservation. Farmers across the African continent, especially those in rural regions, incur financial losses as a result of crop raiding and livestock depredation. The sustainability of the forest relies heavily on comprehending the essential connection between a harmonious park-people relationship and the coexistence of humans and wildlife. The primary aim of this study is to evaluate the predation of livestock, the raiding of crops, and the attitudes of the community towards wildlife in the Mankira Forest located in southwest Ethiopia. This particular area has been lacking in scientific research, making it crucial to conduct this assessment. The data were collected between November 2021 and September 2022 via a structured questionnaire. This study used a sample of 241 randomly selected respondents from the four villages, and responses were compared using chi-square tests. Pearson correlation was also used to test the relationship between the distance of farmland and the extent of crop raiding. The majority of the respondents (95%) reported the presence of crop raiding and livestock predation in the area. These losses were caused by the Papio anubis (39%), the Chlorocebus aethiops (24.1%), the Hystrix cristata (15.3%), the Canis aures (58.3%), and the Crocutacrocuta (29.5%). Maize stood out as the crop type most susceptible to crop raiders. Most of the respondents (56.7%) had a negative attitude towards wildlife conservation. There was a significant difference among age groups of respondents related to their attitude towards wildlife conservation (p < 0.05). The study highlights the need to address several gaps in understanding and managing human-wildlife conflict through research on predation, raiding, and community attitudes. Therefore, to fulfill the dual goals of community support and conservation of wildlife, rigorous management and planning are needed.


Assuntos
Atitude , Conservação dos Recursos Naturais , Produtos Agrícolas , Gado , Etiópia , Animais , Humanos , Comportamento Predatório , Florestas , Animais Selvagens , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
19.
PeerJ ; 12: e17577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938602

RESUMO

Background: Enhancing detection of cryptic snakes is critical for the development of conservation and management strategies; yet, finding methods that provide adequate detection remains challenging. Issues with detecting snakes can be particularly problematic for some species, like the invasive Burmese python (Python bivittatus) in the Florida Everglades. Methods: Using multiple survey methods, we predicted that our ability to detect pythons, larger snakes and all other snakes would be enhanced with the use of live mammalian lures (domesticated rabbits; Oryctolagus cuniculus). Specifically, we used visual surveys, python detection dogs, and time-lapse game cameras to determine if domesticated rabbits were an effective lure. Results: Time-lapse game cameras detected almost 40 times more snakes (n = 375, treatment = 245, control = 130) than visual surveys (n = 10). We recorded 21 independent detections of pythons at treatment pens (with lures) and one detection at a control pen (without lures). In addition, we found larger snakes, and all other snakes were 165% and 74% more likely to be detected at treatment pens compared to control pens, respectively. Time-lapse cameras detected almost 40 times more snakes than visual surveys; we did not detect any pythons with python detection dogs. Conclusions: Our study presents compelling evidence that the detection of snakes is improved by coupling live mammalian lures with time-lapse game cameras. Although the identification of smaller snake species was limited, this was due to pixel resolution, which could be improved by changing the camera focal length. For larger snakes with individually distinctive patterns, this method could potentially be used to identify unique individuals and thus allow researchers to estimate population dynamics.


Assuntos
Boidae , Serpentes , Imagem com Lapso de Tempo , Animais , Coelhos , Imagem com Lapso de Tempo/métodos , Florida , Cães , Fotografação/instrumentação , Fotografação/métodos , Comportamento Predatório/fisiologia
20.
Toxins (Basel) ; 16(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38922166

RESUMO

The larvae of some lampyrid beetles are highly specialized predators of snails. They have been observed to climb on the shells of their prey and use this exposed position to bite and inject secretions potentially originating from the midgut. Besides serving the purpose of extra-oral digestion (EOD), injected compounds also seem to have a paralyzing effect. Up to now, the toxins causing this paralyzing activity have not been identified. In the current study, we provide a first compositional analysis of the midgut secretion from lampyrid larvae, with a focus on identifying putative neurotoxins causing the observed paralyzing effect. For this purpose, we utilized a combined proteo-transcriptomic approach to characterize the compounds present in the midgut secretion of larval stages of Lampyris noctiluca. In terms of the absolute numbers of identified compounds, the midgut secretion is dominated by hydrolyzing enzymes comprising peptidases, carboxylesterases, and glycosidases. However, when considering expression levels, a few rather short cysteine-rich peptides exceed all other compounds. Some of these compounds show moderate similarity to putative neurotoxins identified in the venom of other arthropods and could be responsible for paralyzing effects. In addition to these potential toxins, we provide a list of peptides typical of the midgut secretion of L. noctiluca, supplemented by the corresponding precursor sequences.


Assuntos
Besouros , Larva , Neurotoxinas , Caramujos , Animais , Larva/metabolismo , Neurotoxinas/toxicidade , Neurotoxinas/metabolismo , Besouros/metabolismo , Caramujos/metabolismo , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...